JPS59163821A - Liquid phase epitaxial growth - Google Patents

Liquid phase epitaxial growth

Info

Publication number
JPS59163821A
JPS59163821A JP3738183A JP3738183A JPS59163821A JP S59163821 A JPS59163821 A JP S59163821A JP 3738183 A JP3738183 A JP 3738183A JP 3738183 A JP3738183 A JP 3738183A JP S59163821 A JPS59163821 A JP S59163821A
Authority
JP
Japan
Prior art keywords
liquid phase
epitaxial growth
iii
compound semiconductor
phase epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3738183A
Other languages
Japanese (ja)
Inventor
Yasutoshi Kashiwada
柏田 泰利
Toshihiro Kono
河野 敏弘
Takashi Kajimura
梶村 俊
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3738183A priority Critical patent/JPS59163821A/en
Publication of JPS59163821A publication Critical patent/JPS59163821A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate to control concentration of electrons when a III-V group compound semiconductor layer is to be formed by a method wherein the compound of Te and another element is used as the N type impurities of the III-V group compound semiconductor. CONSTITUTION:When a III-V group compound semiconductor is to be manufactured according to liquid phase epitaxial growth, a compositionally uniform compound of Te and another element is used as N type impurities. As the other element, at least one kind of elements to act as N type impurities to exert no adverse effect to the characteristic of the element, or to act as electrically neutral impurities is used. As the element thereof, Al, Ga, In, Si, Sn, Pb, As, Sb, Bi and Se are used. Te is used generally as N type impurities at liquid phase epitaxial growth of the III-V group compound semiconductor, while because the segragation factor of Te is large, the charge quantity thereof becomes extremely small, and precision of weighing is deteriorated. By using the compound of the other impurity and Te, enhancement of weighing precision can be attained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は■−■族化合物半導体層、特にn型層の電子濃
度の精密制御に好適な液相エピタキシャル成長に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to liquid phase epitaxial growth suitable for precisely controlling the electron concentration of a ■-■ group compound semiconductor layer, particularly an n-type layer.

〔従来技術〕[Prior art]

従来、液相エピタキシャル成長により、n型のnr −
v族化合物半導体層を得るために、不純物として主にS
nまたはIll eの単体元素が用いられていた(例え
ば、RIXE、 Nahoryet al、、 AI)
pI。
Conventionally, n-type nr −
In order to obtain a V group compound semiconductor layer, S is mainly used as an impurity.
Elements of n or Ille were used (e.g., RIXE, Nahory et al., AI).
pI.

1’hys、 J7ft、 27.562〜564 、
1975 i S、 N、G。
1'hys, J7ft, 27.562~564,
1975 i S, N, G.

Chu ct al、、 Appl、 Phy、 Le
f t、 38.766〜768゜1981 ; M、
 ll1rao et at、、 J、Appl、 P
hys、 51゜453’l−4540,1980;P
、 Kordos et al、、 AppLPhys
、 Left、 34.366〜368.1979 ;
 RXA、 Loganet al、、 J、 App
l、phyS、 50.5970〜5977、1979
)。
Chuctal, Appl, Phy, Le
ft, 38.766-768゜1981; M,
ll1rao et at, J, Appl, P
hys, 51°453'l-4540, 1980;P
, Kordos et al., AppLPhys
, Left, 34.366-368.1979;
RXA, Logan et al., J. App.
l, phyS, 50.5970-5977, 1979
).

どころかSnの場合、結晶中への偏析係数が小さいため
、高電子濃度(例えば5 X 10”Crn−3以上)
を得る不純物としては適切ではない。また、上記偏析係
数が小さいことによシ成長用溶液中のSnの含有率が大
きくなるが、このときSnの上記含有率の変化によって
■−V族主成分元素の晶出組成が大きく変化する欠点が
ある。上記理由により、111−V族の液相エピタキシ
ャル成長におけるn型不純物としてTeが一般に用いら
れていた。しかし、m−v族化合物半導体の液相成長で
は、Teの偏析係数が犬きく、シたがってTeの仕込み
量が非常に少なく(例えばG a A tA−s系でI
 X I Q l 8crn−”の電子濃度を得るだめ
のTe仕込み量は0.02mg/l gG” %従来、
Teの秤量精度が悪く、n型エピタキシャル結晶層中の
電子濃度制御が不十分であった。
On the contrary, in the case of Sn, the segregation coefficient in the crystal is small, so high electron concentration (e.g. 5 x 10"Crn-3 or more) is required.
It is not suitable as an impurity to obtain In addition, because the above segregation coefficient is small, the content of Sn in the solution for silicon growth becomes large, but at this time, the crystallization composition of the main component elements of the ■-V group changes greatly due to the change in the above content of Sn. There are drawbacks. For the above reasons, Te has generally been used as an n-type impurity in liquid phase epitaxial growth of the 111-V group. However, in the liquid phase growth of m-v group compound semiconductors, the segregation coefficient of Te is very high, and therefore the amount of Te charged is very small (for example, in the Ga A tA-s system, I
The amount of Te charged to obtain an electron concentration of
The accuracy of measuring Te was poor, and the control of electron concentration in the n-type epitaxial crystal layer was insufficient.

〔発明の目的〕[Purpose of the invention]

本発明の目的はn型不純物として用いる微量Teの秤量
精度を向上することにより、n型エピタキシャル結晶層
の電子濃度を再現性よく制御し、しいては、素子特性の
再現性向上に係る液相エピタキシャル成長を提供するこ
とにある。
The purpose of the present invention is to control the electron concentration of an n-type epitaxial crystal layer with good reproducibility by improving the weighing accuracy of a trace amount of Te used as an n-type impurity, and to improve the liquid phase related to improving the reproducibility of device characteristics. The goal is to provide epitaxial growth.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明ではTeと他の元素の
、組成的に均一な化合物を用いた。該他の元素としては
、素子特性に悪影響を及ぼさないn型不純物または電気
的に中性な不純物となる元素からなる群から選ばれた少
なくとも一種の元素を選んだ。この元素群は下記のもの
がその代表例である。A A 、Oa +  I n+
  S ’ r S ” r P b IAs+ Sb
、It iおよびSeである。
In order to achieve the above object, the present invention uses a compositionally uniform compound of Te and other elements. As the other element, at least one element selected from the group consisting of elements that serve as n-type impurities or electrically neutral impurities that do not adversely affect device characteristics was selected. Representative examples of this element group are listed below. A A , Oa + I n+
S' r S ” r P b IAs+ Sb
, It i and Se.

〔発明の実施例〕[Embodiments of the invention]

第1図は光デイスク用ピックアップ光源として好適’f
x MC8P (Mad If ied Chanel
ed 5ubst ra teplaner )型の半
導体レーザの断面図である。こうした半導体積層を作製
する目的で液相エピタキシャル多層成長を行なうに際し
、n型不純物原料として、TeとQaが重量比で] :
500ないし1:IQO程度の組成的に均一な合金を用
いる点に本発明の要点がある。たとえば第1層である1
1型クラッドJ*0at−xAAxAs(X=0.45
 )を得る目的の溶液組成として、() ” 8 g 
、 At 8.9 m g。
Figure 1 shows a suitable light source for an optical disk pickup.
x MC8P (Mad If ied Chanel
FIG. 2 is a cross-sectional view of a semiconductor laser of the ed 5ubstra teplaner type. When performing liquid phase epitaxial multilayer growth for the purpose of producing such a semiconductor stack, Te and Qa are used as n-type impurity raw materials in weight ratio]:
The key point of the present invention is to use a compositionally uniform alloy having an IQO of about 500 to 1:IQO. For example, the first layer 1
Type 1 cladding J*0at-xAAxAs (X=0.45
) as the solution composition for the purpose of obtaining () ” 8 g
, At 8.9 mg.

QaAs200mgに対し、上記’peHQa=1+5
00の合金30mJ7から1 :100の合金160m
gの範囲で適宜選び、n−クラッド層のTe濃度を3×
1017cW!−3から3 X 1018Crn−3の
範囲で変え、Te濃度の制御性と再現性をに周べた。こ
の場合、Teは100〜500倍希釈されており、従っ
て、ql eの秤量精度を2桁向上でき、本発明を用い
て作製した半導体レーザのn−GaAtAs中の’I’
ef11度を再現性よく制御することができた。なお、
不純物の種類以外は従来技術と同様につき詳細は省略す
る。またQa以外の上記元素とTeの化合物を用いた場
合も同様の結果が得られた。
For 200 mg of QaAs, the above 'peHQa=1+5
00 alloy 30mJ7 to 1:100 alloy 160m
g, and set the Te concentration of the n-cladding layer to 3×
1017cW! -3 to 3 x 1018Crn-3 to improve the controllability and reproducibility of the Te concentration. In this case, Te is diluted 100 to 500 times, and therefore the weighing accuracy of ql e can be improved by two orders of magnitude, and 'I' in n-GaAtAs of the semiconductor laser fabricated using the present invention can be improved by two orders of magnitude.
It was possible to control ef11 degrees with good reproducibility. In addition,
Except for the types of impurities, this is the same as the prior art, so details will be omitted. Similar results were also obtained when a compound of the above elements other than Qa and Te was used.

尚、本発明に係る部分以外の結晶成長、ウェーハプロセ
スは、通常の方法で行なった。
Incidentally, crystal growth and wafer processing other than those related to the present invention were performed by conventional methods.

なお、第1図において1はn−GaA3基板、2はn−
GaAtAsクラッド層、3はG a AtA s活性
層、4はp−GaAtAsクラッド層、5はn−GaA
Sキャップ層、6はZn拡散領域、7はn側電極、8は
n側電極である。
In FIG. 1, 1 is an n-GaA3 substrate, and 2 is an n-GaA3 substrate.
GaAtAs cladding layer, 3 is GaAtAs active layer, 4 is p-GaAtAs cladding layer, 5 is n-GaA
6 is a Zn diffusion region, 7 is an n-side electrode, and 8 is an n-side electrode.

従来、多くの縦単一モード半導体レーザでは、周囲温度
の変化により、光デイスク用光源として好ましくない、
複数の縦モードが同時に発振することによって生じるモ
ード競合雑音が問題となっていた。しかし、この問題は
、半導体レーザのn型クラッド層の電子密度(ND X
 1017cm−3)とレーザの全光出力のうち当該半
導体層中に存在する光出力の割合(P、(%))との関
係をND−Fn≧ 500      ・・・(1)と
せしむる素子構造にすることによシ解決している。第1
図に示した素子においてα)を満たすには、活性層の厚
みを変化させる方法があるが、該活性層は、横基本モー
ド発振の最大光出力および素子の寿命特性とも相関をも
ち0.07±0.01μmに設定されている。従って、
(1)を満足するためにはNDを大きくする必要がある
が、n型不純物を多量にドープすると、しきい電流密度
の増加や寿命特性など素子特性上問題が生じやすい。以
上の理由によシ、n型不純物のドープ量を必要最小限と
すべく、Nn−7’、、さ550に設定してちる。第1
図に示す素子構造において、nおよびp型Qai−xk
LXA8クラッド層のXが0.45、活性層厚0.07
±0.01μmのとき、No −7’ n = 550
で決まるTe仕込み歌をamgとする。n型不純物Te
を従来のTe単体を用いてamg秤量して得た10ウエ
ーハについて、各ウェーハから任意に選んだ50素子中
の低雑音素子取得歩留りは、第2図に示すごとく、ウェ
ーハ間バラツキが大きく、かつ、全体の歩留りも十分で
はなかった。本発明によれば、Teの秤量精度が大巾に
向上できるので、第3図に示すごとく、上記同一評価法
による良品素子歩留シのウェーハ間バラツギおよび全体
の歩留り向上の効果がある。なお、半導体レーザの雑音
特性評価は、レーザ出力3 rn W 、測定周波数2
−12MHz、測定帯域幅300 K HZで行なった
Conventionally, many longitudinal single mode semiconductor lasers are unsuitable as light sources for optical disks due to changes in ambient temperature.
Mode competition noise caused by simultaneous oscillation of multiple longitudinal modes has been a problem. However, this problem is caused by the electron density (ND
1017cm-3) and the ratio (P, (%)) of the optical output existing in the semiconductor layer out of the total optical output of the laser, ND-Fn≧500 (1) The solution is to do this. 1st
In order to satisfy α) in the device shown in the figure, there is a method of changing the thickness of the active layer, but the thickness of the active layer has a correlation with the maximum optical output of transverse fundamental mode oscillation and the lifetime characteristics of the device. It is set to ±0.01 μm. Therefore,
In order to satisfy (1), it is necessary to increase ND, but doping a large amount of n-type impurities tends to cause problems in device characteristics such as an increase in threshold current density and lifetime characteristics. For the above reasons, the doping amount of the n-type impurity is set to Nn-7', 550 to minimize the necessary minimum amount. 1st
In the device structure shown in the figure, n and p type Qai-xk
X of LXA8 cladding layer is 0.45, active layer thickness is 0.07
When ±0.01 μm, No −7' n = 550
Let amg be the Te preparation song determined by . n-type impurity Te
For 10 wafers obtained by AMG weighing using conventional Te alone, the yield of low-noise devices among 50 devices arbitrarily selected from each wafer showed large variations between wafers, as shown in Figure 2. , the overall yield was also not sufficient. According to the present invention, since the weighing accuracy of Te can be greatly improved, as shown in FIG. 3, there is an effect of improving the wafer-to-wafer variation in the yield of non-defective devices and the overall yield using the same evaluation method. Note that the noise characteristic evaluation of the semiconductor laser was performed using a laser output of 3 rn W and a measurement frequency of 2.
-12 MHz with a measurement bandwidth of 300 KHz.

また、Teと均一な組成の合金を生ぜしめる元素として
At、In、S i、Sn、Pb、ASIsb、BI或
いはSe等を用いても、同様の効果を奏し得る。
Furthermore, the same effect can be obtained by using At, In, Si, Sn, Pb, ASIsb, BI, Se, or the like as an element that creates an alloy with a uniform composition with Te.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は半導体レーザ素子の例を示す縦断面図、第2図
は従来方法における低雑音素子の取得歩留りのウェーハ
・ロット間推移を示す図、第3図は本発明における低雑
音素子の取得歩留りのウェーハ・ロット間推移を示す図
である。 1 ・−n−(]aA8基板、2・=n−GaAtAs
クラッド層、3 ・・(UaAtAs活性層、4・・・
p−GaAtASクラッド層、訃n−Ga1lキャップ
層、6・・・7.n拡散領域、7・・・n側電極、訃・
・n側電極。 代理人 弁理士 高橋明夫
FIG. 1 is a vertical cross-sectional view showing an example of a semiconductor laser device, FIG. 2 is a diagram showing changes in the yield of low-noise devices obtained by the conventional method between wafers and lots, and FIG. 3 is a diagram showing how the yield of low-noise devices is obtained using the present invention. FIG. 3 is a diagram showing changes in yield between wafers and lots. 1 ・-n-(]aA8 substrate, 2・=n-GaAtAs
Cladding layer, 3...(UaAtAs active layer, 4...
p-GaAtAS cladding layer, n-Ga1l cap layer, 6...7. n diffusion region, 7...n side electrode,
・N-side electrode. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、III−V族化合物半導体のn型不純物として、T
eと、該半導体結晶中でn型不純物となる他の元素また
は電気的に中性な不純物となる元素からなる群から選ば
れた少なくとも一種の元素の、組成的に均一な化合物を
用いることを特徴とする液相エピタキシャル成長方法。 2、上記群を形成する元素としてA、、/、、Ga。 (n、  Si、sn、pb、As、sb、Bi。 3eを選ぶことを特徴とする特許請求の範囲第1項記載
の液相エピタキシャル成長方法。 3、上記m−v族化合物半導体は、G ar −x A
tz As(0≦X≦1)であることを特徴とする特許
[Claims] 1. As the n-type impurity of the III-V compound semiconductor, T
e and at least one element selected from the group consisting of another element that becomes an n-type impurity or an element that becomes an electrically neutral impurity in the semiconductor crystal. Characteristic liquid phase epitaxial growth method. 2. A, /, Ga as an element forming the above group. (n, Si, sn, pb, As, sb, Bi. 3e). 3. The liquid phase epitaxial growth method according to claim 1, characterized in that the above m-v group compound semiconductor is selected from Gar -x A
A patent application characterized in that tz As (0≦X≦1)
JP3738183A 1983-03-09 1983-03-09 Liquid phase epitaxial growth Pending JPS59163821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3738183A JPS59163821A (en) 1983-03-09 1983-03-09 Liquid phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3738183A JPS59163821A (en) 1983-03-09 1983-03-09 Liquid phase epitaxial growth

Publications (1)

Publication Number Publication Date
JPS59163821A true JPS59163821A (en) 1984-09-14

Family

ID=12495942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3738183A Pending JPS59163821A (en) 1983-03-09 1983-03-09 Liquid phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS59163821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158964A (en) * 1999-06-16 2009-07-16 Sharp Corp Semiconductor material, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158964A (en) * 1999-06-16 2009-07-16 Sharp Corp Semiconductor material, and semiconductor device

Similar Documents

Publication Publication Date Title
US4963949A (en) Substrate structures for InP-based devices
Hakkarainen et al. Te incorporation and activation as n-type dopant in self-catalyzed GaAs nanowires
EP0157602B1 (en) A visible double heterostructure-semiconductor laser
JPS59163821A (en) Liquid phase epitaxial growth
Faughnan et al. Relationship between collection length and diffusion length in amorphous silicon
US6413791B1 (en) Epitaxial wafer and manufacturing method thereof as well as light-emitting diode with enhanced luminance
Wight et al. Minority carrier diffusion length in CdTe
US6815792B2 (en) Epitaxially grown compound semiconductor film and compound semiconductor multi-layer structure
JP3376007B2 (en) Semiconductor light emitting device
JPH0621106A (en) Compound semiconductor epitaxial wafer
JP3404838B2 (en) GaInAs / InP heterojunction Hall element
Partain et al. Diffusion length and interface recombination velocity measurement of a GaAs solar cell using two emitter fabrications and quantum yield
JPH0732262B2 (en) Semiconductor light receiving element
JPS6038815A (en) Manufacture of semiconductor substrate
JP3399044B2 (en) Hall element and method of manufacturing the same
JP2705682B2 (en) Molecular beam crystal growth method
JP2833479B2 (en) Liquid phase epitaxial growth method for controlling Si concentration in GaP single crystal layer
JPS62101082A (en) Semiconductor device
JPS59132119A (en) Semiconductor wafer
JP3399046B2 (en) Hall element
JPS6214771B2 (en)
JPH08288587A (en) Semiconductor laser
JPS6294941A (en) Compound semiconductor device
JPH07161737A (en) Growing method for hgcdte thin film
JP2004095709A (en) Semiconductor optical element