JP3376007B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP3376007B2
JP3376007B2 JP08649693A JP8649693A JP3376007B2 JP 3376007 B2 JP3376007 B2 JP 3376007B2 JP 08649693 A JP08649693 A JP 08649693A JP 8649693 A JP8649693 A JP 8649693A JP 3376007 B2 JP3376007 B2 JP 3376007B2
Authority
JP
Japan
Prior art keywords
emitting device
light emitting
semiconductor light
active layer
luminous efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08649693A
Other languages
Japanese (ja)
Other versions
JPH06302852A (en
Inventor
倉 孝 信 鎌
谷 和 彦 板
原 秀 人 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP08649693A priority Critical patent/JP3376007B2/en
Publication of JPH06302852A publication Critical patent/JPH06302852A/en
Application granted granted Critical
Publication of JP3376007B2 publication Critical patent/JP3376007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、InGaAlP系材料
からなる活性層を有する半導体発光装置に係り、とりわ
け発光効率を安定して向上させることができる半導体発
光装置を提供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device having an active layer made of an InGaAlP-based material, and an object of the present invention is to provide a semiconductor light emitting device capable of stably improving luminous efficiency.

【0002】[0002]

【従来の技術】InGaAlP系材料からなる活性層を
有する半導体発光装置においては、特開平4−2124
79に記載されている様に、活性層のキャリア濃度及び
膜厚が規定されている。
2. Description of the Related Art A semiconductor light emitting device having an active layer made of InGaAlP material is disclosed in Japanese Patent Laid-Open No. 4-2124.
As described in No. 79, the carrier concentration and the film thickness of the active layer are specified.

【0003】活性層のキャリア濃度については、P型で
1×1017ケ/cm3 、N型では5×1016ケ/cm3 と定
められ、またその膜厚については0.15〜0.75μ
mと定められている。しかしながら、特にキャリア濃度
については、P型とN型不純物の補償あるいは比較的深
い準位を考慮すると、いずれも見掛け上の濃度であり、
キャリア濃度と発光装置の量子効率との対応を取った場
合、特性相関が取れず、安定した発光特性を得ることが
できないのが実情である。
[0003] For the carrier concentration in the active layer, defined as 5 × 10 16 Quai / cm 3 at 1 × 10 17 Quai / cm 3, N-type in P-type, and for the film thickness is from 0.15 to 0. 75μ
It is defined as m. However, in particular, regarding the carrier concentration, both are apparent concentrations in consideration of compensation of P-type and N-type impurities or a relatively deep level.
When the carrier concentration and the quantum efficiency of the light emitting device are taken into consideration, the characteristic correlation cannot be obtained and stable light emitting characteristics cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】本件発明者はInGa
AlP系材料からなる活性層を有する発光装置を長期に
渡り開発し、半導体発光装置の発光特性と、エピタキシ
ャル構造、結晶性およびドーピング特性等との相関を調
査している。このなかで発光装置の発光効率が、活性層
のキャリア濃度よりむしろ、故意には入れていない不純
物によって左右され、このため品質が安定しないという
問題を見出した。
The inventor of the present invention is InGa
A light emitting device having an active layer made of an AlP-based material has been developed for a long time, and the correlation between the light emitting characteristics of a semiconductor light emitting device and the epitaxial structure, crystallinity, doping characteristics, etc. is investigated. Among them, it has been found that the luminous efficiency of the light emitting device is influenced by impurities not intentionally added, rather than the carrier concentration of the active layer, and thus the quality is not stable.

【0005】図8に、調査対象とした半導体発光素子の
構造を示す。硅素(Si)を1×1018ケ/cm3 程度ド
ープした半導体基板12上に、n型のInGaAlPか
らなるnクラッド層13、アンドープのInGaAlP
からなる活性層14、P型のInGaAlPからなるP
クラッド層15、およびP型のAlGaAsからなる電
流拡散層16がいずれも格子整合する様形成されてい
る。また電流拡散層16の上部および基板12の下部に
第1電極17および第2電極18が各々形成されてい
る。なお、活性層14と、これを上下方向から挟むnク
ラッド層13およびpクラッド層15とによってダブル
ヘテロ構造体が構成されている。
FIG. 8 shows the structure of the semiconductor light emitting device to be investigated. An n-clad layer 13 made of n-type InGaAlP and an undoped InGaAlP are formed on a semiconductor substrate 12 doped with silicon (Si) at a concentration of about 1 × 10 18 / cm 3.
Active layer 14 made of P, P made of P-type InGaAlP
The clad layer 15 and the current diffusion layer 16 made of P-type AlGaAs are both formed in lattice matching. A first electrode 17 and a second electrode 18 are formed on the current diffusion layer 16 and the substrate 12, respectively. The active layer 14 and the n-clad layer 13 and the p-clad layer 15 that sandwich the active layer 14 from above and below constitute a double heterostructure.

【0006】このような半導体発光装置を開発している
中で、半導体発光装置の輝度にバラツキが生じ、時によ
っては、全く発光しない現象が生じた。このような問題
に際し、工程履歴調査を行った結果、図11に示す様
に、半導体発光装置の製造工程で用いる原料ガスである
TMA(トリメチルガリウム)およびTMI(トリメチ
ルインジウム)を交換する毎に特に顕著に発光効率につ
いてバラツキが発生する事が判明した。
During the development of such a semiconductor light emitting device, the brightness of the semiconductor light emitting device varied, and in some cases, a phenomenon in which no light was emitted occurred. In view of such a problem, as a result of conducting a process history investigation, as shown in FIG. 11, especially when TMA (trimethylgallium) and TMI (trimethylindium), which are the source gases used in the manufacturing process of the semiconductor light emitting device, are replaced, It was found that the luminous efficiency was remarkably varied.

【0007】また、良品および不良品半導体発光装置を
SIMS法にて分解調査した結果、図9に示すように、
良品半導体発光装置(図9(b))に比して不良品半導
体発光装置(図9(a))では、AlGaAs及びIn
GaAlP中に不純物としてSiとOが主として混入
し、この濃度が良品半導体発光装置よりかなり高い事が
判明した。
Further, as a result of disassembling and examining the non-defective and defective semiconductor light emitting devices by the SIMS method, as shown in FIG.
Compared to the good semiconductor light emitting device (FIG. 9B), the defective semiconductor light emitting device (FIG. 9A) has AlGaAs and In
It was found that Si and O were mainly mixed in GaAlP as impurities, and the concentration was considerably higher than that of a good semiconductor light emitting device.

【0008】さらに、このような現象が活性層のキャリ
ア濃度を大きく変化させている為に生じているのか、あ
るいはこの不純物によって良品または不良品かが決まる
のかを調査するため、活性層中不純物濃度とキャリア濃
度の相関及び半導体発光装置の発光効率をグラフ化し
た。この結果を図10に示す。図10に示すように、発
光効率1%以上の半導体発光装置は、InGaAlP中
の不純物濃度によって支配されることが明らかになっ
た。
Further, in order to investigate whether such a phenomenon is caused by a large change in the carrier concentration of the active layer or whether the impurities determine whether the product is a good product or a defective product, the impurity concentration in the active layer is determined. The correlation between the carrier concentration and the carrier concentration and the luminous efficiency of the semiconductor light emitting device are graphed. The result is shown in FIG. As shown in FIG. 10, it was revealed that the semiconductor light emitting device having a luminous efficiency of 1% or more is dominated by the impurity concentration in InGaAlP.

【0009】図10は各半導体発光装置のSMIS分析
で得られた活性層の酸素とSiの不純物のうち、高い方
の不純物を横軸に、ステップエッチングし、C−V測定
した活性層のキャリア濃度を縦軸に取り、さらに各半導
体発光装置の発光効率が1%以下と1%以上で分類し、
この発光効率をプロットしたものである。図10におい
て、活性層のキャリア濃度が約5×1016ケ/cm3 以下
の条件の半導体発光装置で発光効率の低下を招いている
ことがよく分かる。
FIG. 10 shows the carrier of the active layer measured by CV, in which the higher impurity of the oxygen and Si impurities of the active layer obtained by the SMIS analysis of each semiconductor light emitting device is step-etched along the horizontal axis. The concentration is plotted on the vertical axis, and the luminous efficiency of each semiconductor light-emitting device is further classified into 1% or less and 1% or more,
This is a plot of the luminous efficiency. In FIG. 10, it can be clearly seen that the luminous efficiency is lowered in the semiconductor light emitting device under the condition that the carrier concentration of the active layer is about 5 × 10 16 cells / cm 3 or less.

【0010】以上述べたようにInGaAlPからなる
活性層を有するダブルヘテロ構造の半導体発光装置にお
いては、活性層のキャリア濃度を制御するだけでは、安
定した発光効率を得ることができず、品質トラブル・生
産性の低下等の問題が生じている。
As described above, in the double-heterostructure semiconductor light emitting device having the active layer made of InGaAlP, stable emission efficiency cannot be obtained only by controlling the carrier concentration of the active layer, which causes quality problems. There are problems such as reduced productivity.

【0011】本発明はこのような点を考慮してなされた
ものであり、InGaAlPからなる活性層を有する半
導体発光装置において、安定した発光効率を得ることが
できる半導体発光装置を提供することを目的とする。
The present invention has been made in consideration of the above points, and an object thereof is to provide a semiconductor light emitting device having an active layer made of InGaAlP, which can obtain stable light emitting efficiency. And

【0012】[0012]

【課題を解決するための手段】本発明は、半導体基板
と、半導体基板上に設けられたダブルヘテロ構造体と、
このダブルヘテロ構造体と前記半導体基板に各々設けら
れた第1電極および第2電極とを備え、前記ダブルヘテ
ロ構造体は、InGaAlP系材料からなる活性層と、
この活性層を両側から挟んで配置された一対のクラッド
層とからなり、前記InGaAlP系材料の活性層に含
まれる酸素と硅素の元素濃度は各々5×1016ケ/cm3
以下であることを特徴とする半導体発光装置である。
SUMMARY OF THE INVENTION The present invention comprises a semiconductor substrate, a double heterostructure provided on the semiconductor substrate,
The double heterostructure includes a first electrode and a second electrode respectively provided on the semiconductor substrate, and the double heterostructure includes an active layer made of an InGaAlP-based material,
The active layer of the InGaAlP-based material is composed of a pair of cladding layers sandwiching the active layer from both sides, and the element concentrations of oxygen and silicon contained in the active layer of the InGaAlP-based material are 5 × 10 16 pieces / cm 3 respectively.
The semiconductor light emitting device is characterized by the following.

【0013】[0013]

【作用】本発明によれば、InGaAlP系材料からな
る活性層の残留不純物濃度を5×1016ケ/cm3 以下と
することにより、半導体発光装置の発光効率を安定した
状態で向上させることができる。
According to the present invention, the luminous efficiency of the semiconductor light emitting device can be improved in a stable state by setting the residual impurity concentration of the active layer made of InGaAlP-based material to 5 × 10 16 parts / cm 3 or less. it can.

【0014】[0014]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1乃至図7は本発明による半導体発光装
置の実施例を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 7 are views showing an embodiment of a semiconductor light emitting device according to the present invention.

【0015】本発明による半導体発光装置の基本的構造
(層構成)は、図8に示す従来装置と略同様である。す
なわち、図8に示すように、半導体発光装置はn−Ga
Asからなる半導体基板12と、この基板12上に配置
されたn−InGaAlPからなるnクラッド層13
と、アンドープのInGaAlPからなる活性層14
と、P−InGaAlPからなるPクラッド層15と、
P−AlGaAsからなる電流拡散層16とを備えてい
る。
The basic structure (layer structure) of the semiconductor light emitting device according to the present invention is substantially the same as that of the conventional device shown in FIG. That is, as shown in FIG. 8, the semiconductor light emitting device has n-Ga
A semiconductor substrate 12 made of As, and an n-clad layer 13 made of n-InGaAlP disposed on the substrate 12.
And an active layer 14 made of undoped InGaAlP
And a P clad layer 15 made of P-InGaAlP,
And a current diffusion layer 16 made of P-AlGaAs.

【0016】また電流拡散層16上部には第1の電極1
7が設けられ、基板12の下部には第2の電極11が設
けられている。さらに活性層14と、この活性層14を
上下方向から挟んで設けらた一対のクラッド層13,1
5とによってダブルヘテロ構造体が構成されている。
The first electrode 1 is formed on the current spreading layer 16.
7 is provided, and the second electrode 11 is provided below the substrate 12. Further, the active layer 14 and a pair of clad layers 13 and 1 that sandwich the active layer 14 from above and below.
5 and 5 form a double heterostructure.

【0017】なお、図8において、第1の電極17と電
流拡散層16との間に、P−GaAs層を介在させても
よい。
Note that, in FIG. 8, a P-GaAs layer may be interposed between the first electrode 17 and the current diffusion layer 16.

【0018】本発明においては、上記構成の半導体発光
装置において、半導体発光装置の品質のバラツキを抑え
るため、不良品の解析、原料ガスの解析、エピタキシャ
ル成長パラメーターの解析および基板特性の解析を行
い、発光特性を支配する不純物の同定および条件を求め
た。
In the present invention, in the semiconductor light emitting device having the above structure, in order to suppress variations in quality of the semiconductor light emitting device, defective products are analyzed, raw material gases are analyzed, epitaxial growth parameters are analyzed, and substrate characteristics are analyzed. The identities and conditions of the impurities that control the characteristics were obtained.

【0019】上述のように、発光効率は、活性層のキャ
リア濃度より、酸素又は硅素(Si)濃度が支配される
事が分かっている(図10参照)。
As described above, it is known that the luminous efficiency is governed by the oxygen or silicon (Si) concentration rather than the carrier concentration of the active layer (see FIG. 10).

【0020】いずれの不純物がより支配的であるか、ま
たは発光効率との相関のあるなしを調査するため、In
GaAlPからなる活性層14中に含まれるSi不純物
と酸素不純物の相関関係を調べ、図1に示した。図1は
横軸に酸素、縦軸にSiを取り、半導体発光装置の発光
効率が1%以下と1%以上で分類し、この発光効率をブ
ロットしたものである。図1に示すように、Siと酸素
に相関関係はほとんどなく、互いに独立していること、
または良品と言える半導体発光装置を酸素とSiのいず
れの場合も5×1016ケ/cm以下の領域にあることがわ
かる。
To investigate which impurities are more predominant or have no correlation with luminous efficiency, In
The correlation between Si impurities and oxygen impurities contained in the active layer 14 made of GaAlP was investigated, and the result is shown in FIG. In FIG. 1, oxygen is plotted on the horizontal axis and Si is plotted on the vertical axis, and the luminous efficiency of the semiconductor light emitting device is classified into 1% or less and 1% or more, and the luminous efficiency is plotted. As shown in FIG. 1, Si and oxygen have almost no correlation and are independent of each other.
Also, it can be seen that the semiconductor light emitting device which can be said to be a good product is in the region of 5 × 10 16 cells / cm 3 or less in both cases of oxygen and Si.

【0021】次に、半導体発光装置の製造工程で用いる
材料ガスの消費と混入不純物量の関係を調べ図2に示
す。図2は原料ガスのうちトリメチルインジウム(TM
I)消費率とInGaAlP中の酸素濃度との関係を調
べたものである。図2において、消費量が少ない初期の
濃度が、ロットBが3.6×1016ケ/cm3 であり、ロ
ットAが5.3×1016ケ/cm3 であり、両者の濃度差
はあまりない。しかしながら、90%程度TMIを消費
するとロッドBは4×1016ケ/cm3 となるのに比べ、
ロットAは2.5×1017ケ/cm3 と1ケタ近く多くな
り、原料ガスを十分吟味して(低不純物)の半導体発光
装置を得る必要があることが分かった。
Next, FIG. 2 shows the relationship between the consumption of the material gas used in the manufacturing process of the semiconductor light emitting device and the amount of mixed impurities. Figure 2 shows trimethylindium (TM
I) The relationship between the consumption rate and the oxygen concentration in InGaAlP was investigated. In FIG. 2, the initial concentration with low consumption is 3.6 × 10 16 cells / cm 3 for lot B and 5.3 × 10 16 cells / cm 3 for lot A. rare. However, compared with the rod B having 4 × 10 16 pieces / cm 3 when consuming about 90% of TMI,
Lot A is 2.5 × 10 17 cells / cm 3, which is close to 1 digit, and it has been found that it is necessary to thoroughly examine the raw material gas and obtain a (low impurity) semiconductor light emitting device.

【0022】以上の調査により、活性層へ混入する不純
物は互いに独立して発光効率に影響し、またロット(ボ
トルを含む)によって原料ガス混入量の経時変化に差が
ある事が判明し、各々対策の必要があることが分った。
From the above investigation, it was found that the impurities mixed in the active layer independently affect the luminous efficiency, and that there is a difference in the time-dependent change in the amount of raw material gas mixed depending on the lot (including bottle). I found that there was a need for measures.

【0023】次にこの混入不純物量と発光効率の対応を
各々調べ、条件を見い出した。まず図8に示す構造の半
導体発光装置を次の手順で製作した。エピタキシャル成
長は、通常のMOCVD装置を行い、H2 流量を10l
/min トリメチルインジウム(TMI)を0.5〜0.
8CCM 、トリメチルガリウム(TMA)を20〜400
CCM 、As 3 は500〜800CCM 、PH3 は250
〜400CCM 流し、基板温度720〜890℃で成長さ
せた。N型層はSiH4 を10〜15CCM 、P型層はD
MZ(ジメチルシンク)を0.3〜0.6CCM 流し形成
した。
Next, the correspondence between the amount of mixed impurities and the luminous efficiency was examined, and the conditions were found. First, a semiconductor light emitting device having the structure shown in FIG. 8 was manufactured by the following procedure. Epitaxial growth was performed using a normal MOCVD apparatus and H 2 flow rate of 10 l.
/ Min Trimethylindium (TMI) 0.5 to 0.
8CCM, trimethylgallium (TMA) 20-400
CCM, A s H 3 is 500~800CCM, PH 3 250
˜400 CCM was flowed and the substrate was grown at a substrate temperature of 720 to 890 ° C. The N-type layer is 10 to 15 CCM of SiH 4 , and the P-type layer is D
It was formed by flowing MZ (dimethyl sink) at 0.3 to 0.6 CCM.

【0024】その後裏面ラップと、第1および第2電極
17,11の電極付けを行い、ダイシングをしたのち、
400μm角、高さ200μmのペレットを作り、樹脂
モールドして半導体発光装置を製作した。
Thereafter, the back surface lap and the first and second electrodes 17 and 11 are attached, and after dicing,
A 400 μm square and 200 μm high pellet was prepared and resin-molded to manufacture a semiconductor light emitting device.

【0025】次にIF =20mA(V〜5V)の通電時
の半導体発光装置の発光効率を求めた。又、ペレットの
一部についてはSIMS分析を行い、各層中の不純物お
よびドーパント量を測定した。
Next, the luminous efficiency of the semiconductor light emitting device at the time of energization of I F = 20 mA (V to 5 V) was determined. In addition, SIMS analysis was performed on a part of the pellets to measure the amounts of impurities and dopants in each layer.

【0026】上記の製作工程において、原料ガスのTM
Iとしてはその純度が、原子吸光法分析によりSiと、
酸素と、重金属について検出下限( 10ppm )であ
り、かつエピタキシャル成長後の活性層中の不純物が約
1.5×1016ケ/cm3 となるものを準備した。さら
に、製作工程中に微量の酸素を炉内に導入し、半導体発
光装置の発光効率と、活性層中の不純物の関係を求め、
効率が異常低下しない条件を定め、図3および図4に示
した。
In the above manufacturing process, TM of the raw material gas is used.
As I, its purity is Si by atomic absorption spectrometry,
There were prepared oxygen and heavy metals having detection limits (10 ppm) and impurities in the active layer after epitaxial growth of about 1.5 × 10 16 pieces / cm 3 . Furthermore, a small amount of oxygen was introduced into the furnace during the manufacturing process to determine the relationship between the luminous efficiency of the semiconductor light emitting device and the impurities in the active layer,
The conditions under which the efficiency does not drop abnormally are defined and shown in FIGS. 3 and 4.

【0027】図3および図4は、活性層成長時にSiH
4 及び酸素を微量、独立して導入し、得られた半導体発
光装置の発光効率とInGaAlPからなる活性層中に
含まれる酸素とSiのそれぞれの不純物濃度をプロット
したものである。図3および図4に示すように、酸素と
Siのいずれの元素についても、濃度が5×1016ケ/
cm3 以上になると発光効率が1%以下に落ちた。図3お
よび図4によれば、5×1016ケ/cm3 が、発光効率が
大幅に低下しない酸素とSiのしきい値であることが明
確になった。
FIG. 3 and FIG. 4 show that when SiH is grown,
4 is a plot of the luminous efficiency of a semiconductor light emitting device obtained by independently introducing a small amount of 4 and oxygen and the respective impurity concentrations of oxygen and Si contained in the active layer made of InGaAlP. As shown in FIGS. 3 and 4, the concentration of both oxygen and Si is 5 × 10 16 cells /
Luminous efficiency dropped to 1% or less at cm 3 or more. According to FIGS. 3 and 4, it became clear that 5 × 10 16 cells / cm 3 is the threshold value of oxygen and Si at which the luminous efficiency is not significantly lowered.

【0028】なお、nクラッド層13およびpクラッド
層15中の残留不純物濃度は1×1017ケ/cm3 以下と
なっている。
The residual impurity concentration in the n-clad layer 13 and the p-clad layer 15 is 1 × 10 17 pieces / cm 3 or less.

【0029】しかしながら、このしきい値以下でも発光
効率が1〜3.5%に分布する場合があり、これに対し
ては次の対策を行った。
However, the luminous efficiency may be distributed to 1 to 3.5% even below this threshold value, and the following measures were taken against this.

【0030】まずTMIと同様TMAについても純度確
認を行い、電流拡散層中の酸素とSiの各々の濃度と発
光効率の関係を求めた。この時、TMIとしては純度確
認されたものを用い、電流拡散層を構成するAlGaA
s成長時にのみ微量の酸素とSiを混入させた。図5お
よび図6に、この場合の結果を示す。半導体発光装置の
活性層中の酸素とSiの純度を5×1016以下に抑える
とともに、電流拡散層に含まれる酸素については、2×
1019ケ/cm3 以下とし、Siについては、1×1017
ケ/cm3 以下とした場合、1.2〜3.5%の発光効率
を確実に得ることができた。
First, the purity of TMA was checked as in the case of TMI, and the relationship between the respective concentrations of oxygen and Si in the current diffusion layer and the luminous efficiency was obtained. At this time, as the TMI, one whose purity has been confirmed is used, and AlGaA forming the current diffusion layer is used.
A small amount of oxygen and Si were mixed only during the s growth. 5 and 6 show the results in this case. The purity of oxygen and Si in the active layer of the semiconductor light emitting device is suppressed to 5 × 10 16 or less, and the oxygen contained in the current diffusion layer is 2 ×.
10 19 pieces / cm 3 or less, 1 × 10 17 for Si
When it was set to be not more than K / cm 3 , the luminous efficiency of 1.2 to 3.5% could be surely obtained.

【0031】次に半導体基板の面方位を変化させた場合
における、発光効率と活性層の不純物濃度の関係につい
て調べた。
Next, the relationship between the luminous efficiency and the impurity concentration of the active layer when the plane orientation of the semiconductor substrate was changed was examined.

【0032】半導体基板の面方位に関し、通常使用して
いる(100)ジャストの面方位から〔011〕方向へ
5°〜20°まで変化させて、発光効率とInGaAl
Pからなる活性層中に含まれる不純物の関係を求めた。
その結果を図7に示す。図7に示すように〔100〕か
ら(011)方向にオフするにつれ(ずれるにつれ)、
発光効率が上昇し、それと同時に活性層への酸素の取り
込み量が減少することが分った。Siについては、面方
向の変化に対する依存性がなかった。半導体基板の面方
位を〔100〕から(011)方向へ10〜20°傾け
ることによって、酸素が活性層中へ取り込まれにくくな
り、発光効率1〜3%の半導体発光装置が得られること
が分かった。
Regarding the plane orientation of the semiconductor substrate, the luminous efficiency and InGaAl were changed by changing the plane orientation of the (100) just that is normally used to 5 ° to 20 ° in the [011] direction.
The relation of impurities contained in the active layer made of P was obtained.
The result is shown in FIG. 7. As shown in FIG. 7, as it turns off from [100] in the (011) direction (as it shifts),
It was found that the luminous efficiency was increased, and at the same time, the amount of oxygen taken into the active layer was decreased. For Si, there was no dependence on changes in the plane direction. It was found that by inclining the plane orientation of the semiconductor substrate from [100] to the (011) direction by 10 to 20 °, it becomes difficult for oxygen to be taken into the active layer, and a semiconductor light emitting device with a luminous efficiency of 1 to 3% can be obtained. It was

【0033】なお、活性層を多重量子井戸構造とした半
導体発光装置についても、前述と同様活性層中の不純物
に関し、発光効率についてのしきい値が存在することが
判明した。
It has been found that also in the semiconductor light emitting device having the active layer having the multiple quantum well structure, the threshold value for the luminous efficiency exists with respect to the impurities in the active layer as described above.

【0034】また、SIMS分析においては、測定限界
が1×1015ケ/cm3 程度であるが、上述した発光効率
の上昇は、この1×1015〜5×1016ケ/cm3 の範囲
で顕著に表われた。さらに酸素またはSiに限らずZ
n、Mg等P型不純物あるいはTe等他のn型不純物に
ついても発光効率に関し同様のしきい値が得られた。
In SIMS analysis, the measurement limit is about 1 × 10 15 cells / cm 3 , but the above-mentioned increase in luminous efficiency is within the range of 1 × 10 15 to 5 × 10 16 cells / cm 3 . It was noticeable in. In addition to oxygen or Si, Z
Similar threshold values were obtained with respect to luminous efficiency for P-type impurities such as n and Mg or other n-type impurities such as Te.

【0035】本実施例によれば、InGaAlP層から
なる活性層の残留不純物、さらには、AlGaAsから
なる電流拡散層の不純物を制御することによって図11
に示すようにきわめて安定した発光効率が得られた。
According to the present embodiment, by controlling the residual impurities in the active layer made of the InGaAlP layer and further the impurities in the current diffusion layer made of AlGaAs, it is possible to reduce the amount of impurities in FIG.
As shown in, extremely stable luminous efficiency was obtained.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
InGaAlP系材料からなる活性層の残留不純物濃度
を5×1016ケ/cm3 以下とすることにより、発光効率
を安定した状態で向上させることができる。このため半
導体発光装置について、品質トラブルおよび生産性の低
下等の問題が生じることはない。
As described above, according to the present invention,
By setting the residual impurity concentration of the active layer made of the InGaAlP-based material to be 5 × 10 16 / cm 3 or less, the luminous efficiency can be improved in a stable state. Therefore, the semiconductor light emitting device does not have problems such as quality troubles and reduction in productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体発光装置のInGaAlP
からなる活性層中の不純物濃度と発光効率との関係を示
す図。
FIG. 1 InGaAlP of a semiconductor light emitting device according to the present invention
FIG. 5 is a diagram showing the relationship between the impurity concentration in the active layer made of and the luminous efficiency.

【図2】TMI消費量と活性層中の酸素濃度との関係を
示す図。
FIG. 2 is a diagram showing a relationship between TMI consumption and oxygen concentration in an active layer.

【図3】活性層中の酸素濃度と発光効率との関係を示す
図。
FIG. 3 is a diagram showing a relationship between oxygen concentration in an active layer and luminous efficiency.

【図4】活性層中のSi濃度と発光効率との関係を示す
図。
FIG. 4 is a diagram showing the relationship between the Si concentration in the active layer and the luminous efficiency.

【図5】AlGaAsからなる電流拡散層中の酸素の濃
度と発光効率との関係を示す図。
FIG. 5 is a diagram showing a relationship between oxygen concentration in a current diffusion layer made of AlGaAs and luminous efficiency.

【図6】電流拡散層中のSi濃度と発光効率との関係を
示す図。
FIG. 6 is a diagram showing the relationship between the Si concentration in the current diffusion layer and the luminous efficiency.

【図7】半導体基板の面方位のオフ角度と、発光効率・
活性層不純物との関係を示す図。
FIG. 7 shows the off angle of the plane orientation of the semiconductor substrate and the luminous efficiency.
The figure which shows the relationship with an active layer impurity.

【図8】半導体発光装置の基本的構造を示す図。FIG. 8 is a diagram showing a basic structure of a semiconductor light emitting device.

【図9】半導体発光装置のマトリックス元素および不純
物濃度をSIMSにより検出した結果を示す図。
9A and 9B are diagrams showing results of detecting matrix elements and impurity concentrations of a semiconductor light emitting device by SIMS.

【図10】活性層中の不純物濃度とキャリア濃度と発光
効率との関係を示す図。
FIG. 10 is a diagram showing the relationship between the impurity concentration in the active layer, the carrier concentration, and the luminous efficiency.

【図11】TMI消費量と活性層中の酸素濃度との関係
を示す図。
FIG. 11 is a diagram showing the relationship between TMI consumption and oxygen concentration in the active layer.

【符号の説明】[Explanation of symbols]

12 半導体基板 13 nクラッド層 14 活性層 15 pクラッド層 16 電流拡散層 12 Semiconductor substrate 13 n cladding layer 14 Active layer 15 p clad layer 16 Current spreading layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−268322(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-6-268322 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 33/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板と、 半導体基板上に設けられたダブルヘテロ構造体と、 このダブルヘテロ構造体と前記半導体基板に各々設けら
れた第1電極および第2電極とを備え、 前記ダブルヘテロ構造体は、InGaAlP系材料から
なる活性層と、この活性層を両側から挟んで配置された
一対のクラッド層とからなり、 前記InGaAlP系材料の活性層に含まれる酸素と硅
素の元素濃度は各々5×1016ケ/cm3 以下であること
を特徴とする半導体発光装置。
1. A double hetero structure comprising: a semiconductor substrate; a double hetero structure provided on the semiconductor substrate; and a first electrode and a second electrode provided on the double hetero structure and the semiconductor substrate, respectively. The structure is composed of an active layer made of InGaAlP-based material and a pair of clad layers sandwiching the active layer from both sides. The element concentrations of oxygen and silicon contained in the active layer of the InGaAlP-based material are respectively. A semiconductor light emitting device characterized by being 5 × 10 16 cells / cm 3 or less.
【請求項2】半導体基板はGaAsからなり、前記半導
体基板の面方位は(100)から〔011〕方向に10
〜20°傾斜することを特徴とする請求項1記載の半導
体発光装置。
2. The semiconductor substrate is made of GaAs, and the plane direction of the semiconductor substrate is 10 from (100) to [011] direction.
The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is inclined at an angle of -20 °.
【請求項3】ダブルヘテロ構造体と第1電極との間に、
AlGaAsからなる電流拡散層を設け、この電流拡散
層の酸素の元素濃度を2×1019ケ/cm3以下とし、硅
素の元素濃度を1×1017ケ/cm3以下としたことを特
徴とする請求項1記載の半導体発光装置。
3. Between the double heterostructure and the first electrode,
A current diffusion layer made of AlGaAs is provided, and the element concentration of oxygen in this current diffusion layer is 2 × 10 19 cells / cm 3 or less, and the element concentration of silicon is 1 × 10 17 cells / cm 3 or less. The semiconductor light emitting device according to claim 1.
【請求項4】一対のクラッド層はInGaAlP系材料
からなり、この一対のクラッド層の残留不純物濃度を1
×1017ケ/cm3 以下としたことを特徴とする請求項1
記載の半導体発光装置。
4. The pair of clad layers are made of InGaAlP-based material, and the residual impurity concentration of the pair of clad layers is 1 or less.
2. The method according to claim 1, wherein the density is × 10 17 cells / cm 3 or less.
The semiconductor light-emitting device described.
【請求項5】活性層は多重量子井戸構造を有することを
特徴とする請求項1記載の半導体発光装置。
5. The semiconductor light emitting device according to claim 1, wherein the active layer has a multiple quantum well structure.
JP08649693A 1993-04-13 1993-04-13 Semiconductor light emitting device Expired - Lifetime JP3376007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08649693A JP3376007B2 (en) 1993-04-13 1993-04-13 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08649693A JP3376007B2 (en) 1993-04-13 1993-04-13 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06302852A JPH06302852A (en) 1994-10-28
JP3376007B2 true JP3376007B2 (en) 2003-02-10

Family

ID=13888594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08649693A Expired - Lifetime JP3376007B2 (en) 1993-04-13 1993-04-13 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3376007B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135109B2 (en) * 1995-10-02 2001-02-13 シャープ株式会社 Semiconductor light emitting device
US6664732B2 (en) 2000-10-26 2003-12-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH06302852A (en) 1994-10-28

Similar Documents

Publication Publication Date Title
EP0803916B1 (en) Manufacturing method of a light emitting device
US7554127B2 (en) Semiconductor light-emitting element and method of manufacturing the same
US6399966B1 (en) Light emitting nitride semiconductor device, and light emitting apparatus and pickup device using the same
US5600158A (en) Semiconductor light emitting device with current spreading layer
JPH11150296A (en) Nitride semiconductor element and its manufacture
US6191437B1 (en) Semiconductor light emitting device and method of manufacturing the same
JPH08139361A (en) Compound semiconductor light emitting device
US20070029542A1 (en) Semiconductor optical device
JPH06326360A (en) Semiconductor light emitting element and manufacture thereof
US20010013609A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP3376007B2 (en) Semiconductor light emitting device
JP3981218B2 (en) Epitaxial wafer for light emitting device and light emitting device
EP0720242A2 (en) AlGaInP light emitting device
US6819119B2 (en) Method for evaluating a crystalline semiconductor substrate
US20040224434A1 (en) Method of forming a semiconductor structure for use in a light emitting diode and a semiconductor structure
JPH1168150A (en) Semiconductor light-emitting element and its manufacture
JPH10144612A (en) Growth of semiconductor
US5903587A (en) Stress compensation type semiconductor laser
JP2001320083A (en) AlGaInP LIGHT EMITTING ELEMENT AND EPITAXIAL WAFER THEREFOR
JP2001007445A (en) AlGaInP BASED LIGHT EMITTING ELEMENT AND EPITAXIAL WAFER FOR LIGHT EMITTING ELEMENT
JP2005536896A (en) Manufacturing method of semiconductor chip emitting electromagnetic radiation and semiconductor chip emitting electromagnetic radiation
US8629468B2 (en) Method for manufacturing light emitting device and light emitting device
JP3382817B2 (en) Semiconductor laser device
JPH07193331A (en) Gaas substrate for light-emitting element
JP2000124553A (en) Semiconductor laser device and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

EXPY Cancellation because of completion of term