JPS59126006A - Marine heating system of ship necessitating tank heating - Google Patents

Marine heating system of ship necessitating tank heating

Info

Publication number
JPS59126006A
JPS59126006A JP154183A JP154183A JPS59126006A JP S59126006 A JPS59126006 A JP S59126006A JP 154183 A JP154183 A JP 154183A JP 154183 A JP154183 A JP 154183A JP S59126006 A JPS59126006 A JP S59126006A
Authority
JP
Japan
Prior art keywords
turbine
heating
tank
main
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP154183A
Other languages
Japanese (ja)
Inventor
Shoichi Yabuki
矢吹 捷一
Shunsuke Takahashi
俊輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP154183A priority Critical patent/JPS59126006A/en
Publication of JPS59126006A publication Critical patent/JPS59126006A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic

Abstract

PURPOSE:To enhance the thermal efficiency and contrive to save energy by a method wherein at least a part of the exhaust steam discharged from a turbine is utilized for tank heating in a system, in which turbines to produce propulsive force and a turbine to produce power for various works are driven by the steam sent from a boiler. CONSTITUTION:The steam generated at a main boiler 21 is sent and supplied through a superheater 22 to a back pressure type main turbine 23 and an auxiliary turbine 24 and yet a part of the steam extracted from the main turbine 23 is sent to a feed water heater 26. In addition, the major part of the exhaust steam discharged from the main turbine 23 is supplied through a back pressure regulating valve 27 to a tank heater 28 and another inboard heating source 29, while the excess part of said exhaust steam is supplied through a damper valve 30 to a low pressure turbine 31 for propulsion and heating. After that, the steams supplied to said heater 28 and heating source 29 are condensed and liquefied in the respective apparatuses and sent together with the condensate flowed from a condenser 32 to a drain tank 33 and flowed through the feed water heaters 34 and 26 back to the main boiler 21. Similarly, a part of the exhaust steam discharged from the auxiliary turbine 24 is utilized to heat the heater 28 and the heating source 29.

Description

【発明の詳細な説明】 本発明は、タンク加熱を必要とする船舶に係り。[Detailed description of the invention] The present invention relates to a ship that requires tank heating.

特にタービンからの排気をタンク加熱用に利用した加熱
システムに関するものである。
In particular, it relates to a heating system that uses exhaust gas from a turbine to heat a tank.

従来、タンク加熱を必要とする船舶1例えば高粘度貨物
を輸送するタンカー等におけるタンクの加熱方式として
は、推進機関形式により次の2つに大別できる。即ち、
ディーゼルを主機械とする推進形式と、蒸気タービンを
主機械とする推進形式とである0 ディーゼルを主機械とする推進形式の場合、第1図に示
す如く、推進用にプロペラ1を連結したディーゼル主機
械2を使用しているが、排ガスからの廃熱回収による発
生蒸気ではタンク加熱蒸気量を賄うことができないため
、タンク3の加熱時は別に補助ボイラ4を運転し、ごの
補助ボイラ4で発生した加熱蒸気を前記タンク3を加熱
する加熱管5へ供給している。そのため、補助ボイラ4
の燃料が更に必要と、なるうえ、一般に補助ボイラは主
ボイラよりも熱効率がよ(ないので、エイ・ルギ消費の
点で問題がある。
Conventionally, tank heating methods for ships 1 that require tank heating, such as tankers for transporting high-viscosity cargo, can be roughly divided into the following two types depending on the type of propulsion engine. That is,
There are two types of propulsion: one using a diesel as the main machine, and the other using a steam turbine as the main machine. In the case of a propulsion type using a diesel as the main machine, as shown in Figure 1, a diesel engine with a propeller 1 connected for propulsion is used. Although the main machine 2 is used, the steam generated by waste heat recovery from exhaust gas cannot cover the amount of steam for heating the tank, so when heating the tank 3, the auxiliary boiler 4 is operated separately. The heated steam generated is supplied to the heating tube 5 that heats the tank 3. Therefore, the auxiliary boiler 4
In addition, the auxiliary boiler is generally less thermally efficient than the main boiler, which poses a problem in energy consumption.

一方、蒸気タービンを主機械とする推進形式の場合、第
2図に示す如く、常時運転される主ボイラ11かもの加
熱蒸気を、プロペラ12を連結した主タービン13のほ
かに、タンク14の加熱用蒸気として用いている。しか
し、一般に王ボイラは高圧、高温蒸気を発生しているの
で、タンク加熱に適する圧力、温度まで蒸気条件を下げ
るために、主ボイラ11と前記タンク14を加熱する加
熱管15との間に低圧蒸気発生装置等の暖熱装置17を
設ける必要があり、その結果熱損失およびコストの上昇
を招く問題がある。また、推進用の主タービンは復水型
で排気蒸気の凝縮のだめの復水器16を必要とし、多量
の凝縮熱を海水中に棄却する結果、ディーゼル主機関よ
り燃費が悪い問題がある。
On the other hand, in the case of a propulsion type using a steam turbine as the main machine, as shown in FIG. It is used as commercial steam. However, since the main boiler generally generates high-pressure and high-temperature steam, in order to lower the steam conditions to a pressure and temperature suitable for tank heating, a low pressure is placed between the main boiler 11 and the heating pipe 15 that heats the tank 14. It is necessary to provide a heating device 17 such as a steam generator, which results in heat loss and increased costs. In addition, the main turbine for propulsion is of a condensing type and requires a condenser 16 for condensing exhaust steam, and as a result of discarding a large amount of condensation heat into seawater, there is a problem that fuel efficiency is lower than that of a diesel main engine.

本発明の目的は、このような問題に鑑みなされたもので
、エネルギ消費およびコストの両面の節約を図ることが
できるタンク加熱を必要とする船舶の加熱システムを提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heating system for a ship that requires tank heating, which can save both energy consumption and cost.

そのため、本発明では、ボイラからの蒸気をタービンへ
供給し、そのタービンの駆動により推進力または各種の
作業用動力を得るタンク加熱を必要とする船舶において
、前記タービンからの排気の少なくとも一部を前記タン
クを加熱するための加熱管へ供給することにより、上記
目的を達成しようとするものである。要するに、タービ
ンからの排気をタンク加熱用に利用し、タンクで冷えて
凝縮したドレンをボイラに戻すことにより、従来海水中
に無駄に捨てていた凝縮熱量を利用する一方、背圧を選
択することにより、従来の暖熱装置を省略し、エネルギ
消費およびコストの両面の節約を図ることにある。
Therefore, in the present invention, in a ship that supplies steam from a boiler to a turbine and requires tank heating to obtain propulsive force or various working power by driving the turbine, at least a portion of the exhaust gas from the turbine is The above objective is achieved by supplying the heating tube to the heating tube for heating the tank. In short, by using the exhaust gas from the turbine to heat the tank and returning the cooled and condensed condensate in the tank to the boiler, the condensation heat that was previously wasted in the seawater can be used, while at the same time selecting back pressure. This aims to omit the conventional heating device and save both energy consumption and cost.

以下1本発明の一実施例を図面罠基づいて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図は本実施例のシステムを示している。同図におい
て、主ボイラ21で発生した蒸気は、過熱器22で過熱
された後、背圧型の王タービン23および補機タービン
24へそれぞれ送られる。主タービン23へ送られた蒸
気は、主タービン23とそれに連結されたプロペラ25
を回して推進力を発生させる。ここで、主タービン23
の駆動蒸気の一部は、抽気されて給水加熱器26へ送ら
れ再生サイクルを形成する。また、王タービン23から
の排気は、背圧調整弁27によりタンク加熱管28およ
び他の船内加熱源29へ適当な圧力に調整されて供給さ
れる。ここで、夏期成いはバラスト航海特等タンク加熱
を必要としないか或いは少ない場合には、主タービン2
3の背圧が上昇してタービン効率の低下を招(ため、タ
ンク9F30を通じて推進加勢用低圧ターCン31に予
剰蒸気が供給される。
FIG. 3 shows the system of this embodiment. In the figure, steam generated in a main boiler 21 is superheated in a superheater 22 and then sent to a back pressure type king turbine 23 and an auxiliary turbine 24, respectively. The steam sent to the main turbine 23 is transferred to the main turbine 23 and the propeller 25 connected thereto.
Turn to generate propulsion. Here, the main turbine 23
A portion of the driving steam is extracted and sent to the feedwater heater 26 to form a regeneration cycle. Further, the exhaust gas from the turbine 23 is adjusted to an appropriate pressure and supplied to the tank heating pipe 28 and other inboard heating sources 29 by a back pressure regulating valve 27. Here, in the summer, if heating of the ballast voyage special tank is not required or is small, the main turbine 2
The back pressure of the turbine 3 increases, leading to a decrease in turbine efficiency (therefore, reserve steam is supplied to the propulsion assisting low-pressure turbine 31 through the tank 9F30).

前記推進加勢用低圧タービン31は、前記主タービン2
3と軸或いは歯車を介して機械的に連結されている。従
って、主タービン23からの余剰蒸気は、通常のタービ
ンプラントの低圧タービンと同じく、推進力として利用
さバる0この推進加勢用低圧タービン31の排気は、復
水器32で凝縮される。そのため、凝縮熱量は海水中に
棄却されることになるが、入口圧力が低(て排圧をほか
に利用できずタービン効率を上げるため、更には常時使
われることがない等の理由により、省工坏ルゼの目的に
反することはない。
The propulsive assisting low pressure turbine 31 is similar to the main turbine 2.
3 through a shaft or gears. Therefore, surplus steam from the main turbine 23 is used as propulsive force, just like a low-pressure turbine in a normal turbine plant. Therefore, the heat of condensation is discarded into the seawater, but because the inlet pressure is low (the exhaust pressure cannot be used for anything else, to increase turbine efficiency, and because it is not constantly used, etc.) It doesn't go against the purpose of Kouken Ruze.

一方、前記タンク加熱管28および他の船内加熱源29
へ供給された蒸気は、それぞれの機器内で凝縮されドレ
ンとなって復水器32からの復水と一緒にドレンタンク
33へ送られた後、給水加熱器34.26を通じて給水
ボンデ35により前記主ボイラ21へ戻される0また。
On the other hand, the tank heating pipe 28 and other inboard heating sources 29
The steam supplied to the . 0 is also returned to the main boiler 21.

前記補機タービン24からの排気は、前記給水加熱器3
4の加熱のほか、前記タンク加熱管2B或いは他の船内
加熱源29の加熱に利用される。
The exhaust gas from the auxiliary turbine 24 is sent to the feed water heater 3.
In addition to heating the tank heating pipe 2B or other inboard heating source 29,

従って1本実施例によれば、主タービン23かもの排気
を背圧調整弁27を介してタンク加熱管28および他の
船内加熱源29へ供給するようにしたので、従来海水中
に無駄に捨てていた凝縮熱量を利用することができ、ま
た背圧調整−5f127の背圧を適当に選べば、従来の
暖熱装置を省略できるので、エネルギ消費およびコスト
の両面の節約を図ることができる。
Therefore, according to this embodiment, the exhaust gas from the main turbine 23 is supplied to the tank heating pipe 28 and other inboard heating sources 29 via the back pressure regulating valve 27, so that the exhaust gas from the main turbine 23 is unnecessarily discarded into the seawater. It is possible to utilize the amount of condensation heat previously stored, and by appropriately selecting the back pressure of back pressure adjustment-5f127, the conventional heating device can be omitted, resulting in savings in both energy consumption and cost.

ちなみに、従来の蒸気タービンを主機械とするシステム
では、主タービンの入口エンタルピが820 H/kg
程度、排気エンタルピが550 VrA/に7程度、復
水エンタルピが3 (l TkA/に9程度であるので
、ボイラで発生された蒸気エネルギの内、断A差分82
0 550=270+al/kgLか推進力として利用
できず、550 30=520粘/kyは無駄に海水中
に棄却されていることになる。これに対し、本実施例で
は、排気エンタルピを650 u/に9程度で膨張を止
めてタンク加熱にまわすと、主タービンでの熱落差は8
20−650=17011cj/kgとなり1人口蒸気
量は増加する。ここで、タンク加熱管で仮に150圓/
kgのドレンまで熱を使うと、650 150=500
u/に9が利用でき、そのまま復水としてボイラへ戻す
と、海水への熱棄却は0で合計670 u/kgの熱が
利用でき、従来の約2.5倍の熱利用となる。このこと
は、復水器32を冷却する海・水量を大幅に減らせるの
で、電力消費量を大幅に減らすことができる上、復水器
32の小型化、暖熱装置の省略等の点からも大幅なコス
ト低減を図ることができる〇 一方、主タービン23からタンク加熱管28への排気量
が不足する場合には、補機タービン24からの排気をも
利用できる。逆に、主タービン23からの排気が余る場
合には、その余剰蒸気を推進加勢用低圧タービン31で
利用するようにしたので、より効率的な運用を図ること
ができる。
By the way, in a conventional system using a steam turbine as the main machine, the inlet enthalpy of the main turbine is 820 H/kg.
The exhaust enthalpy is about 7 to 550 VrA/, and the condensate enthalpy is about 9 to 3 (l TkA/), so of the steam energy generated in the boiler, the cut-off A difference is 82
0 550 = 270 + al/kgL cannot be used as propulsive force, and 550 30 = 520 viscosity/ky is wasted in the seawater. On the other hand, in this example, if the exhaust gas enthalpy is 650 u/, which is about 9, the expansion is stopped and the tank is heated, and the heat drop at the main turbine is 8.
20-650=17011cj/kg, and the 1-population vapor volume increases. Here, let's assume that the tank heating tube is 150 yen/
If you use heat to reach kg of drain, 650 150 = 500
9 u/kg can be used, and if it is directly returned to the boiler as condensate, no heat will be lost to seawater, and a total of 670 u/kg of heat can be used, which is about 2.5 times more heat than conventional methods. This can significantly reduce the amount of sea water used to cool the condenser 32, which in turn can significantly reduce power consumption, as well as reduce the size of the condenser 32 and eliminate the need for a heating device. On the other hand, if the amount of exhaust from the main turbine 23 to the tank heating pipe 28 is insufficient, the exhaust from the auxiliary turbine 24 can also be used. On the other hand, when there is excess exhaust from the main turbine 23, the excess steam is used in the propulsive assisting low pressure turbine 31, so more efficient operation can be achieved.

なお、実施にあたって、タンク加熱が年女の場合の余剰
排気の処理としては、上記実施例のほかに、第4図に示
すように構成することもできる0これは、補機タービン
24の蒸気入口に減圧弁36を挿入するとともに、補機
タービン24の蒸気入口をダン7″升30の下流側に継
き、補機タービン24の排気をタンク加熱管28へ結ん
でいる配管を省略したものである。こσ)ようにすると
、主タービン23からの余剰蒸気を推進加勢用低圧ター
ビン31のほかに、各種動力例えばターボ発電機や荷油
ボンデ等の補機タービン24で処理することができる。
In addition, in addition to the above-mentioned embodiment, as for the treatment of surplus exhaust gas when the tank is heated in the middle of the year, a structure as shown in FIG. 4 can also be used. In addition to inserting a pressure reducing valve 36 into the tank, the steam inlet of the auxiliary turbine 24 is connected to the downstream side of the Dan 7" square 30, and the piping connecting the exhaust gas of the auxiliary turbine 24 to the tank heating pipe 28 is omitted. By doing so, surplus steam from the main turbine 23 can be processed by the auxiliary turbine 24, which uses various types of power, such as a turbo generator and a cargo oil tanker, in addition to the low-pressure turbine 31 for propulsion and assistance.

以上の通り1本発明によれば、エネルギ消費およびコス
トの両面の節約を図ることができるタンク加熱を必要と
する船舶の加熱システムを提供することができる。
As described above, according to the present invention, it is possible to provide a heating system for a ship that requires tank heating, which can save both energy consumption and cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の加熱システムを示す図、第
3図は本発明の一実施例を示す図、第4図はその変形例
を示す図である。 21・・・主ボイラ、23・・・主タービン、24・・
・補機タービン、27・・・背圧調整弁、28・・・タ
ンク加熱管、31・・・推進加勢用低圧タービン。 代理人 弁理士 木 下 實 三 (ほか1名) 第1図 第2図
1 and 2 are diagrams showing a conventional heating system, FIG. 3 is a diagram showing an embodiment of the present invention, and FIG. 4 is a diagram showing a modification thereof. 21... Main boiler, 23... Main turbine, 24...
- Auxiliary equipment turbine, 27... Back pressure regulating valve, 28... Tank heating pipe, 31... Low pressure turbine for propulsion assistance. Agent Patent attorney Minoru Kinoshita (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1)  ボイラからの蒸気をタービンへ供給し、その
タービンの駆動により推進力または各種の作業用動力を
得るタンク加熱を必要とする船舶において、前記タービ
ンからの排気の少なくとも一部を前記タンクを加熱する
ための加熱管へ供給することを特徴とするタンク加熱を
必要とする船舶の加熱システム。 (21%許請求の範囲第1項において、前記タービンを
、推進力を得るための背圧型蒸気タービンとしたことを
特徴とするタンク加熱を必要とする船舶の加熱システム
。 (8)特許請求の範囲第1項または第2項において、前
記タービンの排気側と前記加熱管の導入側との間に背圧
調整升を設けたことを特徴とするタンク加熱を必要とす
る船舶の加熱システム。 (4)  %許請求の範囲第1項ないし第3項のいずれ
かにおいて、前記タービンからの排気を、推進加勢用低
圧タービンまたは作業用動力を得る補機タービンへ選択
的に供給することを特徴とするタンク加熱を必要とする
船舶の加熱システム。
[Scope of Claims] (1) In a ship that supplies steam from a boiler to a turbine and requires tank heating to obtain propulsive force or power for various types of work by driving the turbine, at least one of the exhaust gas from the turbine is heated. 1. A heating system for a ship requiring tank heating, characterized in that a portion of the water is supplied to a heating pipe for heating said tank. (21% Permissible Claim 1) A heating system for a ship that requires tank heating, characterized in that the turbine is a back-pressure steam turbine for obtaining propulsive force. (8) Claims A heating system for a ship that requires tank heating, characterized in that a back pressure adjustment box is provided between the exhaust side of the turbine and the introduction side of the heating pipe in the first or second range. 4) Permissible % Claims In any one of claims 1 to 3, the exhaust gas from the turbine is selectively supplied to a low-pressure turbine for propulsive support or an auxiliary turbine for obtaining power for work. Vessel heating systems that require tank heating.
JP154183A 1983-01-07 1983-01-07 Marine heating system of ship necessitating tank heating Pending JPS59126006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP154183A JPS59126006A (en) 1983-01-07 1983-01-07 Marine heating system of ship necessitating tank heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP154183A JPS59126006A (en) 1983-01-07 1983-01-07 Marine heating system of ship necessitating tank heating

Publications (1)

Publication Number Publication Date
JPS59126006A true JPS59126006A (en) 1984-07-20

Family

ID=11504381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP154183A Pending JPS59126006A (en) 1983-01-07 1983-01-07 Marine heating system of ship necessitating tank heating

Country Status (1)

Country Link
JP (1) JPS59126006A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128599U (en) * 1990-04-06 1991-12-25
KR100858784B1 (en) 2007-05-28 2008-09-17 대우조선해양 주식회사 Apparatus and method for ship propulsion
KR100858785B1 (en) 2007-05-28 2008-09-17 대우조선해양 주식회사 Apparatus and method for ship propulsion
CN106224034A (en) * 2016-08-19 2016-12-14 华北电力科学研究院有限责任公司 Extracted steam from turbine heat supply and back pressure are for hot change-over method
CN106246263A (en) * 2016-08-19 2016-12-21 华北电力科学研究院有限责任公司 Extracted steam from turbine heat supply and back pressure are for hot change-over method
CN106481376A (en) * 2016-12-05 2017-03-08 中国华能集团清洁能源技术研究院有限公司 A kind of device and method of utilization air cooling unit exhaust steam cogeneration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152110A (en) * 1982-03-08 1983-09-09 Hitachi Zosen Corp Water heater utilizing bleed of turbo-generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152110A (en) * 1982-03-08 1983-09-09 Hitachi Zosen Corp Water heater utilizing bleed of turbo-generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128599U (en) * 1990-04-06 1991-12-25
KR100858784B1 (en) 2007-05-28 2008-09-17 대우조선해양 주식회사 Apparatus and method for ship propulsion
KR100858785B1 (en) 2007-05-28 2008-09-17 대우조선해양 주식회사 Apparatus and method for ship propulsion
CN106224034A (en) * 2016-08-19 2016-12-14 华北电力科学研究院有限责任公司 Extracted steam from turbine heat supply and back pressure are for hot change-over method
CN106246263A (en) * 2016-08-19 2016-12-21 华北电力科学研究院有限责任公司 Extracted steam from turbine heat supply and back pressure are for hot change-over method
CN106481376A (en) * 2016-12-05 2017-03-08 中国华能集团清洁能源技术研究院有限公司 A kind of device and method of utilization air cooling unit exhaust steam cogeneration

Similar Documents

Publication Publication Date Title
EP0766779B1 (en) Engine assembly comprising an internal combustion engine and a steam engine
CN103967648B (en) A kind of marine low speed diesel residual heat comprehensive recovery system
WO2012026432A1 (en) Marine denitration system, marine vessel equipped with same, and control method for marine denitration system
JPH09177508A (en) Exhaust heat recovery type steam generator and method for operating gas turbo system combined with steam consumer
WO2007039480A1 (en) Liquefied natural gas regasification plant and method with heat recovery
JP2007001339A (en) Internal combustion engine waste heat recovery plant in propulsive device of vessel
JP6195299B2 (en) Waste heat recovery system, ship and waste heat recovery method
CN103398385B (en) The residual neat recovering system of a kind of boats and ships incinerator and power set and recovery method
JPS59126006A (en) Marine heating system of ship necessitating tank heating
MY123730A (en) Method and configuration for deaerating a condensate
US6003317A (en) Method of generating sealing steam for a steam turbine, steam power plant having a steam turbine and method of starting up a steam turbine
CN203880720U (en) Waste heat recovery system for marine incinerator and marine power device
KR101271188B1 (en) Waste heat recycling system for ship
US2604755A (en) Combined gas and steam turbine plant using burner in gas turbine exhaust to heat steam
US5904039A (en) Method and configuration for deaerating a condensate
JPS5833594A (en) Compound energy conservation type equipment for liquefied-gas ship
MILLS GREATER SHIP CAPABILITY AND ENERGY SAVING WITH COMBINEDCYCLE MACHINERY
CN215292713U (en) Ship waste heat recovery system
JPS6155602B2 (en)
JPS59145681A (en) Diesel tanker performing efficient tank heating
JPS5916641Y2 (en) Exhaust gas economizer water supply preheating device in diesel engine
JPS59225203A (en) Device for recovering waste heat
Wang et al. Simulation and analysis of an ORC-desalination combined system driven by the waste heat of charge air at variable operation conditions
JPS6239649B2 (en)
JPS61175505U (en)