JP2001132538A - Engine provided with energy recovery device - Google Patents
Engine provided with energy recovery deviceInfo
- Publication number
- JP2001132538A JP2001132538A JP31350899A JP31350899A JP2001132538A JP 2001132538 A JP2001132538 A JP 2001132538A JP 31350899 A JP31350899 A JP 31350899A JP 31350899 A JP31350899 A JP 31350899A JP 2001132538 A JP2001132538 A JP 2001132538A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- engine
- exhaust gas
- turbine
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は,例えば,セラミ
ック材で遮熱構造に構成された燃焼室から排出される排
気ガスの一部を燃焼室へ再循環させると共に排気ガスエ
ネルギを回収するため排気管に設けられたエネルギ回収
装置を備えたエンジンに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas for recovering exhaust gas energy while recirculating a part of exhaust gas discharged from a combustion chamber constituted of a ceramic material in a heat shielding structure to the combustion chamber. The present invention relates to an engine having an energy recovery device provided in a pipe.
【0002】[0002]
【従来の技術】従来,ターボチャージャを備えた遮熱型
エンジンは,排気系の一段目にタービンとコンプレッサ
を備えたターボチャージャを設置し,該ターボチャージ
ャの後流に発電機を持つタービンから成るエネルギー回
収装置を設置している。該遮熱型エンジンでは,燃焼室
が遮熱構造に構成され,燃焼室から排出される排気ガス
の熱エネルギがターボチャージャやエネルギ回収装置に
よって電力として回収されたり,ターボチャージャのコ
ンプレッサの駆動によって過給することによって回収さ
れている。上記のような遮熱型エンジンに対して排気ガ
スエネルギの回収効率を低減させないようなエネルギ回
収システムとして,例えば,特開平5−179972号
に開示されたものがある。2. Description of the Related Art Conventionally, a heat shield type engine equipped with a turbocharger is provided with a turbocharger equipped with a turbine and a compressor in the first stage of an exhaust system, and a turbine having a generator downstream of the turbocharger. Energy recovery equipment is installed. In the heat shield type engine, the combustion chamber has a heat shield structure, and the thermal energy of the exhaust gas discharged from the combustion chamber is recovered as electric power by a turbocharger or an energy recovery device, or overheated by driving a compressor of the turbocharger. Collected by feeding. An energy recovery system that does not reduce the efficiency of exhaust gas energy recovery with respect to the above-mentioned heat shield type engine is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 5-17972.
【0003】また,コージェネレーションシステムは,
動力を発電機で電気エネルギとして取り出し,排気ガス
が有する熱エネルギを電力や排気通路に設けた熱交換器
で水を加熱して温水にして給湯用として利用している。
上記コージェネレーションシステムとして,例えば,特
開平6−33707号公報に開示されたものがある。コ
ージェネレーションシステムは,定格運転されて負荷変
動が小さく,都市部や山間地等で電力供給システムとし
て利用されることが期待され,排気ガスエネルギで蒸気
を発生させ,該蒸気エネルギを電気エネルギとして回収
して熱効率を向上させるものであり,排気ガスエネルギ
によってターボチャージャを駆動し,該ターボチャージ
ャに設けた発電機から成るエネルギ回収装置を備えてい
る。[0003] The cogeneration system is
The motive power is extracted as electric energy by a generator, and the heat energy of the exhaust gas is heated by a heat exchanger provided in an electric power or exhaust passage to make hot water and used for hot water supply.
An example of the cogeneration system is disclosed in Japanese Patent Application Laid-Open No. 6-33707. The cogeneration system is rated for operation and has small load fluctuations, and is expected to be used as a power supply system in urban areas and mountainous areas. It generates steam using exhaust gas energy and recovers the steam energy as electric energy. The turbocharger is driven by exhaust gas energy, and an energy recovery device including a generator provided in the turbocharger is provided.
【0004】[0004]
【発明が解決しようとする課題】ところで,燃焼室をセ
ラミックス等の材料で形成した遮熱構造の断熱エンジン
では,排気ガスの温度が高くなるので,排気ガスから熱
エネルギを回収することが熱効率を向上させることにな
る。一般に,断熱エンジンから排出される排気ガスの温
度は900℃程度であり,該排気ガスからエネルギを回
収する方法では,排気タービンを駆動することが効率的
である。However, in an adiabatic engine having a heat-shielding structure in which the combustion chamber is formed of a material such as ceramics, the temperature of the exhaust gas becomes high. Will be improved. Generally, the temperature of exhaust gas discharged from an adiabatic engine is about 900 ° C., and in a method of recovering energy from the exhaust gas, it is efficient to drive an exhaust turbine.
【0005】しかしながら,排気タービンを通過した後
の排気ガスは,依然として700℃程度と高温であるの
で,このまま排気ガスを外部に排出すれば,大きな熱エ
ネルギを無駄にすることになる。一般に,冷却エンジン
では,エンジン出力が42%,排気ガスによる損失が2
7%,エンジンの冷却による損失が23%,及びエンジ
ン駆動に伴う機械損失が8%になるのに対し,セラミッ
ク材等によって断熱構造に構成した断熱エンジンでは,
ターボチャージャで排気ガスエネルギを回収するとエン
ジン出力が52%,排気ガスによる損失が35%,エン
ジンのボディから逃げる熱損失が5%,及びエンジン駆
動に伴う機械損失が8%になる。これらの現象を考慮す
ると,断熱エンジンでは,排気ガスエネルギを回収して
排気ガス損失を低減すれば,熱効率をアップできること
になるので,断熱エンジンでは排気ガスエネルギを如何
なるシステムによって回収するかの問題がある。However, since the exhaust gas after passing through the exhaust turbine is still at a high temperature of about 700 ° C., if the exhaust gas is discharged to the outside as it is, large heat energy will be wasted. Generally, a cooling engine has an engine output of 42% and a loss due to exhaust gas of 2%.
7%, the loss due to cooling of the engine is 23%, and the mechanical loss associated with driving the engine is 8%.
When the exhaust gas energy is recovered by the turbocharger, the engine output is 52%, the loss due to the exhaust gas is 35%, the heat loss escaping from the engine body is 5%, and the mechanical loss associated with driving the engine is 8%. In consideration of these phenomena, in an adiabatic engine, if the exhaust gas energy is recovered and the exhaust gas loss is reduced, the thermal efficiency can be improved. is there.
【0006】そこで,ターボチャージャの後流に熱交換
器を設けたランキンサイクルによって排気ガス熱エネル
ギを回収することが考えられる。ターボチャージャを通
過した排気ガスから熱エネルギを回収する方法としてラ
ンキンサイクルが知られている(例えば,特開平11−
6601号公報)。該ランキンサイクルは,媒体として
水を使用し,該水を排気ガスの熱エネルギで蒸気に変換
し,蒸気エネルギを動力変換し,再び蒸気を復水させる
ものであるが,該ランキンサイクルでは,復水器等を必
要とし,装置全体が大型になると共に,装置自体の構造
が複雑になるという問題がある。Therefore, it is conceivable to recover the exhaust gas thermal energy by a Rankine cycle in which a heat exchanger is provided downstream of the turbocharger. A Rankine cycle is known as a method for recovering thermal energy from exhaust gas passing through a turbocharger (for example, Japanese Patent Application Laid-Open No.
6601). The Rankine cycle uses water as a medium, converts the water into steam with the thermal energy of exhaust gas, converts the steam energy into power, and condenses the steam again. There is a problem that a water device or the like is required, the whole device becomes large, and the structure of the device itself becomes complicated.
【0007】[0007]
【課題を解決するための手段】この発明の目的は,上記
の問題を解決することであり,燃焼室から排出される排
気ガスでターボチャージャを駆動し,ターボチャージャ
から排出された排気ガスが有する熱エネルギを熱交換器
によって回収し,更に,熱交換器から排出される排気ガ
スの一部を水分離器を通って燃焼室へ再循環させ,燃焼
室へ再循環させる排気ガスとターボチャージャから排出
する排気ガスとが有する熱エネルギで水を蒸気に変換
し,発生した蒸気をターボチャージャのタービンに送り
込んでタービンの回転力をアップし,排気ガスから熱エ
ネルギを有効に回収して熱効率をアップさせるエネルギ
回収装置を備えたエンジンを提供することである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem, and a turbocharger is driven by exhaust gas discharged from a combustion chamber, and the exhaust gas discharged from the turbocharger has The heat energy is recovered by the heat exchanger, and a part of the exhaust gas discharged from the heat exchanger is recycled to the combustion chamber through the water separator, and the exhaust gas and the turbocharger recycled to the combustion chamber. Water is converted to steam with the heat energy of the exhaust gas to be discharged, and the generated steam is sent to the turbocharger turbine to increase the rotational force of the turbine and effectively recover the heat energy from the exhaust gas to increase the thermal efficiency. The present invention provides an engine having an energy recovery device for causing the engine to recover.
【0008】この発明は,燃焼室からの排気ガスを流す
排気管に設けられたターボチャージャ,前記ターボチャ
ージャのタービンの後流に設けられた第1熱交換器,前
記第1熱交換器を通過した前記排気ガスの一部をEGR
ガスとして前記燃焼室に送り込むため前記排気管に設け
られたEGR制御弁,前記コンプレッサから送り出され
る吸気を水で冷却する第2熱交換器,及び前記第1熱交
換器によって排気ガスエネルギによって発生した排気ガ
ス圧より若干高い圧の蒸気を前記タービンに送り込むた
め前記タービンの上流側に設けられた合流制御弁から成
るエネルギ回収装置を備えたエンジンに関する。According to the present invention, there is provided a turbocharger provided in an exhaust pipe through which exhaust gas from a combustion chamber flows, a first heat exchanger provided downstream of a turbine of the turbocharger, and a first heat exchanger passing through the first heat exchanger. Part of the exhaust gas
An EGR control valve provided in the exhaust pipe for sending gas into the combustion chamber, a second heat exchanger for cooling intake air sent from the compressor with water, and exhaust gas energy generated by the first heat exchanger. The present invention relates to an engine having an energy recovery device including a merging control valve provided on the upstream side of the turbine for sending steam having a pressure slightly higher than the exhaust gas pressure to the turbine.
【0009】このエンジンには,前記EGR制御弁から
送り込まれた前記EGRガスを前記ターボチャージャの
コンプレッサを通じて前記燃焼室に送り込むため,前記
EGRガスから水分を分離する水分離器が吸気系に設け
られている。In this engine, a water separator for separating moisture from the EGR gas is provided in an intake system for sending the EGR gas sent from the EGR control valve to the combustion chamber through a compressor of the turbocharger. ing.
【0010】このエンジンには,前記第2熱交換器を通
った前記EGRガスと前記吸入空気から水分を分離する
別の水分離器が前記第2熱交換器の後流の吸気管に設け
られている。また,このエンジンは,前記第2熱交換器
に前記水を供給すると共に前記第2熱交換器で加熱され
た熱湯を前記第1熱交換器に加圧供給する水ポンプ,及
び前記第1熱交換器の熱湯導入部に設けられた噴射ノズ
ルを備えている。In this engine, another water separator for separating moisture from the EGR gas and the intake air passing through the second heat exchanger is provided in an intake pipe downstream of the second heat exchanger. ing. The engine further includes a water pump that supplies the water to the second heat exchanger and pressurizes and supplies the hot water heated by the second heat exchanger to the first heat exchanger. An injection nozzle is provided in the hot water introduction section of the exchanger.
【0011】前記ターボチャージャは,前記タービンと
前記コンプレッサとを連結するシャフトに設けられた発
電・電動機を有する。また,前記燃焼室はセラミック材
で遮熱構造に構成されている。[0011] The turbocharger has a generator / motor provided on a shaft connecting the turbine and the compressor. The combustion chamber is formed of a ceramic material and has a heat shielding structure.
【0012】前記EGR制御弁は,エンジンの作動状態
に応じて前記燃焼室へ供給する前記EGRガスの流量を
制御する。また,前記水ポンプは,エンジンの作動状態
に応じて前記第1熱交換器と前記第2熱交換器へ供給す
る水量を制御する。更に,前記合流制御弁は,エンジン
の作動状態に応じて前記タービンへ供給する蒸気流量を
制御する。The EGR control valve controls a flow rate of the EGR gas supplied to the combustion chamber according to an operation state of the engine. The water pump controls an amount of water supplied to the first heat exchanger and the second heat exchanger according to an operation state of an engine. Further, the merge control valve controls a steam flow supplied to the turbine according to an operation state of the engine.
【0013】このエネルギ回収装置を備えたエンジン
は,上記のように,燃焼室へ再循環させる排気ガスとタ
ーボチャージャから排出する排気ガスとが有する熱エネ
ルギで水を蒸気に変換し,発生した蒸気をターボチャー
ジャのタービンに送り込んでタービンの回転力をアップ
するので,排気ガスの熱エネルギを蒸気エネルギに変換
して動力として回収してエネルギ回収量を増大させるこ
とができ,エンジン効率がアップし,熱効率を向上させ
ることができる。即ち,このエンジンでは,排気ガスエ
ネルギの回収率は,排気タービンにより8%程度,蒸気
エネルギによって6%程度回収でき,トータルで14%
の回収率にすることができ,エンジン効率を42%とす
ると,トータルの熱効率は56%という極めて高いもの
になる。As described above, the engine equipped with this energy recovery device converts water into steam by using the thermal energy of the exhaust gas recirculated to the combustion chamber and the exhaust gas discharged from the turbocharger, and generates the generated steam. To the turbine of the turbocharger to increase the rotational force of the turbine, so that the heat energy of the exhaust gas can be converted into steam energy and recovered as power to increase the amount of energy recovered, and the engine efficiency increases, Thermal efficiency can be improved. That is, in this engine, the recovery rate of the exhaust gas energy can be recovered by about 8% by the exhaust turbine and about 6% by the steam energy, for a total of 14%.
If the engine efficiency is 42%, the total thermal efficiency is as high as 56%.
【0014】即ち,タービンは,回転数,圧力比及びタ
ービン効率に関する特性は,回転数が上がれば,圧力比
が上がり,その結果,タービン効率が上昇する方向(例
えば,70%から85%への効率の領域)に移行するよ
うになる。そこで,この発明は,蒸気が排気ガスより重
く,その蒸気をタービンを回転させるのに利用できれ
ば,タービン効率が上がり,タービンによる仕事即ちト
ルクが大きくなるということに着眼し,排気ガスエネル
ギを利用して熱交換器で発生した蒸気をターボチャージ
ャのタービンへ再度供給し,タービン効率を向上させた
ものである。また,この発明は,蒸気をタービンの駆動
に利用した場合に,ターボチャージャから排出する排気
ガスの一部をEGRガスとしてそのまま利用すると,蒸
気が冷却することによって水滴が発生するので,EGR
システムに水分離器を設け,排気ガスから水を分離して
ドライなEGRガスにし,多量のEGRガスを燃焼室に
供給してNOX の発生を抑制するものである。That is, the characteristics of the turbine regarding the rotation speed, the pressure ratio, and the turbine efficiency are such that as the rotation speed increases, the pressure ratio increases, and as a result, the turbine efficiency increases (for example, from 70% to 85%). Efficiency area). Therefore, the present invention focuses on the fact that if the steam is heavier than the exhaust gas and the steam can be used to rotate the turbine, the turbine efficiency is increased and the work or torque by the turbine is increased, and the exhaust gas energy is utilized. The steam generated by the heat exchanger is supplied again to the turbine of the turbocharger to improve the turbine efficiency. Further, according to the present invention, when a part of the exhaust gas discharged from the turbocharger is directly used as the EGR gas when the steam is used for driving the turbine, since the steam is cooled, water droplets are generated.
System provided a water separator, and the dry EGR gas to separate water from the exhaust gas, is to suppress the generation of the NO X by supplying a large amount of EGR gas into the combustion chamber.
【0015】[0015]
【発明の実施の形態】以下,図面を参照して,この発明
によるエネルギ回収装置を備えたエンジンの実施例を説
明する。図1はこの発明によるエネルギ回収装置を備え
たエンジンの一実施例を示す概略説明図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an engine provided with an energy recovery device according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory view showing an embodiment of an engine provided with an energy recovery device according to the present invention.
【0016】図1に示すように,このエネルギ回収装置
を備えたエンジン1は,例えば,吸入行程,圧縮行程,
膨張行程及び排気行程の4つの行程を順次繰り返すこと
によって作動されるものであり,定置式のコージェネレ
ーションシステムにおける負荷変動が小さいエンジンに
適用することが好ましいものである。このエネルギ回収
装置を備えたエンジン1は,天然ガス等のガス体,軽
油,ガソリン等を燃料とし,例えば,コージェネレーシ
ョンシステムや自動車用エンジンに適用できるものであ
る。エンジン1は,多気筒エンジンに構成され,各燃焼
室2からの排気ガスを排出するため排気マニホルド31
と,吸気通路25を通じて燃焼室2へ吸気を供給するた
め吸気マニホルド27とを備えている。吸気通路25か
らの吸入空気とEGRガスとは吸気マニホルド27を通
じて各気筒の燃焼室2へ供給され,また,各燃焼室2か
らの排気ガスは排気マニホルド31によって集合して排
気管12へ排出される。燃焼室2は,セラミック部材,
遮熱層等によって遮熱構造に構成されている。As shown in FIG. 1, an engine 1 equipped with this energy recovery device includes, for example, a suction stroke, a compression stroke,
It is operated by sequentially repeating the four strokes of the expansion stroke and the exhaust stroke, and is preferably applied to an engine having a small load fluctuation in a stationary cogeneration system. The engine 1 equipped with the energy recovery device uses a gas such as natural gas, light oil, gasoline, or the like as a fuel, and is applicable to, for example, a cogeneration system or an automobile engine. The engine 1 is configured as a multi-cylinder engine, and has an exhaust manifold 31 for discharging exhaust gas from each combustion chamber 2.
And an intake manifold 27 for supplying intake air to the combustion chamber 2 through the intake passage 25. The intake air from the intake passage 25 and the EGR gas are supplied to the combustion chambers 2 of the respective cylinders through the intake manifold 27, and the exhaust gas from each combustion chamber 2 is collected by the exhaust manifold 31 and discharged to the exhaust pipe 12. You. The combustion chamber 2 is made of a ceramic member,
It is configured as a heat shield structure by a heat shield layer and the like.
【0017】エンジン1は,特に,燃焼室2から排出さ
れた排気ガスを流す排気系に設けられた一種のランキン
サイクル(復水器を備えていない)で発生した蒸気をタ
ーボチャージャ3のタービン20へ供給してタービン2
0の駆動力をアップし,更に発電・電動機22とコンプ
レッサ21を駆動して排気ガスエネルギを回収するエネ
ルギ回収装置を有すると共に,排気ガスの一部をEGR
ガスとして燃焼室2に再循環させるEGR装置に設けた
水分離装置を有することを特徴とする。The engine 1 uses steam generated by a kind of Rankine cycle (not equipped with a condenser) provided in an exhaust system through which exhaust gas discharged from the combustion chamber 2 flows, to the turbine 20 of the turbocharger 3. To the turbine 2
0, and further has an energy recovery device that recovers exhaust gas energy by driving the generator / motor 22 and the compressor 21.
It is characterized by having a water separation device provided in an EGR device that recirculates the gas to the combustion chamber 2.
【0018】エンジン1は,燃焼室2から排出される排
気ガスを流す排気管12に設けられたターボチャージャ
3,ターボチャージャ3の後流の排気管13に設けられ
た熱交換器4(第1熱交換器),及び熱交換器4を通過
した排気ガスの一部をEGRガスとして燃焼室2に送り
込むため熱交換器4の後流の排気管14に設けられたE
GR制御弁7を有する。ターボチャージャ3は,排気ガ
スで駆動されるタービン20,タービン20を連結した
シャフト23に取り付けられたコンプレッサ21及びタ
ービン20とコンプレッサ21との間でシャフト23に
設けられた発電・電動機22から構成されている。発電
・電動機22は,タービン20の回転力を電力として取
り出して排気ガスエネルギを電気エネルギとして回収す
ることができる。The engine 1 includes a turbocharger 3 provided in an exhaust pipe 12 through which exhaust gas discharged from the combustion chamber 2 flows, and a heat exchanger 4 (first heat exchanger 4) provided in an exhaust pipe 13 downstream of the turbocharger 3. Heat exchanger), and E provided in an exhaust pipe 14 downstream of the heat exchanger 4 for sending a part of the exhaust gas passing through the heat exchanger 4 into the combustion chamber 2 as EGR gas.
It has a GR control valve 7. The turbocharger 3 includes a turbine 20 driven by exhaust gas, a compressor 21 attached to a shaft 23 connecting the turbine 20, and a generator / motor 22 provided on the shaft 23 between the turbine 20 and the compressor 21. ing. The generator / motor 22 can take out the rotational force of the turbine 20 as electric power and recover exhaust gas energy as electric energy.
【0019】エンジン1では,EGR制御弁7からの排
気ガスをターボチャージャ3のコンプレッサ21に送り
込むため,EGR制御弁7から延びるEGRガス通路1
6がコンプレッサ21へ吸入空気を供給する吸気通路1
7に連結され,EGRガス通路16と吸気通路17との
合流部に水分離装置8が設けられている。吸入空気は,
エアクリーナ28を通じて水分離装置8へ供給され,水
分離装置8でEGRガスと混合され,水分が除去された
ガスを吸気として燃焼室2へ供給され,水分はドレン管
33から外部へ排水されるようになる。更に,コンプレ
ッサ21から送り出される吸気は,熱交換器5(第2熱
交換器)で冷却され,次いで吸気に含まれる水分を分離
する水分離装置11を通って吸気マニホルド27からそ
れぞれの燃焼室2へ供給される。水分離装置11で分離
された水分はドレン管34から外部へ排水される。In the engine 1, the exhaust gas from the EGR control valve 7 is sent to the compressor 21 of the turbocharger 3, so that the EGR gas passage 1 extends from the EGR control valve 7.
6 is an intake passage 1 that supplies intake air to the compressor 21
7, a water separator 8 is provided at a junction of the EGR gas passage 16 and the intake passage 17. The intake air is
The gas is supplied to the water separator 8 through the air cleaner 28, mixed with the EGR gas in the water separator 8, and supplied to the combustion chamber 2 with the gas from which moisture has been removed as intake air, and the moisture is drained from the drain pipe 33 to the outside. become. Further, the intake air sent from the compressor 21 is cooled by the heat exchanger 5 (second heat exchanger), and then passes through the water separation device 11 for separating moisture contained in the intake air from the intake manifold 27 to each combustion chamber 2. Supplied to The water separated by the water separation device 11 is drained from the drain pipe 34 to the outside.
【0020】水ポンプ9によって送り込まれる水道,水
タンク等の水は,水通路26から熱交換器5(第2熱交
換器)を通過し,コンプレッサ21から送り出されるE
GRガスと吸入空気から成る吸気の熱エネルギによって
加熱されて熱湯となり,次いで,熱湯が噴射ノズル50
によって熱交換器4に噴霧して送り込まれる。一方,コ
ンプレッサ21から熱交換器5に送り込まれた空気とE
GRガスとからなる吸気は,水ポンプ9からの水で冷却
され,それによって飽和水蒸気圧が低下し,若干の水分
が発生するので,その水分が水分離装置11で分離さ
れ,冷却され且つ水分が分離された吸気が燃焼室2へ供
給され,水分はドレン管34から外部へ排水される。The water from the tap, the water tank, and the like sent by the water pump 9 passes through the heat exchanger 5 (second heat exchanger) from the water passage 26 and is sent out from the compressor 21.
The hot air is heated by the heat energy of the intake air composed of the GR gas and the intake air, and then the hot water is injected into the injection nozzle 50.
And sprayed into the heat exchanger 4. On the other hand, the air sent from the compressor 21 to the heat exchanger 5
The intake air composed of the GR gas is cooled by water from the water pump 9, thereby lowering the saturated steam pressure and generating some water. The water is separated by the water separator 11, cooled, and cooled. The separated air is supplied to the combustion chamber 2, and the water is drained from the drain pipe 34 to the outside.
【0021】また,エンジン1は,EGR装置を備えて
いる。EGR装置は,熱交換器4の後流の排気管14に
設けられたEGR制御弁7によってエンジン1の作動状
態に応じて排気ガス流量が制御されるように構成されて
いる。エンジン1には,エンジン負荷を検出する負荷セ
ンサ29,エンジン回転数を検出する回転センサ30及
び排気ガス温度を検出する温度センサ32が設けられて
いる。コントローラ10は,負荷センサ29,回転セン
サ30及び温度センサ32からの検出信号,即ち,エン
ジンの作動状態に応じてEGR制御弁7によって排気ガ
ス流量即ちEGRガス流量が制御されると共に,水ポン
プ9及び合流制御弁6によって熱交換器4,5へ供給す
る水流量及びタービン20へ供給する蒸気量が制御さ
れ,最適なエネルギ回収システムを構成することができ
る。EGR制御弁7からEGRガス通路16に送り込ま
れた排気ガスは,水分離装置8によって水分が分離され
ると共に,エアクリーナ28から取り入れられた吸入空
気と混合されてドライなEGRガスと空気とから成る吸
気を生成する。The engine 1 has an EGR device. The EGR device is configured such that an exhaust gas flow rate is controlled in accordance with an operation state of the engine 1 by an EGR control valve 7 provided in an exhaust pipe 14 downstream of the heat exchanger 4. The engine 1 is provided with a load sensor 29 for detecting an engine load, a rotation sensor 30 for detecting an engine speed, and a temperature sensor 32 for detecting an exhaust gas temperature. The controller 10 controls the exhaust gas flow rate, that is, the EGR gas flow rate by the EGR control valve 7 in accordance with the detection signals from the load sensor 29, the rotation sensor 30, and the temperature sensor 32, that is, the operation state of the engine. In addition, the flow rate of water supplied to the heat exchangers 4 and 5 and the amount of steam supplied to the turbine 20 are controlled by the merge control valve 6, so that an optimal energy recovery system can be configured. The exhaust gas sent from the EGR control valve 7 into the EGR gas passage 16 is separated from the water by the water separator 8 and mixed with the intake air taken in from the air cleaner 28 to be composed of dry EGR gas and air. Generate inspiration.
【0022】熱交換器5から水・蒸気通路24を通じて
熱交換器4へ送り込まれた熱水及び/又は蒸気は,熱交
換器4の熱水導入口に設けた噴射ノズル50によって熱
交換器4へ噴霧され,噴霧された熱湯即ち熱水は蒸気熱
交換器4において排気ガスの熱エネルギで加熱されて高
温蒸気に変換される。熱交換器4で生成された高温蒸気
は,蒸気通路19を通って合流制御弁6によって蒸気流
量が制御されて排気管12へ送り込まれる。排気管12
へ送り込まれた高温蒸気は,排気ガスと混合され,ター
ボチャージャ3のタービン20に働き,タービン20の
駆動力をアップする。言い換えれば,熱交換器5で加熱
された水は,更に熱交換器4で加熱されて高温蒸気とな
り,その蒸気エネルギは,タービン20に与えられ,エ
ネルギ回収装置の一部を構成している。また,コントロ
ーラ10は,発電・電動機22の発電機運転によって発
電した電力を補機で消費したり,或いはバッテリに蓄電
する制御を行う。コントローラ10は,場合によって
は,発電・電動機22を電動機運転し,バッテリに蓄電
した電力を使用してコンプレッサ21による過給等を行
う制御をする。Hot water and / or steam sent from the heat exchanger 5 to the heat exchanger 4 through the water / steam passage 24 is supplied to the heat exchanger 4 by an injection nozzle 50 provided at a hot water inlet of the heat exchanger 4. The hot water sprayed, ie, hot water, is heated by the heat energy of the exhaust gas in the steam heat exchanger 4 and is converted into high-temperature steam. The high-temperature steam generated in the heat exchanger 4 passes through the steam passage 19 and is sent to the exhaust pipe 12 with the steam flow controlled by the merge control valve 6. Exhaust pipe 12
The high-temperature steam sent to the turbine is mixed with the exhaust gas and acts on the turbine 20 of the turbocharger 3 to increase the driving force of the turbine 20. In other words, the water heated by the heat exchanger 5 is further heated by the heat exchanger 4 to become high-temperature steam, and the steam energy is given to the turbine 20 to constitute a part of an energy recovery device. In addition, the controller 10 controls the power generated by the generator operation of the generator / motor 22 to be consumed by the auxiliary machine or to be stored in the battery. In some cases, the controller 10 controls the electric generator / motor 22 to operate as a motor, and performs supercharging and the like by the compressor 21 using the electric power stored in the battery.
【0023】熱交換器4及び熱交換器5は,それらの構
造の詳細に示していないが,例えば,内部に多孔質セラ
ミック部材等の熱接触面積を増大させる構造を有してい
る。また,発電・電動機22で発電された電力は,バッ
テリに蓄電されたり,補機を駆動するのに消費される。
このエンジン1では,熱交換器4,5で加熱された水
は,高温蒸気に変換され,タービン20を駆動し,排気
ガス中に含まれた状態で排気管15から排出されると共
に,水分離装置8,11で蒸気や吸気から分離されてド
レン管33から外部に排出されるので,このランキンサ
イクルは復水器を備えておらず,構造が簡素化されてい
る。Although the heat exchangers 4 and 5 are not shown in detail in their structures, they have, for example, a structure in which the heat contact area of a porous ceramic member or the like is increased. Further, the electric power generated by the electric generator / motor 22 is stored in a battery or consumed for driving an auxiliary machine.
In the engine 1, the water heated by the heat exchangers 4 and 5 is converted into high-temperature steam, which drives the turbine 20 and is discharged from the exhaust pipe 15 while being contained in the exhaust gas. The Rankine cycle is separated from steam and intake air by the devices 8 and 11 and is discharged to the outside through the drain pipe 33. Therefore, the Rankine cycle has no condenser, and the structure is simplified.
【0024】[0024]
【発明の効果】この発明によるエネルギ回収装置を備え
たエンジンは,上記のように構成されているので,熱交
換器で回収した排気ガスの熱エネルギをタービンを駆動
して回収して熱効率を向上し,排気ガスの一部をEGR
ガスとして燃焼室に供給し,NOX の発生を低減する。
即ち,このエンジンは,第1熱交換器で熱エネルギが回
収された排気ガスの一部はEGRガスとしてコンプレッ
サで過給され,更にEGRガスと吸入空気とから成る吸
気が第2熱交換器で更に冷却され,燃焼室に多量のEG
Rガスを供給でき,NOX の発生を低減できる。Since the engine provided with the energy recovery device according to the present invention is constructed as described above, the thermal energy of the exhaust gas recovered by the heat exchanger is recovered by driving the turbine to improve the thermal efficiency. And a part of the exhaust gas is EGR
It is supplied to the combustion chamber as a gas, to reduce the occurrence of NO X.
That is, in this engine, a part of the exhaust gas from which the heat energy is recovered in the first heat exchanger is supercharged by the compressor as EGR gas, and the intake air composed of the EGR gas and the intake air is further supplied to the second heat exchanger. Further cooled, a large amount of EG
Can be supplied R gas, it is possible to reduce the occurrence of NO X.
【0025】また,第1と第2の熱交換器で加熱された
水は高温蒸気になってターボチャージャのタービンを駆
動するエネルギとして回収され,タービンの駆動力は発
電・電動機による発電として電力エネルギに変換される
と共に,コンプレッサを作動するのに消費され,排気ガ
スエネルギは有効に回収され,熱効率を向上できる。更
に,このエンジンは,コントローラによってEGRガス
流量がエンジンの作動状態で制御され,排気ガス温度に
応じて第2熱交換器へ送り込まれる水流量が制御され,
極めて適正なエネルギ回収装置を提供することができ
る。このエンジンは,従来のようなエネルギ回収タービ
ンに変えて,熱交換器によって排気ガスの熱エネルギが
回収されるので,従来のような背圧による損失がなく,
また,有効に排気ガスの熱エネルギが回収されるので,
燃費を低減することができる。The water heated by the first and second heat exchangers is converted into high-temperature steam and recovered as energy for driving the turbine of the turbocharger. And is consumed to operate the compressor, the exhaust gas energy is effectively recovered and the thermal efficiency can be improved. Further, in this engine, an EGR gas flow rate is controlled by a controller in an operation state of the engine, and a water flow rate sent to the second heat exchanger is controlled according to the exhaust gas temperature.
An extremely suitable energy recovery device can be provided. In this engine, the heat energy of the exhaust gas is recovered by a heat exchanger instead of the conventional energy recovery turbine.
Also, since the heat energy of the exhaust gas is effectively recovered,
Fuel efficiency can be reduced.
【図1】この発明によるエネルギ回収装置を備えたエン
ジンの一実施例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an embodiment of an engine provided with an energy recovery device according to the present invention.
1 エンジン 2 燃焼室 3 ターボチャージャ 4 熱交換器(第1熱交換器) 5 熱交換器(第2熱交換器) 6 合流制御弁 7 EGR制御弁 8,11 水分離装置 9 水ポンプ 10 コントローラ 12,13,14,15 排気管 16 EGRガス通路 17,18,25 吸気通路 19 蒸気通路 20 タービン 21 コンプレッサ 22 発電・電動機 24 水・蒸気通路 DESCRIPTION OF SYMBOLS 1 Engine 2 Combustion chamber 3 Turbocharger 4 Heat exchanger (1st heat exchanger) 5 Heat exchanger (2nd heat exchanger) 6 Merging control valve 7 EGR control valve 8, 11 Water separator 9 Water pump 10 Controller 12 , 13,14,15 Exhaust pipe 16 EGR gas passage 17,18,25 Intake passage 19 Steam passage 20 Turbine 21 Compressor 22 Power generation / motor 24 Water / steam passage
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 23/00 F02D 23/00 J F02G 5/04 F02G 5/04 C F02M 25/07 550 F02M 25/07 550C 550G 550R 580 580D 580E ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 23/00 F02D 23/00 J F02G 5/04 F02G 5/04 C F02M 25/07 550 F02M 25/07 550C 550G 550R 580 580D 580E
Claims (9)
けられたターボチャージャ,前記ターボチャージャのタ
ービンの後流に設けられた第1熱交換器,前記第1熱交
換器を通過した前記排気ガスの一部をEGRガスとして
前記燃焼室に送り込むため前記排気管に設けられたEG
R制御弁,前記コンプレッサから送り出される吸気を水
で冷却する第2熱交換器,及び前記第1熱交換器によっ
て排気ガスエネルギによって発生した排気ガス圧より若
干高い圧の蒸気を前記タービンに送り込むため前記ター
ビンの上流側に設けられた合流制御弁から成るエネルギ
回収装置を備えたエンジン。1. A turbocharger provided in an exhaust pipe through which exhaust gas from a combustion chamber flows, a first heat exchanger provided downstream of a turbine of the turbocharger, and the first heat exchanger passing through the first heat exchanger. An EG provided in the exhaust pipe for sending a part of the exhaust gas as the EGR gas into the combustion chamber
An R control valve, a second heat exchanger for cooling the intake air sent from the compressor with water, and steam having a pressure slightly higher than the exhaust gas pressure generated by the exhaust gas energy by the first heat exchanger to the turbine. An engine including an energy recovery device including a merge control valve provided on an upstream side of the turbine.
EGRガスを前記ターボチャージャのコンプレッサを通
じて前記燃焼室に送り込むため,前記EGRガスから水
分を分離する水分離器が吸気系に設けられていることか
ら成る請求項1に記載のエネルギ回収装置を備えたエン
ジン。2. A water separator for separating moisture from the EGR gas for feeding the EGR gas sent from the EGR control valve to the combustion chamber through a compressor of the turbocharger. An engine provided with the energy recovery device according to claim 1, comprising:
共に前記第2熱交換器で加熱された熱湯を前記第1熱交
換器に加圧供給する水ポンプ,及び前記第1熱交換器の
熱湯導入部に設けられた噴射ノズルを備えていることか
ら成る請求項1に記載のエネルギ回収装置を備えたエン
ジン。3. A water pump that supplies the water to the second heat exchanger and pressurizes and supplies hot water heated by the second heat exchanger to the first heat exchanger. The engine provided with the energy recovery device according to claim 1, further comprising an injection nozzle provided in a hot water introduction portion of the vessel.
構成されていることから成る請求項1に記載のエネルギ
回収装置を備えたエンジン。4. The engine provided with the energy recovery device according to claim 1, wherein the combustion chamber is formed of a ceramic material in a heat shielding structure.
スと前記吸入空気から水分を分離する別の水分離器が前
記第2熱交換器の後流の吸気管に設けられていることか
ら成る請求項1に記載のエネルギ回収装置を備えたエン
ジン。5. A separate water separator for separating moisture from the EGR gas and the intake air passing through the second heat exchanger is provided in an intake pipe downstream of the second heat exchanger. An engine provided with the energy recovery device according to claim 1, comprising:
と前記コンプレッサとを連結するシャフトに設けられた
発電・電動機を有することから成る請求項1に記載のエ
ネルギ回収装置を備えたエンジン。6. The engine according to claim 1, wherein the turbocharger has a generator / motor provided on a shaft connecting the turbine and the compressor.
態に応じて前記燃焼室へ供給する前記EGRガスの流量
を制御することから成る請求項1に記載のエネルギ回収
装置を備えたエンジン。7. The engine according to claim 1, wherein the EGR control valve controls a flow rate of the EGR gas supplied to the combustion chamber according to an operation state of the engine.
応じて前記第1熱交換器と前記第2熱交換器へ供給する
水量を制御することから成る請求項1に記載のエネルギ
回収装置を備えたエンジン。8. The energy recovery apparatus according to claim 1, wherein the water pump controls an amount of water supplied to the first heat exchanger and the second heat exchanger according to an operation state of an engine. Equipped engine.
に応じて前記タービンへ供給する蒸気流量を制御するこ
とから成る請求項1に記載のエネルギ回収装置を備えた
エンジン。9. An engine provided with an energy recovery device according to claim 1, wherein said merging control valve controls a flow rate of steam supplied to said turbine in accordance with an operation state of the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31350899A JP2001132538A (en) | 1999-11-04 | 1999-11-04 | Engine provided with energy recovery device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31350899A JP2001132538A (en) | 1999-11-04 | 1999-11-04 | Engine provided with energy recovery device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001132538A true JP2001132538A (en) | 2001-05-15 |
Family
ID=18042164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31350899A Pending JP2001132538A (en) | 1999-11-04 | 1999-11-04 | Engine provided with energy recovery device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001132538A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003029619A1 (en) * | 2001-09-28 | 2003-04-10 | Honda Giken Kogyo Kabushiki Kaisha | Temperature control device of evaporator |
WO2003031775A1 (en) * | 2001-10-09 | 2003-04-17 | Honda Giken Kogyo Kabushiki Kaisha | Rankine cycle device |
WO2003033881A1 (en) * | 2001-10-10 | 2003-04-24 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle with rankine cycle device |
WO2004033859A1 (en) * | 2002-10-11 | 2004-04-22 | Alpps Fuel Cell Systems Gmbh | Method and device for recovering energy |
EP1700010A2 (en) * | 2003-11-20 | 2006-09-13 | Ormat Technologie, Inc. | Hybrid power system for continuous reliable power at locations including remote locations |
JP2006242154A (en) * | 2005-03-07 | 2006-09-14 | Misuzu Kogyo:Kk | Engine unit for vehicle |
WO2007016226A1 (en) * | 2005-07-29 | 2007-02-08 | Cerdes Julius W | Engine and method for removal of moisture from turbocharged intake air |
US7475541B2 (en) | 2001-10-09 | 2009-01-13 | Honda Giken Kogyo Kabushiki Kaisha | Rankine cycle system and vehicle therewith |
KR100966893B1 (en) | 2008-08-04 | 2010-06-30 | 한국기계연구원 | Engine system using latent heat of vaporized fuel |
DE102008064015A1 (en) | 2008-12-19 | 2010-07-01 | Daimler Ag | Waste heat recovery device for utilization of waste heat of internal combustion engine of motor vehicle, has working fluid circuit connected with coolant heat exchanger, and coolant circuit fluid coupled with engine cooling circuit |
JP2010262468A (en) * | 2009-05-07 | 2010-11-18 | Toho Gas Co Ltd | Remote monitoring system for power generation facility |
WO2011080527A3 (en) * | 2009-07-21 | 2011-11-03 | Renault Trucks | Engine arrangement with an improved exhaust heat recovery arrangement |
CN102418594A (en) * | 2011-08-12 | 2012-04-18 | 北京理工大学 | Pre-vortex water spray waste gas energy recovery system and control method |
CN102656348A (en) * | 2009-10-06 | 2012-09-05 | 罗伯特·博世有限公司 | Driving device |
CN102678287A (en) * | 2012-04-27 | 2012-09-19 | 上海交通大学 | Engine exhaust energy recycling system inside cylinder and recycling method of engine exhaust energy recycling system |
US20140007853A1 (en) * | 2011-03-31 | 2014-01-09 | Mitsubishi Heavy Industries, Ltd. | Intake air cooling apparatus for stationary internal combustion engine |
EP3546709A1 (en) * | 2018-03-29 | 2019-10-02 | Volvo Car Corporation | Vehicle with system for recovering waste heat |
-
1999
- 1999-11-04 JP JP31350899A patent/JP2001132538A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003029619A1 (en) * | 2001-09-28 | 2003-04-10 | Honda Giken Kogyo Kabushiki Kaisha | Temperature control device of evaporator |
WO2003031775A1 (en) * | 2001-10-09 | 2003-04-17 | Honda Giken Kogyo Kabushiki Kaisha | Rankine cycle device |
US7475541B2 (en) | 2001-10-09 | 2009-01-13 | Honda Giken Kogyo Kabushiki Kaisha | Rankine cycle system and vehicle therewith |
WO2003033881A1 (en) * | 2001-10-10 | 2003-04-24 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle with rankine cycle device |
WO2004033859A1 (en) * | 2002-10-11 | 2004-04-22 | Alpps Fuel Cell Systems Gmbh | Method and device for recovering energy |
EP1700010A2 (en) * | 2003-11-20 | 2006-09-13 | Ormat Technologie, Inc. | Hybrid power system for continuous reliable power at locations including remote locations |
EP1700010A4 (en) * | 2003-11-20 | 2009-12-09 | Ormat Technologies Inc | Hybrid power system for continuous reliable power at locations including remote locations |
JP2006242154A (en) * | 2005-03-07 | 2006-09-14 | Misuzu Kogyo:Kk | Engine unit for vehicle |
WO2007016226A1 (en) * | 2005-07-29 | 2007-02-08 | Cerdes Julius W | Engine and method for removal of moisture from turbocharged intake air |
KR100966893B1 (en) | 2008-08-04 | 2010-06-30 | 한국기계연구원 | Engine system using latent heat of vaporized fuel |
DE102008064015A1 (en) | 2008-12-19 | 2010-07-01 | Daimler Ag | Waste heat recovery device for utilization of waste heat of internal combustion engine of motor vehicle, has working fluid circuit connected with coolant heat exchanger, and coolant circuit fluid coupled with engine cooling circuit |
JP2010262468A (en) * | 2009-05-07 | 2010-11-18 | Toho Gas Co Ltd | Remote monitoring system for power generation facility |
WO2011080527A3 (en) * | 2009-07-21 | 2011-11-03 | Renault Trucks | Engine arrangement with an improved exhaust heat recovery arrangement |
CN102483014A (en) * | 2009-07-21 | 2012-05-30 | 雷诺卡车公司 | Engine arrangement with an improved exhaust heat recovery arrangement |
US8689554B2 (en) | 2009-07-21 | 2014-04-08 | Renault Trucks | Engine arrangement with an improved exhaust heat recovery arrangement |
CN102656348A (en) * | 2009-10-06 | 2012-09-05 | 罗伯特·博世有限公司 | Driving device |
US20140007853A1 (en) * | 2011-03-31 | 2014-01-09 | Mitsubishi Heavy Industries, Ltd. | Intake air cooling apparatus for stationary internal combustion engine |
US9316185B2 (en) * | 2011-03-31 | 2016-04-19 | Mitsubishi Heavy Industries, Ltd. | Intake air cooling apparatus for stationary internal combustion engine |
CN102418594A (en) * | 2011-08-12 | 2012-04-18 | 北京理工大学 | Pre-vortex water spray waste gas energy recovery system and control method |
CN102678287A (en) * | 2012-04-27 | 2012-09-19 | 上海交通大学 | Engine exhaust energy recycling system inside cylinder and recycling method of engine exhaust energy recycling system |
EP3546709A1 (en) * | 2018-03-29 | 2019-10-02 | Volvo Car Corporation | Vehicle with system for recovering waste heat |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001132442A (en) | Engine provided with energy recovering device | |
JP2001132538A (en) | Engine provided with energy recovery device | |
KR101238728B1 (en) | A large turbocharged diesel engine with energy recovery arrangement | |
JP5701016B2 (en) | Engine exhaust gas purification device | |
US6119457A (en) | Heat exchanger apparatus using porous material, and ceramic engine provided with supercharger driven by thermal energy recorded from exhaust gas by the same apparatus | |
US6178735B1 (en) | Combined cycle power plant | |
JP6095470B2 (en) | Internal combustion engine | |
US20070101716A1 (en) | Energy recovery system in an engine | |
JP2009532614A5 (en) | ||
FI70298B (en) | FOERFARANDE FOER ATT TAGA TILLVARA ENERGI I EN EFFEKTGENERATOROCH EFFEKTGENERATOR FOER TILLAEMPNING AV DETTA FOERFARAND E | |
JPH094510A (en) | Combustion engine plant, supercharging combustion engine device for combustion engine plant and improving method of efficiency of combustion engine plant | |
JP2001132555A (en) | Water separation device provided in egr device of engine | |
EP1272749B1 (en) | Method of utilising waste heat in turbocharger unit of an internal combustion engine and internal combustion engine arrangement | |
JP5612187B2 (en) | Turbocharged large low-speed two-stroke uniflow internal combustion engine with crosshead and steam turbine | |
JP3587630B2 (en) | Power generation equipment and power equipment | |
JP2001152846A (en) | Engine equipped with fuel-reforming device | |
JP2001183076A (en) | Structure of heat exchanger | |
RU58613U1 (en) | COMBINED STEAM-GAS UNIT WITH PARALLEL OPERATION DIAGRAM | |
JPH10299574A (en) | Ceramic engine driving compressor by exhaust heat recovery energy | |
JP2001073884A (en) | Diesel engine with egr device | |
JP2001182543A (en) | Heat exchanger for cooling high temperature compressed gas with water and air | |
JP2001073753A (en) | Exhaust gas energy recovery system made from steam turbine | |
SU1703842A1 (en) | Combustion engine | |
JPS5916641Y2 (en) | Exhaust gas economizer water supply preheating device in diesel engine | |
RU2323115C1 (en) | Locomotive power plant with regeneration of heat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061027 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080723 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090317 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090901 |