JPS59163711A - Multicore superconductive cable - Google Patents
Multicore superconductive cableInfo
- Publication number
- JPS59163711A JPS59163711A JP58038575A JP3857583A JPS59163711A JP S59163711 A JPS59163711 A JP S59163711A JP 58038575 A JP58038575 A JP 58038575A JP 3857583 A JP3857583 A JP 3857583A JP S59163711 A JPS59163711 A JP S59163711A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- multicore
- cable
- superconducting cable
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は安定性の浸れた多芯超′I!IL4グープル
の構成に関するものである。DETAILED DESCRIPTION OF THE INVENTION This invention provides stable multicore superstructures! This is related to the configuration of IL4 group.
代表的な多芯超電辱ケーブル斜視図τオ1図1alに、
その断面図’k fblにそれぞれ示す。1甲、fi+
は多芯超電導ケーブルで、複数の超電尋索・−全撚りあ
わせて構成される。この多芯超電導ケーブル(1)t−
巻回して作られる一般的な超電導コイルを第2図に示す
。又、超電導コイルは冷媒(一般に液体ヘリタム)によ
って冷却されている。第8図はこの超電導コイルの一部
の断面r拡大して示したものである。図中、■印は電流
の向きを示すもので紙面の上から下へ電流が流れている
ことを意味する。A perspective view of a typical multi-core super electric cable is shown in Figure 1al.
The cross-sectional views are shown in 'kfbl', respectively. 1K, fi+
is a multi-core superconducting cable, consisting of multiple superconducting cables, all twisted together. This multicore superconducting cable (1) t-
Figure 2 shows a typical superconducting coil made by winding. Further, the superconducting coil is cooled by a refrigerant (generally liquid heritum). FIG. 8 shows an enlarged cross section of a part of this superconducting coil. In the figure, the ■ mark indicates the direction of the current, meaning that the current flows from the top to the bottom of the page.
第8図に示したように、多芯超電導ケーブル(1)には
同方向の電流が流れているために、それぞれの多芯超電
4ケーブル(1)間には互いに引き合う力をが1!ld
l<。この電磁力は多芯超電導ケーブル(1]に流れて
いる電流が大きい佳、又、超鴫辱コイルの発生する磁界
が大きい程大きくなる。As shown in Figure 8, since currents flow in the same direction in the multicore superconducting cables (1), there is a mutually attracting force of 1! between each of the four multicore superconducting cables (1). ld
l<. This electromagnetic force increases as the current flowing through the multicore superconducting cable (1) increases and as the magnetic field generated by the superconducting coil increases.
多芯超電導ケーブルIl+においては、超魁導巣尿(2
1を撚シ台わせて構成しているために、亀電辱素線(2
)間にはすきまが存在する。又、超電4コイルにおいて
も、多芯超電導ケーブルtu同にすきまが存在する。こ
れらすきまが存在するために、多芯超電導グープルli
t K電流が流れると、上記′電磁力が働き超電導素線
(2)又は多芯超電導ケーブルIllが動く可能性があ
る。超電導素線(2)又は多芯超電導ケーブル+11が
動くとそこに摩擦発熱が生じ、多芯超電導ケーブル+1
1は超′電導破壊奮起こすことがある。光明者らは上記
のような多芯超電導ケーブルIll ’i巻回して小形
超電導コイルを作りx験してみた。その結果、漏光電流
値の70%以下で超電導破壊を起こすことが復記された
。なお、超電導コイル全体をエポキシ等で含浸すること
は多芯超電導ケーブルt11間に冷媒が入り込むすきま
がなくなるため好ましくない。In the multi-core superconducting cable Il+, the superconducting cable (2
Because it is constructed by twisting 1.
) There is a gap between them. Furthermore, even in the four superconducting coils, there is a gap in the multicore superconducting cable tu. Due to the existence of these gaps, the multicore superconducting group li
When the tK current flows, the electromagnetic force mentioned above may work and the superconducting wire (2) or the multicore superconducting cable Ill may move. When the superconducting wire (2) or the multicore superconducting cable +11 moves, frictional heat generation occurs there, and the multicore superconducting cable +1
1 may cause superconducting breakdown. The enlightened people made a small superconducting coil by winding a multi-core superconducting cable like the one above and experimented with it. As a result, it was re-recorded that superconducting breakdown occurs at 70% or less of the light leakage current value. Note that it is not preferable to impregnate the entire superconducting coil with epoxy or the like because there will be no gap for the refrigerant to enter between the multicore superconducting cables t11.
以上のように、従来の多芯超電導ケーブルを用いて超電
導コイル全製作すると、多芯超電導ケーブル自身の4界
電流値の70%以下でil:a電等破壊金起こすという
欠点を何していた。As mentioned above, if all superconducting coils are manufactured using conventional multicore superconducting cables, what has been done to overcome the drawback that il:a electrical breakdown occurs at less than 70% of the 4-field current value of the multicore superconducting cable itself? .
この発明は、上記のような従来のものの欠点r除去する
ためになされたもので、多芯超’K 4%ケーブルを構
成する超電導素線間に半硬化ワニスk 、4 rfiし
たもの?由いることにより、臨界電流値まで超電導破壊
を起Cしにくい超電導コイルを製作できる多芯超電導ケ
ーブルを提供することを目的としている。This invention was made in order to eliminate the above-mentioned drawbacks of the conventional cable, and a semi-hardened varnish is applied between the superconducting wires constituting the multi-core super'K4% cable. The object of the present invention is to provide a multicore superconducting cable that can produce a superconducting coil that is unlikely to cause superconducting breakdown up to a critical current value.
以下、この発明の一実施例における多芯超電導ケーブル
を図について説明す′°る。Hereinafter, a multicore superconducting cable according to an embodiment of the present invention will be explained with reference to the drawings.
第4図はこの発明の一実施例における多芯超・電導ケー
ブルを示す断面図である。図中、+31は半硬化ワニス
で、超電導素線間に浸透され多芯超電導ケーブルを形成
している。この半硬化ワニ、ス(3)は超電導コイルと
して巻回された後に加熱処理によシ硬化される。上記超
電導ケーブル(4)金片いて超電導コイルを製作すれば
、超を尋素@ +21間及び超電導ケーブル(4)間は
、硬化された半硬化ワニス131の存在のために、完全
に固着され、超電導素線(21及び超電導ケーブル(4
)の電磁力による動きはなくなる。又、冷媒も多芯超電
導ケーブル(4)間に入り込むことが可能なため、超電
導コイル全体をエポキシ等で含浸する場合に比べ、冷媒
が直接多芯超電導ケーブル(4)に噛れるために、熱的
に安定である。FIG. 4 is a sectional view showing a multicore superconducting cable in one embodiment of the present invention. In the figure, +31 is a semi-hardened varnish that is penetrated between the superconducting wires to form a multicore superconducting cable. This semi-hardened alligator (3) is wound as a superconducting coil and then hardened by heat treatment. When a superconducting coil is manufactured using the gold pieces of the superconducting cable (4), the space between the superconducting wire and the superconducting cable (4) is completely fixed due to the presence of the hardened semi-hardened varnish 131. Superconducting wire (21 and superconducting cable (4)
) will no longer move due to electromagnetic force. In addition, since the refrigerant can also enter between the multi-core superconducting cables (4), compared to the case where the entire superconducting coil is impregnated with epoxy etc., the refrigerant is directly bitten by the multi-core superconducting cables (4), which reduces heat. It is stable.
第5図は、本発明の他の実施例における多芯超電導ケー
ブルを示す断面図である。FIG. 5 is a sectional view showing a multicore superconducting cable in another embodiment of the present invention.
超電導素線間2)の数、多芯超電導ケーブル(4)の形
状が異なるが、作用は第4図に示すものと本質的に同じ
である。Although the number of superconducting strands 2) and the shape of the multicore superconducting cable (4) are different, the operation is essentially the same as that shown in FIG. 4.
以上のように、この発明によれば、半硬化ワニスが浸透
された多芯超電導ケ、−プルを用いて超電導コイル?袈
作するために、電磁力による超電44碌及び多芯超電導
グープルの動きがなくなり、又、冷媒も多芯超電導ケー
ブル間に入り込むことが可能なため、多芯超電導ケーブ
ル自材の臨界電流値まで超電導破壊を起こしにくい、i
′a ’m sコイルが得られるという効果がある。As described above, according to the present invention, a multi-core superconducting coil impregnated with semi-hardened varnish can be used to create a superconducting coil using a pull. In order to prevent the superconducting cable from moving due to electromagnetic force, the refrigerant can also enter between the multi-core superconducting cables, which reduces the critical current value of the multi-core superconducting cable itself. It is difficult to cause superconducting breakdown until i
This has the effect that a 'a'ms coil can be obtained.
第1図1al 、 (blは代表的な多芯超電導ケーブ
ル盆それぞれ示す斜視図および断面図、第2図は一般的
なi昭電導コイルを示す斜視図、第8図は第2図におけ
る超電導コイルの一部の断面全拡大して示した断面図、
第4図はこの発明の一実施例における多芯超電導ケーブ
ルを示す断面図、第5図′はこの発明の他の実施例Vζ
おける多芯超電導ケーブル金示す断面図である。
図中、(2)は超電導素裸、(3)は半硬化ワニス、(
4)は多芯超電導ケーブルである。
なお、図中同一符号は同一、又はf目当部分を示す。
代理人 葛 野 信 −
第1図
(召)
第2図
第3図
第4図
第5図
列
−、ア
ンFig. 1 al, (bl is a perspective view and cross-sectional view showing typical multi-core superconducting cable trays, Fig. 2 is a perspective view showing a general I-Sho conduction coil, Fig. 8 is a superconducting coil in Fig. 2) A fully enlarged cross-sectional view of a part of the
FIG. 4 is a sectional view showing a multicore superconducting cable according to one embodiment of the present invention, and FIG. 5' is a cross-sectional view showing another embodiment of the present invention Vζ
FIG. 2 is a cross-sectional view showing a multicore superconducting cable in a state where In the figure, (2) is bare superconductor, (3) is semi-cured varnish, (
4) is a multicore superconducting cable. Note that the same reference numerals in the figures indicate the same or f-eye portions. Agent Makoto Kuzuno - Fig. 1 (Subject) Fig. 2 Fig. 3 Fig. 4 Fig. 5 Column -, Ann
Claims (3)
いて、上記超電導素裸間に半硬化フェスを浸透させたこ
とを特徴とする多芯超電導ケーブル。(1) A multicore superconducting cable consisting of a plurality of stranded superconducting wires, characterized in that a semi-hardened face is infiltrated between the bare superconducting wires.
徴とする特許請求の範囲オ1項記載の多芯超電4ケーブ
ル。(2) The multicore superelectric 4 cable according to claim 1, wherein the semi-hardened face is made of epoxy resin.
する特許a米の範囲オ1項記載の多芯超電導ケーブル。(3) The multicore superconducting cable described in Section 1 of Patent A, characterized in that the semi-hardened face is made of silicone resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58038575A JPS59163711A (en) | 1983-03-07 | 1983-03-07 | Multicore superconductive cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58038575A JPS59163711A (en) | 1983-03-07 | 1983-03-07 | Multicore superconductive cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59163711A true JPS59163711A (en) | 1984-09-14 |
Family
ID=12529082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58038575A Pending JPS59163711A (en) | 1983-03-07 | 1983-03-07 | Multicore superconductive cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59163711A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS533902A (en) * | 1976-07-01 | 1978-01-14 | Agency Of Ind Science & Technol | Production of silicon crystal membrane |
-
1983
- 1983-03-07 JP JP58038575A patent/JPS59163711A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS533902A (en) * | 1976-07-01 | 1978-01-14 | Agency Of Ind Science & Technol | Production of silicon crystal membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU94037952A (en) | Superconducting cable conductor | |
Voran et al. | Mechanical support of the NHMFL 32 T superconducting magnet | |
GB1172026A (en) | Superconducting Windings | |
GB1172061A (en) | A Superconductive Conductor of Great Mechanical Strength | |
JPS59163711A (en) | Multicore superconductive cable | |
CZ20023126A3 (en) | Superconducting induction winding for electric machine | |
JPS5830115A (en) | Power transformer | |
JP2549695B2 (en) | Superconducting stranded wire and manufacturing method thereof | |
JPH10174329A (en) | Cable for coil and motor using cable for coil thereof | |
JP3286036B2 (en) | Forced cooling type superconducting conductor | |
JP2525016B2 (en) | Superconducting wire | |
Kwasnitza | Flux jumps in composite superconductors in a time dependent magnetic field | |
Tanaka et al. | Effect of composite structure on AC loss of superconducting wire | |
JPH06260335A (en) | High temperature superconducting magnet | |
JPS62213012A (en) | Superconductor | |
JP2003007150A (en) | Minimizing method of alternating current loss of high- temperature superconductive wire | |
Yamada et al. | Quench Tests and FEM Analysis of ${\rm Nb} _ {3}{\rm Al} $ Rutherford Cables and Small Racetrack Magnets | |
Ueda et al. | Design Concepts and Experimental Results of Superconductor for Field Windings of 70mw Class Superconducting Generator | |
JPH08153547A (en) | Cable-in-conduit conductor | |
JPH0146963B2 (en) | ||
JPH02186510A (en) | Superconductor | |
JP3119514B2 (en) | Superconducting conductor | |
JP3878260B2 (en) | Superconducting coil system | |
Deniskina et al. | Self-Field Losses in Superconducting MgB 2 Composite | |
JPS6278806A (en) | Lead wire of transformer |