JPS591625A - Surface heating method of shaft body having bulged part - Google Patents

Surface heating method of shaft body having bulged part

Info

Publication number
JPS591625A
JPS591625A JP57110417A JP11041782A JPS591625A JP S591625 A JPS591625 A JP S591625A JP 57110417 A JP57110417 A JP 57110417A JP 11041782 A JP11041782 A JP 11041782A JP S591625 A JPS591625 A JP S591625A
Authority
JP
Japan
Prior art keywords
coil
shaft body
heating
shaft
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57110417A
Other languages
Japanese (ja)
Other versions
JPH0159335B2 (en
Inventor
Toshihiko Hirai
平井 敏彦
Kimio Yanagawa
柳川 公男
Akira Tamori
田守 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Koshuha Netsuren KK
Original Assignee
Neturen Co Ltd
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Koshuha Netsuren KK filed Critical Neturen Co Ltd
Priority to JP57110417A priority Critical patent/JPS591625A/en
Publication of JPS591625A publication Critical patent/JPS591625A/en
Publication of JPH0159335B2 publication Critical patent/JPH0159335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To heat uniformly the surface of a titled shaft body with high energy conversion efficiency, by heating inductively the bulged part continuously or continuourly or intermittently for a prescribed time during heating of the shaft body by direct conduction of high frequency electric current. CONSTITUTION:When a high-frequency power source is turned on while a heating coil C is held open, high-frequency electric current flows in an arrow direction and passes through the surface layer of a shaft body W and heats by resistance the surface layer of the shaft body. Upon lapse of a prescribed time, a coil closing device is driven to press the contact pieces 211 and 221 of the coil C in an arrow Q direction so as to bring the same into contact with each other, thereby closing the coil C. The high-frequency current shown by double arrows flows from an electric power source E in such a state, then a magnetic flux is generated from the coil C and heats inductively the surface layer of a bulged part Wa facing the coil apart from a prescribed spacing. If the power source E is turned off after a prescribed time, the shaft parts Wb1, Wb2 are heated only by the direct conduction of said current and the bulged part Wa heated by the direct conduction and the induction, heating, whereby both parts are heated uniformly or at a prescribed temp. difference.

Description

【発明の詳細な説明】 本発明は膨大部のある軸体の表面加熱方法に関する。[Detailed description of the invention] The present invention relates to a method for heating the surface of a shaft body having an ampulla.

全長にわたりほぼ同一径からなる軸体の、表面焼入れや
表面焼入れ層の焼戻しのための均一加熱手段として誘導
加熱がもちいられることは公知であシ、また全断面にわ
たる均一加熱のための加熱手段として低周波例えば商用
周波数の電源に接続する電極からの直接通電加熱がもち
いられることも公知である。しかし、例えば第1図に示
すような所定部分に膨大部Waのある軸体Wの場合、膨
大部Waと軸部wb とでは質量に差があるため、誘導
加熱・直接通電加熱いづれの加熱手段をもちいても膨大
部Waが軸部wb より昇温温度が低くなってしまい、
均一加熱温度を得ることは困難である。まして、膨大ζ
Waの表面加熱温度を軸部wbのそれよシ萬くするよう
な加熱条件の要求に応じることは不可能とされていた。
It is well known that induction heating is used as a uniform heating means for surface hardening or tempering the surface hardened layer of a shaft body having approximately the same diameter over the entire length, and also as a heating means for uniform heating over the entire cross section. It is also known to use direct current heating from electrodes connected to a low frequency, eg commercial frequency power supply. However, for example, in the case of a shaft body W having an enlarged portion Wa at a predetermined portion as shown in FIG. Even if the ampullae part Wa is heated to a lower temperature than the shaft part wb,
It is difficult to obtain a uniform heating temperature. Moreover, the huge ζ
It has been considered impossible to meet the requirement for heating conditions that make the surface heating temperature of Wa higher than that of the shaft portion wb.

本発明は膨大部のある軸体の表面加熱における表面均一
加熱の困難さと、温度差のめる表面加熱の不可能とを解
消するためになされたものであって、表面均一加熱はも
と工り膨大部と軸部とに所望の温度差をつけた加熱をも
行いうる表面加熱方法を提供するものである。
The present invention was made in order to solve the difficulty of uniform surface heating when heating the surface of a shaft body having a large portion, and the impossibility of surface heating that reduces the temperature difference. The object of the present invention is to provide a surface heating method that can perform heating with a desired temperature difference between the shaft part and the shaft part.

本発明の要旨は、膨大部のある軸体を表面加熱する場合
において、上記軸体の両端部それぞれを高周波電源に接
続する電極で把持して通電加熱するとともに、上記電極
と並列して上記高周波電源に接続された膨大部外周を所
定間隙をへだてて巻回する誘導加熱コイルによって、上
記電極からの通電時間中継続して、捷だは通電時間中の
所定時間にわたり継続的もしくは断続的に膨大部を誘導
加熱して、軸体の全表層部を均一温度に、捷たは膨大部
の表層部と軸部の表層部とを温度差をつけて表面加熱す
るようにしたことを特徴とする膨大部のある軸体の表面
加熱方法にある。
The gist of the present invention is that when surface-heating a shaft body having an enlarged portion, both ends of the shaft body are gripped with electrodes connected to a high frequency power source and electrically heated, and the high frequency power source is heated in parallel with the electrodes. An induction heating coil connected to a power supply and wound around the outer periphery of the ampullae with a predetermined gap is used to continuously or intermittently inflate the ampullae for a predetermined period of time during which electricity is applied from the electrodes. The shaft is heated by induction to bring the entire surface layer of the shaft to a uniform temperature, and the surface of the shaft is heated at a temperature difference between the surface layer of the splintered or enlarged portion and the surface layer of the shaft. A method for heating the surface of a shaft body having an ampulla.

本発明を第2図および第3図に従って説明する。The present invention will be explained with reference to FIGS. 2 and 3.

第2図は本発明を膨大部のある1紬体の焼戻し加熱に実
施する場合の一実施例装置を示している。当該焼戻し装
置は入力端子部1、誘導加熱部2、一方の電極部3およ
び他方の電極部4とによって構成されている。上記入力
端子部1は絶縁材11をはさんで互いに逆方向に屈折し
たL字形をなす一方の入力端子部材1aと他方の入力端
子部材1bとからなシ、互いに逆方向に開くそれぞれの
辺部には複数のボルト穴12が穿設されていて、当該ボ
ルト穴12を貫通する図示しないボルトによって、これ
も図示しない高周波電源のそれぞれの出力端子と緊定さ
れ、電気的に接続される。
FIG. 2 shows an embodiment of an apparatus in which the present invention is applied to tempering and heating a pongee body having an enlarged portion. The tempering device includes an input terminal section 1, an induction heating section 2, one electrode section 3, and the other electrode section 4. The input terminal section 1 consists of one input terminal member 1a and the other input terminal member 1b forming an L-shape bent in opposite directions with an insulating material 11 in between, and each side opening in opposite directions. A plurality of bolt holes 12 are bored through the bolt holes 12, and bolts (not shown) passing through the bolt holes 12 are used to tighten and electrically connect to respective output terminals of a high frequency power source (also not shown).

誘導加熱部2は、例えば上記入力端子部1の電源側から
突出する入力端子部材1aおよび1bの突出辺端から所
定間隔をへだてた、絶縁材11の端面にその軸線が平行
する如く配−置された加熱コイルCと、当該加熱コイル
Cのコイルリード21および22とからなる。
The induction heating section 2 is disposed such that its axis is parallel to the end surface of the insulating material 11, which is separated by a predetermined distance from the protruding edges of the input terminal members 1a and 1b protruding from the power supply side of the input terminal section 1, for example. It consists of a heating coil C and coil leads 21 and 22 of the heating coil C.

絶縁材23をはさんで入力端子部1方向へ延ヒルコイル
リード21および22は、それぞれ外側方向へ屈折した
のちさらに伸延し、一方のコイルリード21はその内側
面を入力端子部材1aの所定外側面に固着され、また他
方のコイルリード22はその内側面を入力端子部材1b
の上記リード21が固着された位置の反対側にあたる外
側面に固着されていて、入力端子部材1aおよび1bそ
れぞれと電気的に接続される。しかし一方、加熱コイル
Cは上記コイルリード21・22との接続側と例えば1
80°へだてた周上で分割された分割型コイルであって
、常態時にはそれぞれの端面間は所定間源をへだてで対
向していて電気的に非接続状態を保持する。当該加熱コ
イルCの分割端にはそれぞれ周外側方向へ伸びる接触部
片211および221が設けられており、当該接触部片
211および221は図示しないコイル閉成装置の駆動
によって生ずる矢印Qに従う方向への押圧力が加えられ
ると相寄る方向へ変位し、それぞれの対向する閉端面が
密着し、゛電気的に接続される。しかして環状に閉成さ
れた加熱コイルCの内周面は被焼戻し軸体Wの膨大部W
aの外周と所定間隙をへだてて対向する如き内径に形成
されるように設定される。一方の電極部3は上記加熱コ
イ、ルCの右方へ所定間隔をへだでた位置にあって、例
えば加熱コイルCの端面と平行する板面を有する板状体
からなる電極31と当該電極310入力端部1方向の端
部から手前方向に屈折して入力端子部材1a方向へ延び
る電極リード32および当該電砂リード32の先端に形
成されている電極リード接続端子321とからなシ、電
極リード接続端子321の内側面を入力端子部材1ai
突出辺外側面に当接してボルト34によって緊定され、
電気的に接続される。他方の電極部4は上記加熱コイル
Cの左方へ所定間隔をへだてた位置にあって、上記電極
部3と同様に例えば加熱コイルCの端面と平行する板面
を有する板状体からなる電極41と当該電極41の入力
端子部1方向の端部から先方方向に屈折して入力端子部
材1b方向へ延びる電極リード42および電極リード4
2の先端に形成されている電極リード接続端子421と
からなり、電極リード接続端子41’lの内側面を入力
端子部材1bの突出辺外側面に当接してボルトによって
緊定され、電気的に接続される。
The hill coil leads 21 and 22 extend in the direction of the input terminal portion 1 across the insulating material 23, and after being bent outward, one of the coil leads 21 extends further, with the inner surface of the coil lead 21 extending outside the input terminal member 1a. The other coil lead 22 has its inner surface fixed to the input terminal member 1b.
is fixed to the outer surface opposite to the position where the lead 21 is fixed, and is electrically connected to each of the input terminal members 1a and 1b. However, on the other hand, the heating coil C is connected to the connection side with the coil leads 21 and 22, for example.
It is a split type coil that is divided on a circumference separated by 80 degrees, and under normal conditions, the end faces of each end face each other with a predetermined distance apart from the source, and are kept electrically disconnected. Contact pieces 211 and 221 are provided at the divided ends of the heating coil C, respectively, and the contact pieces 211 and 221 extend in the circumferentially outward direction, and the contact pieces 211 and 221 extend in the direction according to the arrow Q generated by driving a coil closing device (not shown). When a pressing force is applied, they are displaced in the direction toward each other, and their opposing closed end surfaces are brought into close contact and electrically connected. Therefore, the inner circumferential surface of the annularly closed heating coil C is the enlarged part W of the shaft body W to be tempered.
It is set to have an inner diameter that faces the outer periphery of point a with a predetermined gap therebetween. One electrode part 3 is located at a predetermined distance to the right of the heating coil C, and is connected to an electrode 31 made of a plate-shaped body having a plate surface parallel to the end surface of the heating coil C, for example. The electrode lead 32 bends toward the front from the end in the input terminal direction of the electrode 310 and extends toward the input terminal member 1a, and the electrode lead connection terminal 321 formed at the tip of the electrode sand lead 32, The inner surface of the electrode lead connection terminal 321 is connected to the input terminal member 1ai
abutting against the outer surface of the protruding side and being tightened by the bolt 34;
electrically connected. The other electrode part 4 is located at a predetermined distance to the left of the heating coil C, and is made of a plate-shaped body having a plate surface parallel to the end face of the heating coil C, for example, like the electrode part 3. 41, and an electrode lead 42 and an electrode lead 4 bent in the forward direction from the end of the electrode 41 in the direction of the input terminal part 1 and extending in the direction of the input terminal member 1b.
The inner surface of the electrode lead connecting terminal 41'l is brought into contact with the outer surface of the protruding side of the input terminal member 1b, and is tightened with a bolt, electrically. Connected.

而して両電極31・41の対向する平面間の間隔は被焼
戻し軸体Wの軸長、J:りやや狭く、両電極31・41
の厚みを含む両者間の間隔は被焼戻し軸体Wの軸長よシ
や\広く、かつ被焼戻しり々11体W[おける例えば第
1図に示す膨大部Waの右側軸部wb、の長さが加熱コ
イルCと電極31との間隔と、また膨大部Waの左側軸
部Wb2の長さが加熱コイルCと電極41との間隔とに
適合するように諸元が設定される。捷た、電極31・4
1の対向面には加熱コイルCの軸線の延長線にめたる点
を中心として当該軸線にそって反対側まで電極を貫通す
る軸体Wの軸部wbの径とはソ等しい内径の貫通孔33
お工び43がそ扛それ設けられている。上記貫通孔33
および43は電極31お工び41を先端端面から電極リ
ード方向端部へかけて半ば以上縦割りにする如き、当該
貫通孔33お工び43の軸線を含む所定巾の切欠きSに
よって、それぞれ2分割されている。従って、それぞれ
の電極31・41における分割部片には柔軟性が付与さ
れ、切欠きSの巾の拡開または縮小および貫通孔33・
43の内径の拡大または縮小が所定の範囲内で可能とな
る。また本実施例装置には図示し々い電極挟圧装置が付
加されていて、当該型棒挟圧装置を駆動することによっ
て電極31お工び41の巾方向端面を矢印ヱに従って挟
圧可能に構成されている。
Therefore, the distance between the opposing planes of both electrodes 31 and 41 is the axial length of the shaft body W to be tempered, and J is slightly narrower.
The distance between them, including the thickness, is wider than the axial length of the shaft W to be tempered, and the distance between them is wider than the axial length of the shaft W to be tempered, and the distance between the two is wider than the axial length of the shaft W to be tempered. The specifications are set so that the length matches the distance between the heating coil C and the electrode 31, and the length of the left shaft portion Wb2 of the enlarged portion Wa matches the distance between the heating coil C and the electrode 41. Cut electrodes 31 and 4
1 is provided with a through hole having an inner diameter equal to the diameter of the shaft portion wb of the shaft body W, which penetrates the electrode along the axis from a point that meets the extension of the axis of the heating coil C to the opposite side. 33
There are 43 tools in place. The above through hole 33
and 43 are each formed by a notch S of a predetermined width including the axis of the through-hole 33 and 43, such that the electrode 31 and 41 are vertically divided more than halfway from the tip end face to the end in the electrode lead direction. It is divided into two parts. Therefore, flexibility is imparted to the divided pieces in each of the electrodes 31 and 41, and the width of the notch S can be expanded or reduced, and the through holes 33 and
43 can be enlarged or reduced within a predetermined range. In addition, an electrode clamping device (not shown) is added to the device of this embodiment, and by driving the mold bar clamping device, the widthwise end faces of the electrodes 31 and 41 can be clamped in accordance with the arrow 3. It is configured.

上記構成からなる装置を用いて第1図に示す膨大部Wa
のある軸体Wを焼戻しする場合を以下に説明する。
Using the apparatus having the above configuration, the ampullae Wa shown in FIG.
The case of tempering a certain shaft body W will be described below.

先ず軸体Wを焼戻し装置のコイルCに対する電極31お
工び41の配置方向に合せて軸部wb、およびwb2が
位置するように方向合せをしたうえで、軸部Wbtおよ
びwb2の長さが例えばwbl>wb2であれば、膨大
部Waが加熱コイルCと電極31との間の空間前方にあ
る如き状態から軸体Wを装−置方向へ前進させ、軸部w
b、を電極31の切欠きSに割込ませて貫通孔33まで
押し込む。ついで軸体Wを固視左方へ移動せしめ、軸部
wb2を加熱コイルC内に挿通して前進させ、その先端
を電極41の貫通孔43内に嵌入せしめる。上記型Th
31の切欠きSを介する軸部Wb、の貫通孔33への割
シ込みおよび軸部Wb2の先端の電極41の貫通孔43
への嵌入は前述の如く、電極の分割部片に柔軟性がある
ので支障なく行われる。この状態において、軸体Wの両
軸端はそれぞれ電$i31の貫通孔33内および電極4
1の貫通孔43内に収容され、かつ膨大部Waは分割状
態にある加熱コイルCの分割周壁に囲まn、ている。つ
いで図示しナイ電極挟圧装置を駆動して電極31お工び
41それぞれを矢印y方向から挾圧し、貫通孔33お↓
び43それぞれの孔内に収容されている軸Wの両端部を
孔壁で圧着し、これにより当該電極31お工び41によ
って軸体Wは把持される。
First, the shaft body W is aligned so that the shaft parts wb and wb2 are positioned in accordance with the arrangement direction of the electrode 31 and the cut 41 with respect to the coil C of the tempering device, and then the lengths of the shaft parts Wbt and wb2 are determined. For example, if wbl>wb2, the shaft W is advanced toward the apparatus from a state where the ampulla Wa is in front of the space between the heating coil C and the electrode 31, and the shaft W is
(b) into the notch S of the electrode 31 and push it into the through hole 33. Next, the shaft body W is moved to the left while fixating, and the shaft portion wb2 is inserted into the heating coil C and advanced, and its tip is fitted into the through hole 43 of the electrode 41. Above type Th
31 into the through hole 33 of the shaft portion Wb through the notch S, and the through hole 43 of the electrode 41 at the tip of the shaft portion Wb2.
As mentioned above, the electrode segments can be inserted without any problem because they are flexible. In this state, both shaft ends of the shaft W are inside the through hole 33 of the electrode 31 and the electrode 4.
It is accommodated in the through hole 43 of No. 1, and the enlarged portion Wa is surrounded by the dividing peripheral wall of the heating coil C which is in a divided state. Next, drive the electrode clamping device shown in the figure to clamp the electrodes 31 and 41 from the direction of the arrow y, and open the through holes 33 ↓
Both ends of the shaft W accommodated in the holes of the electrodes 31 and 43 are pressed against the hole walls, and the shaft body W is thereby gripped by the electrodes 31 and 41.

この状態において、例えば膨大部Waの焼戻し温度が3
00°C1また軸部wbの焼戻し温度が200℃である
如く、加熱温度をW a )wbとして指定された場合
について説明する。
In this state, for example, the tempering temperature of the ampullae Wa is 3.
A case will be described in which the heating temperature is specified as W a )wb, such as 00° C1 and the tempering temperature of the shaft portion wb is 200° C.

加熱コイルCを開成状態としておいて高周波電源Eを投
入すると高周波電流は例えば第3図に矢印→で示される
如く電源E−大入力端子1−電極部3−軸体W−電極部
4−入力端子部1−電源Eからなる回路に原紙電極部3
の電極31および電極部4の電極41それぞれの貫通孔
33および43に把持された軸体Wは表層を流れる高尚
波電流によって抵抗発熱する。しかし軸体Wの膨大部W
aF′i弐層の質量が軸部wbのそれより大であるので
軸部wb 工り昇温温度が低い。所定時間経過後コイル
閉成装置を駆動して加熱コイルCの接触部片211およ
び221を矢印Q方向へ押圧接触させて加熱コイルCを
閉成する。この状態において高周波電源゛Eがらは、電
析部3・4を含む回路とは別に二重矢印→→で示される
高周波電流が流れ、閉成されている加熱コイルCから磁
束が発生し、所定間隙をへたてて対向している膨大部W
aの表層を誘導加熱す。当該誘導加熱は、加熱コイルC
のコイルリード21・22が入力端子部1のはY中央に
取付けられ、また当該誘導加熱部2の回路と並列して高
周波電源Eに接続する電析部3・4を含む回路より回路
が十分短かいので高周波電流が良く流れ、効果的に行わ
れる。
When the high-frequency power source E is turned on with the heating coil C in an open state, the high-frequency current flows as shown by the arrow → in FIG. A base paper electrode part 3 is connected to a circuit consisting of a terminal part 1 and a power supply E.
The shaft body W held in the through holes 33 and 43 of the electrode 31 and the electrode 41 of the electrode part 4 generates resistance heat due to the high wave current flowing through the surface layer. However, the ampulla W of the shaft W
Since the mass of the second layer of aF'i is larger than that of the shaft part wb, the heating temperature during machining of the shaft part wb is low. After a predetermined period of time has elapsed, the coil closing device is driven to press the contact pieces 211 and 221 of the heating coil C into contact in the direction of arrow Q, thereby closing the heating coil C. In this state, a high-frequency current shown by a double arrow →→ flows through the high-frequency power source E, separate from the circuit including the electrodeposition parts 3 and 4, and a magnetic flux is generated from the closed heating coil C to a predetermined level. Ampulla W facing each other with a gap
The surface layer of a is heated by induction. The induction heating is performed using heating coil C.
The coil leads 21 and 22 are attached to the center of the Y of the input terminal section 1, and the circuit is more sufficient than the circuit including the electrodeposition sections 3 and 4 connected to the high frequency power source E in parallel with the circuit of the induction heating section 2. Because it is short, high frequency current flows well and is effective.

かくして所定時間経過後、高周波電源Eを断とすれば、
軸部WbrI′i全通電時間を通じて直接通電のみによ
り、膨大部Waは全通電時間を通じての直接通電と所定
時間の誘導加熱との相剰的作用によって所望の温度差が
ついた加熱温度にまで加熱される。
Thus, if the high frequency power source E is turned off after a predetermined period of time has elapsed,
By only direct energization throughout the entire energization time of the shaft portion WbrI'i, the ampulla Wa is heated to a heating temperature with a desired temperature difference due to the additive effect of direct energization throughout the entire energization time and induction heating for a predetermined time. be done.

加熱終了後、コイル閉成装置を駆動して加していた押圧
力Qを解除し、かつ電極挟圧装置を駆動して挟圧力1を
解除し、軸体Wを装着時とは逆手順で焼戻し装置より排
出する。
After heating, drive the coil closing device to release the applied pressing force Q, drive the electrode clamping device to release the clamping force 1, and then attach the shaft body W in the reverse order. Discharge from the tempering equipment.

上記実施例において、全通電時間中の初期には直接通電
のみとし、その後直接通電と誘導加熱とを併用している
が、併用時間の長短は膨大部Wa と軸部wbとの温度
差の大小、軸部wbの長さに対する膨大部Waの巾の比
率等に応じて決定される。また全通電時間中の初期に直
接通電と誘導加熱を併用し、その後直接通電のみで加熱
することもでき、さらには全通電時間中に間欠的に誘導
加熱を併用することもでき、この場合には膨大部Waに
おける加熱された表層の熱を軸心方向へ熱伝纒せしめる
こととなるので加熱層を厚くする効果がある。
In the above embodiment, only direct energization is performed at the beginning of the total energization time, and then direct energization and induction heating are used together. , is determined according to the ratio of the width of the enlarged portion Wa to the length of the shaft portion Wb. It is also possible to use both direct energization and induction heating at the beginning of the entire energization time, and then heat only with direct energization, and furthermore, it is also possible to use induction heating intermittently during the entire energization time. Since the heat of the heated surface layer in the ampullae Wa is transferred in the axial direction, it has the effect of increasing the thickness of the heating layer.

本発明は温度差をつけた焼戻しばかりでなく、膨大部W
a と軸部wbとの表層を均一に加熱することも直接通
電・誘導加熱併用時間を適宜設定すれば可能であること
勿論である。
The present invention is applicable not only to tempering with a temperature difference but also to
It goes without saying that it is possible to uniformly heat the surface layers of the shaft portion a and the shaft portion wb by appropriately setting the time for the combined use of direct current and induction heating.

さらに本発明は焼入れのための加熱にも適用される。こ
の場合、軸体は所定焼入れ温度にまで表層を均−jn熱
されたのち冷却水槽中に投入して急冷されるか、または
実施例装置のほかに軸部に対する冷却液噴射機構を設け
るとともに、膨大部に対する冷却液噴射孔を加熱コイル
に設けておき、加熱終了時に冷却液を噴射すればよい。
Furthermore, the present invention is also applied to heating for hardening. In this case, the surface layer of the shaft body is uniformly heated to a predetermined quenching temperature and then placed in a cooling water tank to be rapidly cooled, or a cooling liquid injection mechanism for the shaft portion is provided in addition to the apparatus of the embodiment, and Coolant injection holes for the enlarged portion may be provided in the heating coil, and the coolant may be injected when heating is completed.

上記実施例では装置の自己冷却機構については触れなか
ったが、通電時間、加熱温度、連続操業度等の諸条件か
ら必要あれば自己冷却機構が当然付設される。
Although the self-cooling mechanism of the apparatus was not mentioned in the above embodiment, a self-cooling mechanism is naturally added if necessary due to various conditions such as energization time, heating temperature, and continuous operation rate.

尚高周波電源の出力は温度条件、加熱層のJ享みその他
を考慮して適宜設定される。
Furthermore, the output of the high frequency power source is appropriately set in consideration of temperature conditions, heating layer performance, and other factors.

動部の両端を把持する電極は実施例に示す形状に限らf
Lるものではなく、把持通電が可能であればよく、また
加熱コイルも実施例に示す環状部で分割する割型加熱コ
イルに限らず、例えば環状加熱コイ・ルの一方のリード
の一部を切断しておき、別1固に備えている導体部材を
切断部分の両端にかけて接触または解離可能として、加
熱コイルへの通電を断・続せしめてもよい。
The electrodes that grip both ends of the moving part are limited to the shapes shown in the examples.
In addition, the heating coil is not limited to a split type heating coil divided by an annular part as shown in the embodiment, but a part of one lead of an annular heating coil can be used. After the heating coil is cut, separately provided conductor members may be placed over both ends of the cut portion so that they can be brought into contact with or separated from each other, thereby turning off and on the current supply to the heating coil.

本発明によれば、膨大部のある軸体の表面を膨大部も軸
部も一様に均熱加熱は勿論のこと従来不可能とされてい
た膨大部を軸部Jニジ高い温度に・・・それも所望の温
度差をつけて加熱することをも可能となるので、その結
果として膨大部と軸部とに硬度差をつけた焼入れ・焼戻
しが1工程で容易に実現出来る。そのうえ、直接通電に
よる抵抗発熱を主とし、誘導加熱を従とした電気エネル
ギーの使用方法であるので、エネルギー変換効率も高く
経済性にもすぐれ、極めて実用性に富んでいる。
According to the present invention, it is possible to uniformly heat the surface of the shaft body with the ampullae, both the ampullae and the shaft, and to heat the ampullae to a temperature higher than that of the shaft, which was previously considered impossible. - Since it is also possible to heat with a desired temperature difference, as a result, quenching and tempering with a hardness difference between the ampulla and the shaft can be easily achieved in one step. Furthermore, since it is a method of using electrical energy that mainly uses resistance heat generation through direct energization and secondary heating, it has high energy conversion efficiency and excellent economic efficiency, making it extremely practical.

【図面の簡単な説明】[Brief explanation of drawings]

#、1図は本発明の適用対象である膨大部のある軸体の
正面図、第2図は本発明の一実施例装置の斜視図、第3
図は本発明の実施例電流回路図である。 31.41・・・電極 C・・・誘導加熱コイルW・・
・軸体 Wa・・・軸体の膨大部wb・・・軸体の軸部 特許出願人  高周波熱錬株式会社 代理人 弁理士  小  林    傅第1図 第3図
#, Figure 1 is a front view of a shaft body with an enlarged portion to which the present invention is applied, Figure 2 is a perspective view of an apparatus according to an embodiment of the present invention, and Figure 3 is a
The figure is a current circuit diagram of an embodiment of the present invention. 31.41... Electrode C... Induction heating coil W...
・Shaft Wa... Huge part of the shaft Wb... Shaft of the shaft Patent applicant Koshuha Netoren Co., Ltd. Agent Patent attorney Fu Kobayashi Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 膨大部のある軸体を表面加熱する場合において、上記軸
体の両端部それぞれを高周波電源に接続する電極で把持
して通電加熱するとともに、上記電極と並列して上記高
周波電源に接続された膨大部外周を所定間隙をへだてて
巻回する誘導加熱コイルによって、上記電極からの通電
時間中継続して、または通電時間中の所定時間にわたシ
継続的もしくは断続的に膨大部を誘導加熱して、軸体の
全表層部を均一温度に、または膨大部の表層部と動部の
衣層部とを温度差をつけて表面加熱するようにしたこと
を特徴とする膨大部のある軸体の表面加熱方法。
When surface heating a shaft body with an ampulla, both ends of the shaft body are gripped with electrodes connected to a high-frequency power source and heated with electricity, and at the same time, an ampullae connected to the high-frequency power source in parallel with the electrodes is heated. The ampullae is inductively heated continuously or intermittently during the energization time from the electrode, or continuously or intermittently for a predetermined time period during the energization time, by an induction heating coil wound around the outer periphery of the part with a predetermined gap. A shaft body with an ampullae, characterized in that the entire surface layer of the shaft body is heated to a uniform temperature, or the surface layer of the ampullae and the coating layer of the moving part are heated at a different temperature. Surface heating method.
JP57110417A 1982-06-26 1982-06-26 Surface heating method of shaft body having bulged part Granted JPS591625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110417A JPS591625A (en) 1982-06-26 1982-06-26 Surface heating method of shaft body having bulged part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110417A JPS591625A (en) 1982-06-26 1982-06-26 Surface heating method of shaft body having bulged part

Publications (2)

Publication Number Publication Date
JPS591625A true JPS591625A (en) 1984-01-07
JPH0159335B2 JPH0159335B2 (en) 1989-12-15

Family

ID=14535234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110417A Granted JPS591625A (en) 1982-06-26 1982-06-26 Surface heating method of shaft body having bulged part

Country Status (1)

Country Link
JP (1) JPS591625A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349525B2 (en) 2003-04-25 2008-03-25 Rapiscan Systems, Inc. X-ray sources
JP2008232904A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Method of manufacturing magnetostrictive film in magnetostrictive type torque sensor, and magnetostrictive type torque sensor
US7903789B2 (en) 2003-04-25 2011-03-08 Rapiscan Systems, Inc. X-ray tube electron sources
WO2013146274A1 (en) * 2012-03-28 2013-10-03 中央発條株式会社 Heating device and heating method
US8824637B2 (en) 2008-09-13 2014-09-02 Rapiscan Systems, Inc. X-ray tubes
US9001973B2 (en) 2003-04-25 2015-04-07 Rapiscan Systems, Inc. X-ray sources
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US9263225B2 (en) 2008-07-15 2016-02-16 Rapiscan Systems, Inc. X-ray tube anode comprising a coolant tube
US9420677B2 (en) 2009-01-28 2016-08-16 Rapiscan Systems, Inc. X-ray tube electron sources
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
US7505563B2 (en) 2003-04-25 2009-03-17 Rapiscan Systems, Inc. X-ray sources
US7903789B2 (en) 2003-04-25 2011-03-08 Rapiscan Systems, Inc. X-ray tube electron sources
US11796711B2 (en) 2003-04-25 2023-10-24 Rapiscan Systems, Inc. Modular CT scanning system
US10901112B2 (en) 2003-04-25 2021-01-26 Rapiscan Systems, Inc. X-ray scanning system with stationary x-ray sources
US9001973B2 (en) 2003-04-25 2015-04-07 Rapiscan Systems, Inc. X-ray sources
US7349525B2 (en) 2003-04-25 2008-03-25 Rapiscan Systems, Inc. X-ray sources
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US10976271B2 (en) 2005-12-16 2021-04-13 Rapiscan Systems, Inc. Stationary tomographic X-ray imaging systems for automatically sorting objects based on generated tomographic images
JP2008232904A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Method of manufacturing magnetostrictive film in magnetostrictive type torque sensor, and magnetostrictive type torque sensor
US9263225B2 (en) 2008-07-15 2016-02-16 Rapiscan Systems, Inc. X-ray tube anode comprising a coolant tube
US8824637B2 (en) 2008-09-13 2014-09-02 Rapiscan Systems, Inc. X-ray tubes
US9420677B2 (en) 2009-01-28 2016-08-16 Rapiscan Systems, Inc. X-ray tube electron sources
JP2013204092A (en) * 2012-03-28 2013-10-07 Chuo Spring Co Ltd Heating apparatus and heating method
WO2013146274A1 (en) * 2012-03-28 2013-10-03 中央発條株式会社 Heating device and heating method

Also Published As

Publication number Publication date
JPH0159335B2 (en) 1989-12-15

Similar Documents

Publication Publication Date Title
JPS591625A (en) Surface heating method of shaft body having bulged part
US3126937A (en) Forming method and apparatus therefor
JP4235336B2 (en) Induction hardening method of rack bar and induction hardening apparatus thereof
US2810053A (en) High frequency inductor for small diameter holes
US4549057A (en) Flux concentrator assembly for inductor
US3446930A (en) Cross-field inductor for heating electrically conducting workpieces
US2715170A (en) Method and means for inductively heating narrow elongated portions of cylindrical bodies
KR20210031959A (en) Soldering tools for induction soldering
US2652474A (en) Method of heating opposed edges of elongated members
JPS591624A (en) Uniform heating method of surface of shaft body having bulged part
JPH1069968A (en) Induction heating method and device
JPS57158325A (en) Rack shaft having quench hardened layer continuous to tooth part and hardening method for tooth part of rack shaft
US3953700A (en) Induction heater apparatus and system
US2665367A (en) Inductor for the heat treatment of workpieces, especially crankshafts
US2867708A (en) Methods and apparatus for induction heating
JPH10251756A (en) Directly conducting induction hardening apparatus for rack bar
JP2007282340A (en) Method for annealing stator core for motor
JP3304297B2 (en) High-frequency three-sided heating coil
JP3860634B2 (en) High frequency direct current quenching equipment for rack bar
JPH08218117A (en) Heating coil for plural stepped work
JPH0354134Y2 (en)
JPS57158324A (en) Method and device for hardening of tooth profile
CA1138535A (en) Bolt heater
JPH0114288B2 (en)
JP2545869Y2 (en) High frequency heating coil