JPS5916641Y2 - Exhaust gas economizer water supply preheating device in diesel engine - Google Patents

Exhaust gas economizer water supply preheating device in diesel engine

Info

Publication number
JPS5916641Y2
JPS5916641Y2 JP1975111844U JP11184475U JPS5916641Y2 JP S5916641 Y2 JPS5916641 Y2 JP S5916641Y2 JP 1975111844 U JP1975111844 U JP 1975111844U JP 11184475 U JP11184475 U JP 11184475U JP S5916641 Y2 JPS5916641 Y2 JP S5916641Y2
Authority
JP
Japan
Prior art keywords
water
exhaust gas
gas economizer
water supply
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1975111844U
Other languages
Japanese (ja)
Other versions
JPS5224102U (en
Inventor
久男 藤田
睦男 大淵
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to JP1975111844U priority Critical patent/JPS5916641Y2/en
Publication of JPS5224102U publication Critical patent/JPS5224102U/ja
Application granted granted Critical
Publication of JPS5916641Y2 publication Critical patent/JPS5916641Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、ディーゼル機関における排ガスエコノマイザ
給水予熱装置に関する。
[Detailed Description of the Invention] The present invention relates to an exhaust gas economizer feed water preheating device for a diesel engine.

ディーゼル機関を推進用主機関として搭載した船舶にお
いて、その通常航海時に必要な蒸気量および電気量のす
べてを主機関の排ガスエネルギーを有効に利用すること
によって賄なうよう計画されているのが一般的である。
Ships equipped with a diesel engine as the main propulsion engine are generally designed so that all the steam and electricity required during normal voyages are provided by effectively utilizing the main engine's exhaust gas energy. It is true.

このため、主機関の排ガスエネルギを熱源とする排ガス
エコノマイザを設け、これによって蒸気を発生し、この
蒸気を船内の必要個所に供給すると共に、蒸気タービン
駆動発電装置、即ちターボゼネレータに導き、発電・供
電するシステムがとられている。
For this purpose, an exhaust gas economizer is installed that uses the exhaust gas energy of the main engine as a heat source, which generates steam, supplies this steam to the necessary locations on the ship, and guides it to a steam turbine-driven power generator, that is, a turbo generator, to generate electricity and generate steam. A system is in place to supply electricity.

従来、上記の蒸気発生のためには第1図に示されている
ような排ガスエコノマイザプラントが設けられている。
Conventionally, an exhaust gas economizer plant as shown in FIG. 1 has been provided for the above-mentioned steam generation.

即ち第1図において、ディーゼル機関1で発生した排ガ
スはディーゼル機関付過給機2を駆動し、そして排ガス
管3に介装されている排ガスエコノマイザ11の管内流
体であるボイラ循環水にその保有エネルギの一部を与え
たのち大気に放出される。
That is, in FIG. 1, exhaust gas generated by a diesel engine 1 drives a supercharger 2 with a diesel engine, and its retained energy is transferred to boiler circulating water, which is the fluid in the pipe of an exhaust gas economizer 11 installed in an exhaust gas pipe 3. is released into the atmosphere.

一方排ガスからエネルギを与えられたボイラ循環水は気
液混合状態となり排ガスエコノマイザと気水分離ドラム
8を連通する循環経路10を通り気水分離ドラムに到り
、そこで蒸気を分離する。
On the other hand, the boiler circulating water given energy from the exhaust gas becomes a gas-liquid mixture, passes through the circulation path 10 communicating between the exhaust gas economizer and the steam-water separation drum 8, reaches the steam-water separation drum, and separates steam there.

そして分離された蒸気は蒸気供給管12を通って船内の
必要個所に供給される。
The separated steam is then supplied to necessary locations inside the ship through the steam supply pipe 12.

また、気水分離ドラム内のボイラ循環水の補給は給水タ
ンク4内の給水によって行なわれる。
Further, the boiler circulating water in the steam/water separation drum is replenished by water supply in the water supply tank 4.

即ち給水タンク内の給水は給水ポンプ5によって吸引、
加圧され給水加燃器7で加熱されたのち気水分離ドラム
に供給されるもので6は給水タンクと気水分離ドラムを
連通ずる給水配管である。
That is, the water supply in the water supply tank is sucked by the water supply pump 5,
The water is pressurized and heated by the water supply combustor 7, and then supplied to the steam/water separation drum. Reference numeral 6 is a water supply pipe that communicates the water supply tank and the steam/water separation drum.

なお、このシステムで用いられる給水加熱器の熱源は蒸
気または高温のボイラ循環水のいずれかであり、どちら
も排ガスエコノマイザにより高温高圧化されたものであ
る。
The heat source of the feedwater heater used in this system is either steam or high-temperature boiler circulating water, both of which are raised to high temperature and high pressure by an exhaust gas economizer.

一方、最近の舶用ディ−ゼル機関の傾向として、大馬力
化と共に燃料消費率の改善がはかられ、この燃料消費率
の改善のため、主機関付過給機出口における排ガス温度
は低くなる一方であり、このため主機関排ガス系統に装
備する排ガスエコノマイザの伝熱面積は大きくせざるを
得なくなっている。
On the other hand, as a recent trend in marine diesel engines, efforts are being made to improve the fuel consumption rate along with the increase in horsepower, and due to this improvement in the fuel consumption rate, the exhaust gas temperature at the outlet of the main engine's supercharger is becoming lower. Therefore, the heat transfer area of the exhaust gas economizer installed in the main engine exhaust gas system has to be increased.

この結果、排ガスエコノマイザの製造コストが上昇し、
性能的には加熱管外部汚れの洗浄の困難さの増大による
性能の低下、さらには主機関の負荷変動時の排ガスエコ
ノマイザ保有循環水の比容積変化による気水分離ドラム
の水位変動を増大させることになる。
As a result, the manufacturing cost of exhaust gas economizers increases and
In terms of performance, there is a decrease in performance due to increased difficulty in cleaning dirt on the outside of the heating tube, and furthermore, an increase in water level fluctuations in the steam/water separation drum due to changes in the specific volume of the circulating water in the exhaust gas economizer when the main engine load fluctuates. become.

また小型、中型の主機関では、排ガス量およびガス温度
の不足により、排ガスエコノマイザターボプラントの採
用を見合わせるかまたは、テ゛イーゼル発電機との併列
運転を実施せざるも得ない例もみられるようになった。
In addition, in small and medium-sized main engines, due to insufficient exhaust gas volume and gas temperature, there are cases where the adoption of an exhaust gas economizer turbo plant has been postponed, or where parallel operation with an easel generator has no choice but to be implemented. .

考案者は上記の欠点を解消するため、気水分離ドラムに
供給される給水の加熱熱源を主機関の排ガス以外の熱源
から得ることにより排ガスエコノマイザプラントの熱収
支を大巾に改善することができ、排ガスエコノマイザの
伝熱面積を低減することが可能であることに着目したも
のである。
In order to eliminate the above-mentioned drawbacks, the inventor succeeded in significantly improving the heat balance of the exhaust gas economizer plant by obtaining the heat source for heating the feed water supplied to the steam/water separation drum from a heat source other than the exhaust gas of the main engine. , which focuses on the possibility of reducing the heat transfer area of the exhaust gas economizer.

即ち、通常航海中の排ガスエコノマイザへの給水温度は
給水タンクで20〜40℃(真空式復水器700mmH
gVACの場合)と低く、これを排ガスエコノマイザに
より得られた熱源以外の熱源で加熱上昇してやれば排ガ
スエコノマイザプラントの熱収支を大巾に改善すること
ができる。
In other words, during normal voyages, the temperature of water supplied to the exhaust gas economizer is 20 to 40°C in the water tank (vacuum condenser 700mmH).
gVAC) is low, and if this is heated up using a heat source other than the heat source obtained by the exhaust gas economizer, the heat balance of the exhaust gas economizer plant can be greatly improved.

因に、8.5kg/cm2Gの蒸気プラントの場合に給
水温度を30℃から65℃まで予熱すると、 となり、排ガスエコノマイザ蒸気発生量の余裕は約6%
確保し得ることになり、換言すれば排ガスエコノマイザ
の伝熱面積を6%減少することが出来るものである。
Incidentally, in the case of an 8.5kg/cm2G steam plant, if the feed water temperature is preheated from 30℃ to 65℃, the margin for the amount of steam generated by the exhaust gas economizer is approximately 6%.
In other words, the heat transfer area of the exhaust gas economizer can be reduced by 6%.

なお、65℃の給水温度を得るためには、ディーゼルプ
ラント内での適当な加熱源を見出すことが可能である。
Note that in order to obtain a feed water temperature of 65°C, it is possible to find a suitable heating source within the diesel plant.

即ち本考案は、65℃の加熱源としてディーゼル機関の
シリンダジャケット冷却系の冷却損失熱量の一部を利用
するため、シリンダジャケット水冷空間と清水冷却器を
冷却水路で連通してなるシリンダジャケット冷却システ
ムにおける清水冷却器の上流側に給水予熱器を設けて給
水タンクからの給水を65℃まで予熱し、該予熱水を気
水分離ドラムを介して排ガスエコノマイザに給水するよ
うにしたものである。
That is, the present invention is a cylinder jacket cooling system in which a cylinder jacket water cooling space and a fresh water cooler are connected through a cooling channel in order to utilize a part of the cooling loss heat of the cylinder jacket cooling system of a diesel engine as a 65°C heating source. A water preheater is provided upstream of the fresh water cooler to preheat the water supplied from the water tank to 65°C, and the preheated water is supplied to the exhaust gas economizer via the air/water separation drum.

本考案の一実施例を第2図に基づいて説明する。An embodiment of the present invention will be described based on FIG.

20はシリンダジャケット水冷空間、17は清水冷却器
で冷却水路18により連通され、冷却水はポンプ(図示
せず)により循環されるシリンダジャケット冷却システ
ムを形成する。
20 is a cylinder jacket water cooling space, and 17 is a fresh water cooler, which are communicated by a cooling water passage 18, forming a cylinder jacket cooling system in which the cooling water is circulated by a pump (not shown).

前記清水冷却器17においては冷却海水管19との間で
熱交換が行なわれる。
Heat exchange is performed in the fresh water cooler 17 with the cooling seawater pipe 19.

この冷却システムの清水冷却器17の上流側に介在せし
めた給水予熱器16は、排ガスエコノマイザ11に接続
した汽水分離ドラム8へ給水タンク4から供給される給
水を予熱するため給水路途中に特に設けたものである。
The feed water preheater 16, which is interposed upstream of the fresh water cooler 17 of this cooling system, is especially installed in the middle of the feed water channel in order to preheat the feed water supplied from the water tank 4 to the brackish water separation drum 8 connected to the exhaust gas economizer 11. It is something that

6は汽水分離ドラム8への給水路でその始端は検氷ンク
4に連通し、また該給水路6中には給水ポンプ5と給水
調整弁14とが設けられる。
Reference numeral 6 denotes a water supply waterway to the brackish water separation drum 8, the starting end of which communicates with the ice detection ink 4, and a water supply pump 5 and a water supply adjustment valve 14 are provided in the water supply waterway 6.

10は汽水分離ドラム8から排ガスエコノマイザ11へ
の循環路で循環ポンプ9が設けられる。
10 is a circulation path from the brackish water separation drum 8 to the exhaust gas economizer 11, and a circulation pump 9 is provided therein.

前記給水路6の給水ポンプ5と給水調整弁14との間は
二つの分岐水路6a、6bに形成され、その一方6aは
バルブ13を介装し、また他方6bはバルブ15を介し
て給水予熱器16に至り、以って熱交換を行なうべく構
威しである。
Two branched waterways 6a and 6b are formed between the water supply pump 5 and the water supply adjustment valve 14 of the water supply waterway 6, one of which has a valve 13 interposed therein, and the other 6b has a valve 15 for preheating the water supply. The heat is then transferred to the vessel 16, where heat exchange is to be carried out.

給水タンク4から給水路6,6bを流れる20〜40℃
の給水は給水予熱器16を流れる65℃のジャケット冷
却水により加熱されて同様の65℃になり、汽水分離ド
ラム8に至る。
20 to 40°C flowing from the water tank 4 through the water supply channels 6 and 6b
The feed water is heated to the same temperature of 65° C. by the 65° C. jacket cooling water flowing through the feed water preheater 16 and reaches the brackish water separation drum 8.

また給水予熱器16から64℃にて排出されるジャケッ
ト冷却水は、清水冷却器17において58℃に落されて
シリンダジャケット水冷空間20に至る。
Further, the jacket cooling water discharged from the feed water preheater 16 at 64° C. is cooled to 58° C. in the fresh water cooler 17 and reaches the cylinder jacket water cooling space 20 .

なお、ディーゼル機関1で発生した排ガスはディーゼル
機関付過給機2を駆動したのち、排ガス管3に介装され
た排ガスエコノマイザ11にその保有エネルギの一部を
与えたのち大気に放出される。
Note that the exhaust gas generated by the diesel engine 1 drives a supercharger 2 with a diesel engine, and then gives a part of its retained energy to an exhaust gas economizer 11 installed in an exhaust gas pipe 3, and then is released into the atmosphere.

以上、実施例で述べた本考案によれば、排ガスエコノマ
イザの定格容量に6%の余裕を与える事ができ、即ち排
ガスエコノマイザでより多くの蒸気を確保することがで
きるかまたは、該排ガスエコノマイザの高価な電熱面積
を小さくでき、この場合さらに給水予熱器は清水間での
熱交換なので伝熱面の汚れや腐蝕のトラブルを少なくで
きると共に清水冷却器を小型化できる。
As described above, according to the present invention described in the examples, it is possible to give a margin of 6% to the rated capacity of the exhaust gas economizer, that is, it is possible to secure more steam in the exhaust gas economizer, or it is possible to The area for expensive electric heating can be reduced, and in this case, since the feed water preheater exchanges heat between fresh water, troubles such as dirt and corrosion on the heat transfer surface can be reduced, and the fresh water cooler can be made smaller.

また、テ゛イーゼル主機関の廃熱利用が有効に図られ、
かつ冷却損失熱量の有効利用が図れる。
In addition, the waste heat of the easel main engine is effectively utilized.
Moreover, the amount of heat lost by cooling can be effectively utilized.

なお、ディーゼル機関において、過給機から掃気室への
管路途中に設けられた空気冷却器中に、排ガスエコノマ
イザの汽水分離ドラムへの給水路を介在させて給水の予
熱を行なっても同様の効果を得ることができる。
In addition, in a diesel engine, the same effect can be obtained even if the water supply is preheated by interposing a water supply channel to the brackish water separation drum of the exhaust gas economizer in the air cooler installed in the middle of the pipe from the supercharger to the scavenging chamber. effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の排ガスエコノマイザプラントの系統図、
第2図は本考案の一実施例を示す系統図である。 4・・・・・・給水タンク、8・・・・・・汽水分離ド
ラム、11・・・・・・排ガスエコノマイザ、16・・
・・・・給水予熱器、17・・・・・・清水冷却器、1
8・・・・・・冷却水路、20・・・・・・シリンダジ
ャケット水冷空間。
Figure 1 is a system diagram of a conventional exhaust gas economizer plant.
FIG. 2 is a system diagram showing an embodiment of the present invention. 4... Water supply tank, 8... Brackish water separation drum, 11... Exhaust gas economizer, 16...
...Water preheater, 17... Fresh water cooler, 1
8... Cooling water channel, 20... Cylinder jacket water cooling space.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダジャケット水冷空間20と清水冷却器17を冷
却水路18で連通してなるシリンダジャケット冷却シス
テムにおける清水冷却器17の上流側に給水予熱器16
を設けて給水タンク4からの給水を予熱し、該予熱水を
汽水分離ドラム8を介して排ガスエコノマイザ11に給
水することを特徴とするディーゼル機関における排ガス
エコノマイザ給水予熱装置。
A water preheater 16 is provided on the upstream side of the fresh water cooler 17 in a cylinder jacket cooling system in which the cylinder jacket water cooling space 20 and the fresh water cooler 17 are connected through a cooling channel 18.
An exhaust gas economizer feed water preheating device for a diesel engine, characterized in that the preheated water is preheated from the water tank 4, and the preheated water is supplied to the exhaust gas economizer 11 via the brackish water separation drum 8.
JP1975111844U 1975-08-12 1975-08-12 Exhaust gas economizer water supply preheating device in diesel engine Expired JPS5916641Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1975111844U JPS5916641Y2 (en) 1975-08-12 1975-08-12 Exhaust gas economizer water supply preheating device in diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1975111844U JPS5916641Y2 (en) 1975-08-12 1975-08-12 Exhaust gas economizer water supply preheating device in diesel engine

Publications (2)

Publication Number Publication Date
JPS5224102U JPS5224102U (en) 1977-02-19
JPS5916641Y2 true JPS5916641Y2 (en) 1984-05-16

Family

ID=28592965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1975111844U Expired JPS5916641Y2 (en) 1975-08-12 1975-08-12 Exhaust gas economizer water supply preheating device in diesel engine

Country Status (1)

Country Link
JP (1) JPS5916641Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4328961Y1 (en) * 1966-12-24 1968-11-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4328961Y1 (en) * 1966-12-24 1968-11-28

Also Published As

Publication number Publication date
JPS5224102U (en) 1977-02-19

Similar Documents

Publication Publication Date Title
KR920009576B1 (en) Waste heat recovery system
GB1592636A (en) Apparatus for heat recovery from exhaust gases of marine prime movers
JPH09177508A (en) Exhaust heat recovery type steam generator and method for operating gas turbo system combined with steam consumer
CN103398385B (en) The residual neat recovering system of a kind of boats and ships incinerator and power set and recovery method
JP2013160132A (en) Exhaust-heat recovery and utilization system
JP2001132538A (en) Engine provided with energy recovery device
US4394813A (en) Exhaust gas heat recovery system in internal combustion engine
JPS5916641Y2 (en) Exhaust gas economizer water supply preheating device in diesel engine
JP2680288B2 (en) Steam injection gas turbine system and operating method thereof
CN203880720U (en) Waste heat recovery system for marine incinerator and marine power device
CN101614163A (en) Car and boat engine waste heat boiler and chilly condensing low-voltage power generator
CN209340011U (en) Combination valve type residual heat using device
JPS59126006A (en) Marine heating system of ship necessitating tank heating
JPH0231523Y2 (en)
KR102153769B1 (en) System for recycling wasted heat of vessel
JPS5823214A (en) Cooling structure of exhaust valve seat section
JPS627905A (en) Internal-combustion engine with steam turbine
KR101519542B1 (en) Energy saving apparatus for a ship using waste heat of organic cooling medium
JPS59225203A (en) Device for recovering waste heat
JPS6244118Y2 (en)
JPH0339162B2 (en)
JPS60192864A (en) Utilization of waste heat in diesel engine
JPS6161957A (en) Oil heating method of two-stage heating type
JPH0330561Y2 (en)
JPS60192862A (en) Utilization of waste heat in diesel engine