JPH0114288B2 - - Google Patents

Info

Publication number
JPH0114288B2
JPH0114288B2 JP56171360A JP17136081A JPH0114288B2 JP H0114288 B2 JPH0114288 B2 JP H0114288B2 JP 56171360 A JP56171360 A JP 56171360A JP 17136081 A JP17136081 A JP 17136081A JP H0114288 B2 JPH0114288 B2 JP H0114288B2
Authority
JP
Japan
Prior art keywords
wall
hole
diameter hole
injection pipe
small diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56171360A
Other languages
Japanese (ja)
Other versions
JPS5873721A (en
Inventor
Toyosaku Kume
Fuminori Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP56171360A priority Critical patent/JPS5873721A/en
Publication of JPS5873721A publication Critical patent/JPS5873721A/en
Publication of JPH0114288B2 publication Critical patent/JPH0114288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は部材の小径孔壁へ軸方向にそつた複数
の表面焼入れ条を形成する新規な縦縞状表面焼入
れ方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel longitudinal striped surface hardening method and apparatus for forming a plurality of surface hardening stripes along the axial direction on the wall of a small diameter hole of a member.

部材の大小および形状を問わず孔設された小径
孔の孔壁が摺動壁である部品類は極めて多用され
ている。これら部材の孔壁は耐摩耗性を向上させ
るために、誘導加熱手段を用いた孔壁全周面にわ
たる表面焼入れを施すことが従来より行われてい
る。上記従来方法は第1図aに示すように孔Hの
孔径に応じ、その孔壁と所定間隙をへだてる如き
外径となるように多巻回した誘導加熱コイルCを
用いて孔壁を加熱し、加熱後例えば下方端面方向
から冷却液を噴射して全孔壁周に表面焼入層を形
成するようにしている。
Regardless of the size and shape of the member, parts in which the hole wall of a small diameter hole formed therein is a sliding wall are extremely frequently used. In order to improve the wear resistance of the hole walls of these members, surface hardening has been conventionally performed over the entire circumference of the hole walls using induction heating means. As shown in Figure 1a, the conventional method described above uses an induction heating coil C which is wound multiple times to have an outer diameter that separates a predetermined gap from the hole wall depending on the hole diameter of the hole H. After heating, for example, a cooling liquid is injected from the direction of the lower end face to form a surface hardening layer around the entire hole wall.

ところが従来方法では部材が孔壁に厚みのない
筒状部材であるような場合には、全周壁を加熱し
かつ急冷焼入れを施すので、焼入れ歪によつて変
形した不適格品が多発するばかりでなく、孔長あ
るいは孔の奥行きが大となるといわゆるワンシヨ
ツト焼入れでは加熱コイルCから発生する磁力線
φのパターンが第1図bのようになるため、第1
図aの如く加熱コイルCの長手方向の中央部に深
く両端部へかけて順次浅くなるhで示される焼入
層となる傾向があり、均一深さの焼入層の形成が
困難である。更に従来方法の致命的な欠点は例え
ば第1図cに示す変形小径孔H′のR部が耐摩耗
性を要求される摺動壁である場合でも、加熱コイ
ルCの形状が多巻回コイルであるため全周壁を加
熱せざるを得ず、従つてR部は勿論平行面P部に
も焼入れ硬化層が形成されることとなるので、硬
化層の形成によつて失われる靭性を確保するため
に、本来壁の厚さSで充分のところS′として示す
壁厚としなければならないような不都合が生ずる
ことがある。そのうえ第1図aをみても判るよう
に加熱コイルCを構成する導体の往復路を巻回内
径中に収容せねばならないので、冷却液噴射管を
巻回内径中に包蔵せしめるスペースが極めて小と
なり、一体構造とすることが困難であり、たとえ
一体構造としても往復路導体が邪魔になつて全周
加熱面への冷却液の噴射が均一に行い難いという
欠点があつた。
However, in conventional methods, when the member is a cylindrical member with no thickness in the hole wall, the entire circumferential wall is heated and rapidly quenched, resulting in a large number of unsuitable products deformed by quenching distortion. However, when the hole length or hole depth becomes large, the pattern of the magnetic lines of force φ generated from the heating coil C becomes as shown in Fig. 1b in so-called one-shot hardening.
As shown in Figure a, there is a tendency for a hardened layer to form as indicated by h, which is deep in the central part of the heating coil C in the longitudinal direction and gradually becomes shallower toward both ends, making it difficult to form a hardened layer with a uniform depth. Furthermore, a fatal drawback of the conventional method is that even if the R part of the deformed small-diameter hole H' shown in Fig. 1c is a sliding wall that requires wear resistance, the shape of the heating coil C is too large to be a multi-turn coil. Therefore, the entire circumferential wall must be heated, and a quenched hardened layer is formed not only in the R part but also in the parallel plane P part, so that the toughness that is lost due to the formation of the hardened layer is ensured. Therefore, an inconvenience may arise in which the wall thickness shown as S' must be used when the wall thickness S is originally sufficient. Furthermore, as can be seen from Figure 1a, since the reciprocating path of the conductor constituting the heating coil C must be accommodated within the inner diameter of the winding, the space for housing the coolant injection pipe within the inner diameter of the winding is extremely small. However, it is difficult to form an integral structure, and even if it were an integral structure, the reciprocating path conductor would get in the way, making it difficult to spray the cooling liquid uniformly over the entire circumference of the heating surface.

本発明者は従来多巻回加熱コイルによる部材の
小径孔壁のワンシヨツト全周壁表面焼入れに存す
る上述の問題点を解消する目的で、かつ摺動面の
全面でなく一部に硬化層が形成されていれば耐摩
耗性が確保しうる点を勘案したうえで、極めて容
易に孔壁へ縦縞状に表面焼入れを施す方法および
装置を提供するものである。
In order to solve the above-mentioned problems that exist in the conventional one-shot all-periphery wall surface hardening of the small diameter hole wall of a member using a multi-turn heating coil, the present inventor has developed a method in which a hardened layer is formed on a part of the sliding surface instead of the entire surface. The purpose of the present invention is to provide a method and apparatus for extremely easily surface hardening a hole wall in the form of vertical stripes, taking into account that wear resistance can be ensured if the hole wall is hardened.

本願第1発明の要旨は、(1)部材の小径孔壁へ軸
方向にそつた複数の表面焼入れ条を形成する場合
において、(2)上記孔壁と所定間隙をへだてて軸方
向に延在する1対の平行部導体をもつ誘導素子を
複数具えている加熱コイルをもちいて、(3)上記複
数の導体それぞれが対向する壁条に磁力線を集中
せしめつつ各壁条を同時に加熱したのち、(4)上記
誘導素子群の背後に配置した軸方向に延在する冷
却液噴射管からの噴射冷却液によつて加熱壁条を
冷却する小径孔壁の縦縞状表面焼入れ方法にあ
る。
The gist of the first invention of the present application is that (1) in the case where a plurality of surface hardened strips are formed along the axial direction on the wall of a small diameter hole of a member, (2) the surface hardened strips extend in the axial direction apart from the wall of the hole with a predetermined gap. (3) using a heating coil comprising a plurality of induction elements each having a pair of parallel conductors, (3) heating each wall strip simultaneously while concentrating magnetic lines of force on the wall strips facing each other; (4) A method for hardening the vertically striped surface of a small-diameter hole wall, in which the heated wall strip is cooled by a cooling liquid jetted from a cooling liquid jet pipe extending in the axial direction and arranged behind the induction element group.

また、本願第2発明は上記第1発明を実施する
ための焼入装置にかかるものであつて、その要旨
とするところは(1)(a)環状導電板材に複数の切断部
を設けて電気的に開成した分断片からなるリード
基板と、(b)当該リード基板のいづれかの相隣るそ
れぞれを誘導加熱電源に接続した分断片間の切断
部を除く他の切断部近傍の分断片それぞれの表面
から直角に立ち上つて所定長さ延在し相隣るもの
どうしが先端で連結してそれぞれが1対の平行部
導体をもつコ字状の誘導素子群とで構成される加
熱コイルおよび(2)上記リード基板の環孔を貫通し
誘導素子群と平行する冷却液噴射管を具え、(3)上
記それぞれの平行部導体に磁性体を嵌着するとと
もに、(4)それぞれの平行部導体が孔壁の所定被焼
入れ条と所定間〓をへだてて対向する如く設定し
てある小径孔壁の縦縞状表面焼入装置にある。
Further, the second invention of the present application relates to a quenching apparatus for carrying out the above-mentioned first invention, and the gist thereof is (1) (a) providing a plurality of cutting parts in an annular conductive plate material to generate electricity. (b) each of the lead substrates in the vicinity of the other cut portions, excluding the cut portion between the portion portions where any of the adjacent lead substrates are connected to an induction heating power source; A heating coil consisting of a U-shaped inductive element group that stands up from the surface at right angles and extends for a predetermined length, adjacent ones connected at their tips, each having a pair of parallel conductors; 2) a coolant injection pipe passing through the annular hole of the lead board and parallel to the induction element group; (3) a magnetic material fitted to each of the parallel conductors; There is a vertical striped surface hardening device for a small-diameter hole wall, which is set to face a predetermined hardened strip on the hole wall with a predetermined distance apart.

本発明を例えば第1図cに示されるような小径
孔に適用した場合を第2図a〜cに従つて説明す
る。第2図aは本発明装置の斜視図であつて、1
として示されるリード基板は環状導電板材を略
180゜の円弧を有する分断片1aとそれぞれが略
90゜の円弧を有する分断片1bおよび1cの3片
に分断し、それぞれ電気絶縁材2a,2bおよび
2cを介して環状に形成してある。分断片1bお
よび1cの電気絶縁材2bを介して対向する端面
部には周方向に突出したリード部11bおよび1
1cが設けられていて高周波電源Eに接続してい
る。分断片1bおよび1cの電気絶縁材2aおよ
び2cそれぞれを介して分断片1aに相対する端
部近傍ならびに分断片1aの分断片1bおよび1
cに相対する端部近傍それぞれの表面には直角に
立ち上つて所定長さ延在する導体3b,3c,3
a2および3a1がそれぞれ固定されており、リード
基板1の電気絶縁材2aおよび2cを介するそれ
ぞれの切断部をはさんで平行する導体3a2および
3bは連結部31で、また導体3a1および3cは
連結部32でその先端が連結されコ字状の誘導素
子301および302を形成している。従つて高
周波電源Eからの電流は第2図cに示す如くリー
ド部11b−分断片1b−導体3b−連結部31
−導体3a2−分断片1a−導体3a1−連結部32
−導体3c−分断片1c−リード部11cからな
る回路を流れることとなる。尚411および41
2は管材製の誘導素子301へまた421および
422は同材製の誘導素子302へ自己冷却用冷
却水を通水するためのそれぞれ給水管および排水
管である。誘導素子301,302の構成要素で
ある上記各導体3のそれぞれの外側面は部材Wの
小径孔の摺動壁R面の所定壁条に所定間隙をへだ
てて対向する如く諸元が設定されると共に、上記
所定壁条対向反対の内側面には端面コ字状の磁性
体例えばコア5がそれぞれ所定長さにわたつて嵌
着されている。6は冷却液噴射管であつて、上端
面を閉とし、下端面に冷却液供給管61が接続さ
れ、リード基板1の環孔10を貫通して301,
302からなる誘導素子群30の背後に配置され
て軸方向に所定長さ延在する。当該冷却液噴射管
6の管壁の所定部分には多数の冷却液噴射孔62
が孔設されていて冷却液を導体3それぞれが対向
する壁条方向へ向つて噴射可能である。尚リード
基板1上には絶縁材からなる駒7が固着されてお
り、誘導素子群30を部材Wの小径孔Hへ挿入す
る際のストツパーまたは位置ぎめに使用される。
A case in which the present invention is applied to a small diameter hole as shown in FIG. 1c, for example, will be explained with reference to FIGS. 2a to 2c. FIG. 2a is a perspective view of the device of the present invention, showing 1
The lead board shown as is an abbreviation for the annular conductive plate material.
Fragment 1a having an arc of 180° and each segment having an arc of 180°
It is divided into three pieces 1b and 1c each having an arc of 90°, and formed into an annular shape with electrical insulating materials 2a, 2b and 2c interposed therebetween. Lead portions 11b and 1 protruding in the circumferential direction are provided at end surfaces of the segmented pieces 1b and 1c that face each other via the electrical insulating material 2b.
1c is provided and connected to the high frequency power source E. The vicinity of the ends of the segmented segments 1b and 1c facing the segmented segment 1a through the electrical insulating materials 2a and 2c, respectively, and the segmented segments 1b and 1 of the segmented segment 1a.
Conductors 3b, 3c, 3 that stand up at right angles and extend a predetermined length on the respective surfaces near the ends opposite to c.
a 2 and 3a 1 are fixed, respectively, and conductors 3a 2 and 3b, which are parallel to each other across the cut portions of the lead board 1 through the electrical insulating materials 2a and 2c, are connected at a connecting portion 31, and conductors 3a 1 and 3c is connected at a connecting portion 32 at its tips to form U-shaped induction elements 301 and 302. Therefore, as shown in FIG.
- Conductor 3a 2 - Segment 1a - Conductor 3a 1 - Connecting portion 32
It flows through a circuit consisting of - conductor 3c, segment 1c, and lead portion 11c. Furthermore, 411 and 41
2 is a water supply pipe and a drain pipe for passing self-cooling water to the induction element 301 made of a pipe material, and 421 and 422 are respectively for passing self-cooling water to the induction element 302 made of the same material. The dimensions are set such that the outer surface of each of the conductors 3, which are constituent elements of the induction elements 301 and 302, faces a predetermined wall strip of the sliding wall R surface of the small diameter hole of the member W with a predetermined gap therebetween. At the same time, a magnetic body having a U-shaped end face, for example, a core 5, is fitted over a predetermined length on the inner surface opposite to the predetermined wall strip. Reference numeral 6 denotes a coolant injection pipe, whose upper end face is closed, and a coolant supply pipe 61 is connected to the lower end face, which passes through the ring hole 10 of the lead board 1 and extends through 301,
302, and extends a predetermined length in the axial direction. A large number of coolant injection holes 62 are provided in a predetermined portion of the pipe wall of the coolant injection pipe 6.
are provided with holes so that the cooling liquid can be injected in the direction of the wall stripes facing each of the conductors 3. A piece 7 made of an insulating material is fixed on the lead board 1, and is used as a stopper or positioning member when inserting the guide element group 30 into the small diameter hole H of the member W.

上記装置を用いて部材Wの小径孔Hの摺動壁R
面へ複数条の縦縞状の表面焼入れを施す場合につ
いて説明する。
Using the above device, the sliding wall R of the small diameter hole H of the member W is
A case in which surface hardening is applied to a surface in the form of a plurality of vertical stripes will be explained.

部材Wまたは装置のいづれかを移動させ、小径
孔Hに装置の誘導素子群30を挿入し、各導体3
を所定被焼入壁条と所定間隙をへだてて対向せし
める。ついで高周波電源Eを投入すると高周波電
流は第2図cに示す如き回路を流れ、当該回路上
の各導体3それぞれを流れる電流によつて生ずる
磁力線はコア5によつて収束されてそれぞれの外
側面が所定間隙をへだてて対向する壁条面へ集中
し、第2図bにhとして示す壁面部分のみを軸方
向にそつた縦縞状に加熱する。所定時間経過後電
源Eを断とすると共に、図示しない冷却液供給源
を駆動して冷却液供給管61を介して冷却液を冷
却液噴射管6に送給し、噴射孔62より噴射せし
め、所定温度に加熱昇温している壁条を急冷す
る。所定時間経過後冷却液の噴射を停止とし、装
置を小径孔Hより脱出せしめて焼入れを完了す
る。
Either the member W or the device is moved, and the inductive element group 30 of the device is inserted into the small diameter hole H, and each conductor 3 is
are opposed to a predetermined wall strip to be hardened with a predetermined gap between them. Next, when the high-frequency power source E is turned on, the high-frequency current flows through a circuit as shown in FIG. is concentrated on the opposing wall surface across a predetermined gap, and only the wall surface portion shown as h in FIG. 2b is heated in the form of vertical stripes along the axial direction. After a predetermined period of time has elapsed, the power supply E is turned off, and a coolant supply source (not shown) is driven to supply the coolant to the coolant injection pipe 6 through the coolant supply pipe 61 and injected from the injection hole 62. The wall strip that has been heated to a predetermined temperature is rapidly cooled down. After a predetermined period of time has elapsed, the injection of the coolant is stopped, and the device is removed from the small diameter hole H to complete the quenching.

上記焼入れにおける通電によつて各導体3それ
ぞれから発生する磁力線φは第3図に矢印で示す
軸周方向となるので、従来方法として第1図cに
示す多巻回加熱コイルを用いた場合に現われる開
口端部における磁力線φの逃げに起因する当該開
口端近傍の焼入れ深さが浅くなるようなことはな
く、軸方向長さが比較的長い孔壁であつても全長
にわたる壁条に焼入れ深さの均一性が保証され
る。もし開口端縁に非硬化層を残したい場合には
金属材からなるシールド板Sを用いることが好ま
しい。
The lines of magnetic force φ generated from each conductor 3 by the energization in the above-mentioned hardening are in the axial circumferential direction as shown by the arrows in FIG. 3. Therefore, when using the multi-turn heating coil shown in FIG. The quenching depth near the opening end will not become shallow due to the escape of the lines of magnetic force φ at the opening end, and even if the hole wall is relatively long in the axial direction, the quenching depth will be reduced to the wall striations over the entire length. uniformity of color is guaranteed. If it is desired to leave a non-hardened layer on the edge of the opening, it is preferable to use a shield plate S made of a metal material.

かくして部材Wの小径孔Hの摺動壁R面それぞ
れには、所定間隔をへだてて軸方向に平行し、し
かも軸方向で均一深さかつ同一幅での縦縞状の表
面焼入れ条が2条づつワンシヨツトで形成され
る。
Thus, on each sliding wall R surface of the small-diameter hole H of the member W, there are two vertically striped surface-hardened stripes that are spaced apart from each other by a predetermined interval and parallel to the axial direction, and that have a uniform depth and the same width in the axial direction. Formed in one shot.

尚上記実施例ではコア5を導体3それぞれに嵌
着しているが、もしコア5を使用しないならば、
孔壁はヘアピンタイプと称せられる端面(平面)
加熱と類似の、例えば第4図に示す如き1対の平
行部導体3,3それぞれに対向する壁条間が連続
した加熱パターンh′となつて、同一電源および同
一加熱時間では充分な硬さの焼入れ硬化層を形成
することができず、更に必要な硬さの焼入れ硬化
層を形成するため加熱条件を変更するならば、従
来方法におけると同様の焼入れ歪の発生を招来す
ることが本発明者の行つた他の実験によつて確認
されている。
In the above embodiment, the core 5 is fitted to each conductor 3, but if the core 5 is not used,
The hole wall is an end surface (flat) called a hairpin type.
Similar to heating, for example, as shown in Fig. 4, a heating pattern h' is formed in which the wall striations facing each of the pair of parallel conductors 3, 3 are continuous, and the same power source and heating time provide sufficient hardness. However, if the heating conditions are changed to form a hardened layer with the required hardness, the same hardening distortion as in the conventional method will occur. This has been confirmed by other experiments conducted by Dr.

第5図aおよびbは本発明の第2の実施例を示
すものである。本実施例においては、部材W1
薄肉円筒体であつて、当該円筒体W1の小径内孔
壁の全周にわたる周壁に、例えば8条の縦縞状焼
入れ条を形成する場合である。当該実施例の高周
波電流の回路を第5図aに示す。この場合、焼入
れ条の条数に対応する導体3は8本となるので、
外周は円形に内周は方形になる如き形状の5片の
分断片からなる導電性板材を電気絶縁材2を介し
て環状に配置したリード基板1と、当該リード基
板1における電気絶縁材2による5ケ処の分断部
2のうち高周波電源Eに接続する分断部を除いた
4ケ処の分断部それぞれにまたがる4つの誘導素
子30とによつて加熱コイルが構成される。上記
誘導素子群30の背後にはリード基板1の環孔1
0を貫通して軸方向に延在する如く冷却液噴射管
6を配置し、当該冷却液噴射管6の所定側面に孔
設した冷却液噴射孔62からの冷却液をコア5を
嵌着した導体3のそれぞれが対向する孔壁条方向
に向つて噴射可能なように諸元が設定される。焼
入れの動作は前記第1実施例と全く同様であるの
で説明を省略するが、第5図bにhとして示す如
き孔壁へ8条の焼入れ条を形成することができ
る。この場合円筒体W1が薄肉で外周との間に非
硬化層を残したいときには加熱時に外周方向から
冷却液の噴射を行うことにより、目的が達せられ
る。
Figures 5a and 5b show a second embodiment of the invention. In this embodiment, the member W 1 is a thin cylindrical body, and for example, eight longitudinal striped hardened strips are formed on the peripheral wall of the cylindrical body W 1 over the entire circumference of the small-diameter inner hole wall. The high frequency current circuit of this embodiment is shown in FIG. 5a. In this case, the number of conductors 3 corresponding to the number of hardened strips is eight, so
A lead board 1 in which conductive plates made of five pieces each having a circular outer circumference and a rectangular inner circumference are arranged in a ring shape with an electrical insulating material 2 interposed therebetween, and an electrical insulating material 2 in the lead board 1. A heating coil is constituted by four induction elements 30 extending across each of the four divided parts, excluding the divided part connected to the high frequency power source E among the five divided parts 2. Behind the inductive element group 30 is the ring hole 1 of the lead board 1.
A coolant injection pipe 6 is arranged to extend in the axial direction through the cooling liquid injection pipe 6, and the core 5 is fitted with the coolant from a coolant injection hole 62 formed in a predetermined side surface of the coolant injection pipe 6. The specifications are set so that each of the conductors 3 can inject in the direction of the opposing hole wall stripes. The hardening operation is exactly the same as that in the first embodiment, so a description thereof will be omitted, but it is possible to form eight hardening stripes on the hole wall as shown at h in FIG. 5b. In this case, if the cylindrical body W1 is thin and it is desired to leave a non-hardened layer between it and the outer periphery, the purpose can be achieved by jetting the cooling liquid from the outer periphery direction during heating.

上記第1および第2実施例では加熱コイルと冷
却液噴射管とが一体構造となつている場合につい
て説明したが、冷却液噴射管6が加熱コイルにお
けるリード基板1の環孔10を貫通して相対移動
可能な構成とし、例えば加熱時には加熱コイルと
冷却液噴射管とが共に部材Wの孔内にあり、冷却
時には加熱コイルのみが移動して孔外に脱出して
孔内に残留している冷却液噴射管6からの冷却液
の噴射で加熱壁条を冷却するようにしてもよく、
また加熱時には加熱コイルのみ孔内に挿入され、
加熱終了後は孔外に脱出し、入れ替つて冷却液噴
射管6が孔内に侵入して加熱壁条を冷却するよう
にしてもよい。当該加熱コイルと冷却液噴射管6
との相対移動構造は縦縞壁条数が多くなつた場合
の一体構造での冷却液噴射管6の形状形成の困難
さを解消するものであつて、例えば第5図bに示
す冷却液噴射管6の端面形状糸巻き形に替えて第
6図に示すような端面円形の冷却液噴射管6′を
用いて孔壁全周に冷却液を噴射しても上記実施例
と同様の冷却効果が得られる。
In the first and second embodiments described above, the case where the heating coil and the coolant injection pipe are integrated has been described. It is configured to be relatively movable, for example, during heating, both the heating coil and the cooling liquid injection pipe are in the hole of the member W, and during cooling, only the heating coil moves, escapes from the hole, and remains inside the hole. The heating wall strip may be cooled by jetting the cooling liquid from the cooling liquid injection pipe 6.
Also, during heating, only the heating coil is inserted into the hole,
After the heating is completed, it may escape from the hole, and the coolant injection pipe 6 may be replaced and enter the hole to cool the heated wall strip. The heating coil and coolant injection pipe 6
The relative movement structure with the cooling liquid injection pipe 6 solves the difficulty of forming the shape of the coolant injection pipe 6 with an integral structure when the number of vertical striped walls increases. The same cooling effect as in the above embodiment can be obtained by injecting the cooling liquid all around the hole wall by using a cooling liquid injection pipe 6' having a circular end face as shown in FIG.

尚リード基板は円環状に限らず孔型に応じた環
状であれば足りる。
Note that the lead substrate is not limited to an annular shape, but any annular shape corresponding to the hole shape is sufficient.

本発明は小径孔Hが両端面開の構造であろう
と、一方端面開・他方端面閉の構造であろうと、
また孔壁が断面コ字状の筒体の内壁であろうと全
て適用可能である。例えば断面コ字状の筒体が被
処理部材である場合、電気絶縁材2をはさむ3,
3間を連結する連結部が第2図aに31または3
2と示すように筒壁や閉端面壁に近接している
と、当該連結部から発生する磁力線の影響によつ
て、あるいは孔底近傍部分の発熱を心配するかも
知れないが、第7図に示すように一方が開口し他
方が閉となつている筒体W2では閉端面の肉厚が
周方向肉厚に比べて大であることと、連結部には
コア5を嵌着していないために磁力線が拡散され
るので当該連結部近傍の対向壁部分は高温度の昇
温をみることはない。強いて当該部分の発熱を避
けたい場合には、冷却液噴射管6の邪魔にならな
い程度に第7図に33として示す如く連結部を導
体3,3の対向壁反対側面方向に設ければ対向壁
への磁力線による影響は殆んどなく発熱現象は生
じない。
The present invention has a structure in which the small diameter hole H has both ends open, or one end is open and the other end is closed.
Further, the present invention is applicable even if the hole wall is an inner wall of a cylindrical body having a U-shaped cross section. For example, if a cylinder with a U-shaped cross section is the member to be processed, the electrical insulating material 2 is sandwiched between 3,
The connecting part connecting between 3 and 3 is shown in Figure 2 a.
If it is close to the cylindrical wall or closed end wall as shown in Figure 2, there may be concerns about heat generation in the vicinity of the bottom of the hole due to the influence of magnetic lines of force generated from the connection, but as shown in Figure 7. As shown, in the case of the cylindrical body W2 which is open on one side and closed on the other side, the wall thickness of the closed end surface is larger than the wall thickness in the circumferential direction, and the core 5 is not fitted in the connecting part. Therefore, the lines of magnetic force are diffused, so that the opposing wall portion near the connecting portion does not experience a high temperature rise. If you really want to avoid heat generation in that part, you can install the connecting part on the opposite side of the opposite wall of the conductors 3, 3, as shown at 33 in FIG. There is almost no influence from magnetic lines of force on the magnetic field, and no heat generation phenomenon occurs.

本発明を実施することによつて (1) 両端面を開口とした小径孔や一方端面を開口
とし他方を閉端面とした小径孔へ所望条数の縦
縞状焼入れ条の形成が1シヨツトで極めて容易
となり、 (2) しかも部材の大小または形状を問わず、かつ
小径孔が円形・楕円あるいは他の変形形状断面
であろうと、殆んどの形状の小径孔の孔壁へ縦
縞状に所望の焼入れ条を形成可能であり、 (3) しかも焼入れ条の長さが比較的長い場合でも
その全長にわたつてほぼ均一深さおよび画然と
した幅の焼入れ条が形成されるので、 (4) 孔壁への最少限度の焼入れ条の形成によつて
必要とする壁面の耐摩耗性が保証されると共に
部材の焼入れ歪の発生が防止され (5) 更に冷却液噴射管を十分大きく設けられるよ
うになつたので冷却が効果的に行いうるなど極
めて顕著な効果が得られ、その応用範囲は大で
ある。
By carrying out the present invention, (1) a desired number of longitudinal hardened stripes can be formed in a single shot in a small diameter hole with both end faces open, or in a small diameter hole with one end face open and the other end closed; (2) Moreover, regardless of the size or shape of the part, and even if the small diameter hole has a circular, elliptical or other deformed cross section, it is possible to harden the hole wall of almost any shape in the form of vertical stripes. (3) Moreover, even if the length of the hardened strip is relatively long, the hardened strip can be formed with a substantially uniform depth and a clear width over the entire length; By forming the minimum number of hardened striations on the wall, the necessary wear resistance of the wall surface is guaranteed and the occurrence of hardening distortion in the member is prevented (5) Furthermore, it is possible to provide a sufficiently large coolant injection pipe. Extremely remarkable effects such as effective cooling can be obtained due to the heat, and its range of applications is wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは従来小径孔焼入れ方法を説明するた
めの断面正面図、第1図bは第1図aで用いる従
来加熱コイルから発生する磁力線を示す正面図、
第1図cは従来方法による小径孔壁の焼入れに存
する欠点を説明するための部材の断面平面図、第
2図aは本発明方法による実施例焼入装置の1部
切欠き斜視図、第2図bは第1図aに示す焼入装
置を小径孔内へ挿入した状態を示す平面図、第2
図cは第2図aに示す焼入装置の加熱コイルを流
れる電流回路を示す斜視図、第3図は本発明装置
における導体から発生する磁力線の孔壁へ及ぼす
効果を説明するための部分断面正面図、第4図は
導体にコアを嵌着しない場合の欠点を説明するた
めの平面図、第5図aは本発明の第2実施例装置
における電流回路を示す斜視図、第5図bは第5
図aに示す第2実施例装置を筒体内へ挿入した状
態を示す平面図、第6図は本発明装置に使用され
る冷却液噴射管の他の実施例を示す斜視図、第7
図は一方端面を閉面とした筒体の内壁へ縦縞状焼
入れ条を形成する例を示す断面正面図である。 1……リード基板、1a,1b,1c……分断
片、10……環孔、2,2a,2b,2c……分
断部;電気絶縁材、3,3a1,3a2,3b,3c
……導体、30……誘導素子群、301,302
……誘導素子、5……磁性体、6……冷却液噴射
管、W,W1,W2……部材、H……小径孔、E…
…高周波電源。
FIG. 1a is a cross-sectional front view for explaining the conventional small diameter hole hardening method, FIG. 1b is a front view showing lines of magnetic force generated from the conventional heating coil used in FIG. 1a,
FIG. 1c is a cross-sectional plan view of a member for explaining the drawbacks of hardening small diameter hole walls by the conventional method, FIG. Figure 2b is a plan view showing the hardening device shown in Figure 1a inserted into the small diameter hole;
Figure c is a perspective view showing the current circuit flowing through the heating coil of the hardening device shown in Figure 2a, and Figure 3 is a partial cross section for explaining the effect of the magnetic lines of force generated from the conductor on the hole wall in the device of the present invention. 4 is a front view, FIG. 4 is a plan view for explaining the disadvantages of not fitting the core to the conductor, FIG. 5a is a perspective view showing the current circuit in the second embodiment of the device of the present invention, and FIG. 5b is the fifth
FIG. 6 is a perspective view showing another embodiment of the coolant injection pipe used in the device of the present invention; FIG.
The figure is a sectional front view showing an example of forming longitudinal striped hardened stripes on the inner wall of a cylinder whose one end face is closed. 1... Lead board, 1a, 1b, 1c... segment, 10... ring hole, 2, 2a, 2b, 2c... division part; electrical insulating material, 3, 3a 1 , 3a 2 , 3b, 3c
...Conductor, 30...Inductive element group, 301, 302
...Induction element, 5...Magnetic material, 6...Cooling liquid injection pipe, W, W1 , W2 ...Member, H...Small diameter hole, E...
...High frequency power supply.

Claims (1)

【特許請求の範囲】 1 部材の小径孔壁へ軸方向にそつた複数の表面
焼入れ条を形成する場合において、上記孔壁と所
定間隙をへだてて軸方向に延在する1対の平行部
導体をもつ誘導素子を複数具えている加熱コイル
をもちいて、上記複数の導体それぞれが対向する
壁条に磁力線を集中せしめつつ各壁条を同時に加
熱したのち、上記誘導素子群の背後に配置した軸
方向に延在する冷却液噴射管からの噴射冷却液に
よつて加熱壁条を冷却することを特徴とする小径
孔壁の縦縞状表面焼入れ方法。 2 部材の小径孔壁へ軸方向にそつた複数の表面
焼入れ条を形成するものにおいて、環状導電板材
に複数の切断部を設けて電気的に開成した分断片
からなるリード基板と、当該リード基板のいづれ
かの相隣るそれぞれを誘導加熱電源に接続した分
断片間の切断部を除く他の切断部近傍の分断片そ
れぞれの表面から直角に立ち上つて所定長さ延在
し相隣るものどうしが先端で連結してそれぞれが
1対の平行部導体をもつコ字状の誘導素子群とで
構成される加熱コイルおよび上記リード基板の環
孔を貫通し誘導素子群と平行する冷却液噴射管を
具え、上記それぞれの平行部導体に磁性体を嵌着
するとともに、それぞれの平行部導体が孔壁の所
定被焼入れ条と所定間〓をへだてて対向する如く
設定してあることを特徴とする小径孔壁の縦縞状
表面焼入装置。 3 リード基板と冷却液噴射管とが一体の固定構
造に形成されている特許請求の範囲第2項記載の
小径孔壁の縦縞状表面焼入装置。 4 リード基板の環孔内を冷却液噴射管が相対移
動可能に構成されている特許請求の範囲第2項記
載の小径孔壁の縦縞状表面焼入装置。
[Scope of Claims] 1. In the case of forming a plurality of surface hardened strips axially aligned on the wall of a small diameter hole of a member, a pair of parallel portion conductors extending in the axial direction apart from the hole wall with a predetermined gap; Using a heating coil equipped with a plurality of inductive elements with 1. A method for hardening the surface of a small-diameter hole wall in the form of vertical stripes, characterized in that the heated wall strip is cooled by a cooling liquid jetted from a cooling liquid injection pipe extending in the direction. 2. A lead board that forms a plurality of surface-hardened strips along the axial direction on the wall of a small-diameter hole of a member, and a lead board that is made up of electrically opened fragments obtained by providing a plurality of cut parts in an annular conductive plate material, and the lead board. Excluding the cut section between the section sections where any of the adjacent sections are connected to an induction heating power source, the sections stand up at right angles from the surface of each section section near the other cut section and extend for a predetermined length, and the sections adjacent to each other are connected to each other. and a U-shaped induction element group connected at their tips and each having a pair of parallel conductors; and a cooling liquid injection pipe that passes through the ring hole of the lead board and runs parallel to the induction element group. A magnetic material is fitted into each of the parallel conductors, and each of the parallel conductors is set to face a predetermined distance from a predetermined quenched strip of the hole wall. Vertical striped surface hardening equipment for small diameter hole walls. 3. The vertical striped surface hardening device for a small diameter hole wall according to claim 2, wherein the lead substrate and the coolant injection pipe are formed into an integral fixed structure. 4. A vertically striped surface hardening device for a small diameter hole wall according to claim 2, wherein the coolant injection pipe is configured to be relatively movable within the annular hole of the lead substrate.
JP56171360A 1981-10-28 1981-10-28 Longitudinal stripelike surface quenching method of small diameter hole wall and its device Granted JPS5873721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56171360A JPS5873721A (en) 1981-10-28 1981-10-28 Longitudinal stripelike surface quenching method of small diameter hole wall and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56171360A JPS5873721A (en) 1981-10-28 1981-10-28 Longitudinal stripelike surface quenching method of small diameter hole wall and its device

Publications (2)

Publication Number Publication Date
JPS5873721A JPS5873721A (en) 1983-05-04
JPH0114288B2 true JPH0114288B2 (en) 1989-03-10

Family

ID=15921735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56171360A Granted JPS5873721A (en) 1981-10-28 1981-10-28 Longitudinal stripelike surface quenching method of small diameter hole wall and its device

Country Status (1)

Country Link
JP (1) JPS5873721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181937A (en) * 2011-02-28 2012-09-20 Honda Motor Co Ltd Induction hardening coil, and hardening method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271775A (en) * 1985-05-28 1986-12-02 高周波熱錬株式会社 Cylinder induction heating
JP7141076B2 (en) * 2017-07-04 2022-09-22 富士電子工業株式会社 Induction hardening equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181937A (en) * 2011-02-28 2012-09-20 Honda Motor Co Ltd Induction hardening coil, and hardening method using the same

Also Published As

Publication number Publication date
JPS5873721A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
KR910009249B1 (en) Magnetron cathodes for the sputtering of ferromagnetic targets
US2777041A (en) High frequency heat treating apparatus
JPS5998494A (en) High frequency induction heater
JPH0114288B2 (en)
JPS591625A (en) Surface heating method of shaft body having bulged part
EP3823785B1 (en) Process of inductive soldering of at least one ferromagnetic contact element to at least one conductor structure on a non-metallic disc
JPH07249484A (en) Heating inductor with lead contact
JPS58213828A (en) Induction hardening method of inside surface of bottomed cylindrical body
JP2019067528A (en) Heating coil
JPS609822A (en) Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part
JPH10324910A (en) Induction hardening coil
JP2005060799A (en) Induction hardening equipment and method
US2303467A (en) Heat treatment of metal articles having holes therein
JP7457970B2 (en) Induction heating coil and induction heating device
JP4884195B2 (en) Cylinder block quenching device and cylinder block manufacturing method
JPS6349879B2 (en)
JPS58197220A (en) High frequency hardening method
JPH0437872Y2 (en)
JPH0144770B2 (en)
JPH0553844B2 (en)
JP3361337B2 (en) Groove heating device
JP2016185665A (en) Heating method
JPH0141192Y2 (en)
JPH0715766U (en) Induction hardening coil for cam groove of cylindrical cam and induction hardening device
JPH0332515Y2 (en)