JPS609822A - Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part - Google Patents

Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part

Info

Publication number
JPS609822A
JPS609822A JP58114343A JP11434383A JPS609822A JP S609822 A JPS609822 A JP S609822A JP 58114343 A JP58114343 A JP 58114343A JP 11434383 A JP11434383 A JP 11434383A JP S609822 A JPS609822 A JP S609822A
Authority
JP
Japan
Prior art keywords
conductor
heating
parallel
circumferential angle
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114343A
Other languages
Japanese (ja)
Inventor
Toshihiko Hirai
平井 敏彦
Akira Tamori
田守 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Koshuha Netsuren KK
Original Assignee
Neturen Co Ltd
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Koshuha Netsuren KK filed Critical Neturen Co Ltd
Priority to JP58114343A priority Critical patent/JPS609822A/en
Publication of JPS609822A publication Critical patent/JPS609822A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Induction Heating (AREA)

Abstract

PURPOSE:To heat easily and uniformly the step part of a stepped member and its neighboring part with one-shot heating by heating the large-diameter parallel part and small-diameter parallel part of said member at the different heating rates by separate conductors and heating the step and its neighboring part by the heat conducted from both parallel parts. CONSTITUTION:Heating of an axially rotating work W by using heating coils is accomplished by impressing the magnetic flux phis generated from a conductor CS in the prescribed circumferential angle part to the part to be heated of the small-diameter parallel part S of said work and the magnetic flux phil generated from a conductor CL in the remaining circumferential angle part to the part to be heated of the large-diameter part L respectively at the different density per unit area and heating said parts to the different temps. within the prescribed time by impressing said magnetic fluxes respectively without deviation in the longitudinal direction of the parts to be heated. The step part sandwiched by both parts to be heated is heated mainly by the heat inflow from both parts to be heated and partly by the slight heat generated by the magnetic fluxes leaking from the conductors CS and CL according to the above-mentioned heating.

Description

【発明の詳細な説明】 本発明は段付き部材の段部近傍不等焼戻し方法および不
等焼戻し用加熱コイルに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for uneven tempering near the step portion of a stepped member and a heating coil for uneven tempering.

第1図に示す如き大径部りと小径部Sとを有する段付き
部材Wは機械装置の部品として多用されている。当該段
付き部材Wには大径部りと小径部Sとの両方に、またば
いづれか一方にネジあるいはスプライン等が形成されて
いるもの、あるいは坏ジ等の形成が全くないもの等使用
態様に従って種々あるが、段部および当該段部に続く両
平行部の所定長さ部分の機械的強度の向上または耐摩耗
性の向上を計るため、当該部分を表面焼入れし、かつ表
面焼入れ後に焼戻しを施すことが要求される。而して上
記焼戻しでは平行部の一方と他方とに温度差をつけて力
l熱し、焼戻し後のそれぞれの硬さが異るように仕上げ
ること全要求される場合がある1、 ところで、焼決しには加熱時間が極めて短かくてすむ誘
導加熱が賞月8れ、特に短小範囲を加熱する場合lLは
単巻回加熱コイルによる1シヨツト加熱が処理時+Mj
上好捷しいが、単巻回加熱コイルで段付き部材の段部ケ
會み、当該段部金塊にして一方の平行部の所定長さ部分
と他方の平行部の所定長さ部分とに温度差をつけて加熱
することは誘導加熱の特性上から極めて困難であった。
A stepped member W having a large diameter portion and a small diameter portion S as shown in FIG. 1 is often used as a component of mechanical devices. The stepped member W may have screws or splines formed on both the large diameter portion and the small diameter portion S, or may have screws or splines formed on either one, or may have no screws or the like at all, depending on the usage. There are various methods, but in order to improve the mechanical strength or wear resistance of a predetermined length of the stepped portion and both parallel portions following the stepped portion, the portion is surface hardened and then tempered after the surface hardening. This is required. Therefore, in the above-mentioned tempering, there are cases where it is required to heat one side of the parallel part and the other side at a different temperature so that each part has a different hardness after tempering1. Induction heating, which requires extremely short heating time, is used for heating, especially when heating short and small ranges. For 1L, one shot heating with a single-turn heating coil is required during treatment +Mj
Although it is convenient, a single-turn heating coil can be used to assemble the stepped part of the stepped member, and the stepped gold ingot can be heated at a predetermined length of one parallel part and a predetermined length of the other parallel part. Due to the characteristics of induction heating, it is extremely difficult to heat with a difference.

この困難とする理由を以下に説明する。The reason for this difficulty will be explained below.

即ち、第1図(a)に示す如く、段付き部材(以下ワー
クという)Wの小径部Sの所定長さ部分と大径部りの所
定長さ部分とを例えば小径部Sの焼戻し温度TS葡大径
都りの焼戻し温度TLより4(、TS)TLとして焼戻
し加熱しようとする。この場合、従来単巻回加熱コイル
では、誘導加熱の特性に則し、ワークWの内周壁?小径
部Sに対向する部分C′Sでは間隙fs’(i7小に、
大径部りに対向する部分C’Lでは間隙ftf大にする
とともに、段部では肩Aのオーバーヒート全避けるため
の溝C’Aと隈Bの加熱不足を避けるための鍔C’Bと
を設け、かつコイル端面近傍りでの磁束洩れから斎らさ
れる焼入ル巾の逃げ防止に近接部C’D’z設けるなど
極めて複雑な構成音とらざる全得ない。当該加熱コイル
が立脚している技術思想では、第1図(C)に示すよう
に、ワークWの被加熱部全長に対向する巾で半巻回され
ている導体C′から発生する磁束Cを、ワークWと導体
内壁との間隙を調整して小径部Sに対1〜では密に、大
径部りに対してはやや粗にすることは勿論のこと、段部
においてはワークWの軸線Oにほぼ直角な面上至近距離
にある点Aと点B#lc対し、点Bより導体C′に近い
点Aへは影響を小とすべぐ矢印×方向へ引離し、筐た点
Aより導体C′から遠い点Bへは影響を犬とすべく矢印
Y方向へ誘導せんとすることにある。このため、溝C’
Aと鍔C’Bとは極めて微妙に関係し合い、溝C’Aの
巾と深はおよび鍔C’Bの突出中と長きそれぞれ全如何
に設定するか極めて難がしく、数多くの作り直し全経て
や〉均一加熱に近い加熱効果を得ることの可能な加熱コ
イルC′ができるのが現状であったーそれ故、当該加熱
コイルC′の作成のためには熟練(〜た製作者と多くの
作成時間ならびに作成費とが必要とされ、かつそれによ
って得られた加熱コイルC′の加熱効果も今−歩という
ところにあるため、問題とされていた。
That is, as shown in FIG. 1(a), a predetermined length portion of a small diameter portion S and a predetermined length portion of a large diameter portion of a stepped member (hereinafter referred to as a work) W are tempered at a tempering temperature TS of the small diameter portion S, for example. The tempering temperature is set to 4 (TS) TL from the tempering temperature TL at the large diameter of the grape. In this case, with the conventional single-turn heating coil, in accordance with the characteristics of induction heating, the inner circumferential wall of the workpiece W? In the part C'S facing the small diameter part S, there is a gap fs' (i7 small,
In the part C'L facing the large diameter part, the gap ftf is made large, and in the stepped part, a groove C'A is provided to avoid overheating of the shoulder A, and a collar C'B is provided to avoid insufficient heating of the corner B. In order to prevent the quenching hole width from escaping due to magnetic flux leakage near the end face of the coil, an extremely complicated structure such as providing a proximal portion C'D'z is unavoidable. The technical idea on which this heating coil is based is that, as shown in Fig. 1 (C), the magnetic flux C generated from a conductor C' that is half-wound with a width opposite to the entire length of the heated part of the workpiece W is , by adjusting the gap between the workpiece W and the inner wall of the conductor, making it denser in the small diameter part S and slightly coarser in the large diameter part, as well as adjusting the gap between the axis of the workpiece W in the stepped part. For points A and B#lc, which are at close distance on a plane almost perpendicular to O, point A, which is closer to conductor C' than point B, is separated in the direction of arrow The purpose is to guide the conductor in the direction of arrow Y to the point B which is far from the conductor C' in order to reduce the influence. For this reason, groove C'
A and the tsuba C'B are very delicately related to each other, and it is extremely difficult to set the width and depth of the groove C'A and the protrusion and length of the tsuba C'B, and it has taken many reworks. Currently, it is possible to create a heating coil C' that can achieve a heating effect close to uniform heating.Therefore, in order to create the heating coil C', it took a lot of skilled (~~) manufacturers to create the heating coil C'. This has been a problem because it requires a lot of time and cost to create the heating coil C', and the heating effect of the heating coil C' obtained thereby is still at a very low level.

本発明は段付き部材の段部近傍全単巻回加熱コイルで1
ショット不等焼戻しする場合の従来加熱方法および加熱
コイルに存する問題点を解消する目的でなされたもので
ある。
The present invention uses a heating coil with a single turn all around the step part of a stepped member.
This was done for the purpose of solving problems existing in conventional heating methods and heating coils when performing uneven shot tempering.

本題第1発明の要旨は、 (1)段付き部材の段部全項としてこれに接続する一方
の平行部の所定長さ部分と他方の平行部の所定長さ部分
とに温度差をつけて同時に焼戻しケ施す場合において、
(2)単巻回加熱コイルにおける導体の所定周角度部分
は一方の平行部に、残余周角度部分は他方の平行部にそ
れぞれ対向させるとともに、 (3)当該所定周角度部分導体から発生する磁束と残余
周角度部分導体から発生する磁束とを部材に対して非連
続かつ分離とすることによって、 (4)軸回転する段付き部材の両平行部それぞれの所定
長さ部分を対向する各周角度部分導体で個別に異る昇温
速度をもって加熱し、段部は加熱される平行部からの熱
伝導金主たる昇温源として昇温せしめるようにしたこと
を特徴とする段付き部材の段部近傍不等焼戻し方法にあ
る。
The gist of the first invention is as follows: (1) A temperature difference is created between a predetermined length portion of one parallel portion and a predetermined length portion of the other parallel portion connected to the step portion of the stepped member. When tempering is applied at the same time,
(2) In a single-turn heating coil, the predetermined circumferential angle portion of the conductor is opposed to one parallel portion, and the remaining circumferential angle portion is opposed to the other parallel portion, and (3) Magnetic flux is generated from the conductor in the predetermined circumferential angle portion. (4) By making the magnetic flux generated from the residual circumferential angle partial conductor discontinuous and separate from the member, (4) each circumferential angle facing the predetermined length portion of each of both parallel parts of the stepped member that rotates on its axis; The vicinity of a stepped part of a stepped member, characterized in that the partial conductors are heated at individually different heating rates, and the stepped part is heated as a main temperature raising source from the parallel portion of the heated parallel part. In the uneven tempering method.

換言すれば、本発明の技術思想は1巻回の導体全所定の
巻回周角度部分に2分し、それぞれの部分導体から発生
する磁束を相互無関係に独立させ、これにより両平行部
全個別に異る温度に加熱し、その結果加熱きれる両平行
部に挾まれている段部を熱伝導で昇温させることにあり
、上述従来加熱コイルの如き加熱部長さ全長に相当する
巾を有する1巻回の導体から発生する磁束を巾方向で引
離したり誘導集中したりする思想とは隔絶したものであ
る。
In other words, the technical idea of the present invention is to divide one turn of the conductor into two portions with predetermined winding circumference angles, to make the magnetic flux generated from each partial conductor independent and independent of each other, and thereby to separate all the parallel portions of the conductor into two. The purpose is to heat the step part sandwiched between the two parallel parts that are heated to different temperatures, and as a result, to raise the temperature by heat conduction of the step part sandwiched between the two parallel parts, which has a width equivalent to the entire length of the heating part like the conventional heating coil mentioned above. This is completely different from the concept of separating or guiding the magnetic flux generated from the wound conductor in the width direction.

上記本願第1発明の段付き部材の段部近傍不等焼戻し方
法を実施するための第2発明の要旨は、 (1)軸回転する段付き部材の段部とこれに接続する両
平行部それぞれの所定長さにわたる部分とを焼戻しする
単巻回加熱コイルにおいて、 (2)当該単巻回加熱コイルにおける単巻回導体の所定
周角度部分音一方の平行部に残余周角度部分を他方の平
行部にそれぞれ対応せしめる如く分割するとともに両平
行部それぞれの所定長さに応じた導体中に形成し、 (3)当該所定周角度部分導体と残余周角度部分導体と
の端部がそれぞれの導体中方向で互いに最も離間した位
置の外周部分を結ぶ接続導体によって接続されて閉回路
に構成されてなり、 (4)段部を境に両平行部の所定長さ部分それぞれに単
位面積当り所望の異る磁束量を印加可能に設定した こと全特徴とする段付き部材の段部近傍不等焼戻し用加
熱コイルにある。
The gist of the second invention for carrying out the uneven tempering method near the step of a stepped member of the first invention of the present application is as follows: (1) The step of the stepped member that rotates on its axis and both parallel parts connected thereto. (2) In the single-turn heating coil, a predetermined circumferential angle partial of the single-turn conductor in the single-turn heating coil is applied to one parallel part and the remaining circumferential angle part to the other parallel part. (3) The ends of the predetermined circumferential angle partial conductor and the remaining circumferential angle partial conductor are divided into conductors corresponding to the respective predetermined lengths of both parallel portions; (4) A desired difference per unit area is formed in each of the predetermined length portions of both parallel portions with the step portion as the boundary. The heating coil for uneven tempering near the stepped portion of a stepped member is characterized in that the amount of magnetic flux can be applied.

本発明にか\る加熱コイルを第2図(a)〜(d)に示
す実施例に従って以下に詳述する。
The heating coil according to the present invention will be described in detail below according to the embodiment shown in FIGS. 2(a) to 2(d).

第2図(a)〜(c)に示す加熱コイルCにワークWの
小径部Sの加熱巾が犬、大径部りの加熱巾が比較的小で
あり、加熱温度がT8>TLである場合全対象としたも
のである。当該加熱コイルCにおける単巻導体は小径部
Sに所(9) 定間隙をへだてて対向する所定周角度部分の導体CSと
、大径部りに上記と同一所定間隙をへたてて対向する残
余周角度部分の導体CLと、当該導体C8およびCLi
連結する接続導体CJ−CJとから構成されている。
In the heating coil C shown in FIGS. 2(a) to (c), the heating width of the small diameter portion S of the workpiece W is narrow, the heating width of the large diameter portion is relatively small, and the heating temperature is T8>TL. This applies to all cases. The single-turn conductor in the heating coil C is located at the small diameter portion S (9) and faces the conductor CS at a predetermined circumferential angle portion with a fixed gap between them, and the conductor CS at the large diameter portion with the same predetermined gap as above. The conductor CL of the remaining circumferential angle portion and the conductor C8 and CLi
It is composed of connecting conductors CJ-CJ.

導体C8の巾は対向する小径部Sの加熱巾が犬であると
ころから犬に、捷た導体CLの1]に対向する大径部り
の加熱巾が小であるところから小に設定されることは勿
論である。接続導体CJおよびCJそれぞれは、上記導
体C8の端部と導体CLの端部とを連結するに際し、導
体CSの巾方向で導体CLから最も離間した部分の外周
部から導体CLの端部外局部へと[状、即ち鍛型に折曲
して両者を連結している。それ故導体C8と接続導体C
Jとの間にはKとして示される切込みが形成されること
となり、例えば第2図(d)において、ある瞬間に導体
C8を端部方向へ向って流れてきた電流は、矢印で示さ
几る如く、導体CLから最も離間している固視上方へ一
旦引(10) 上げられたうえ、接続導体CJi下降して導体CLに達
し、ついで当該導体CL r、(他方端方向へと流れ去
る。ここに本発明の技術思想の最も特長とする点が具現
されており、かくすることによって接続導体CJから磁
束が発生しても導体C3−CLに遮蔽さ几ワークWには
殆んど影響ゲ及ぼすことがないので、導体C8から発生
する磁束の8と導体CLから発生する磁束ρtとは非連
続かつ分離せしめられる。
The width of the conductor C8 is set to be small because the heating width of the opposing small diameter portion S is small, and the heating width of the large diameter portion facing the cut conductor CL is small. Of course. When connecting the end of the conductor C8 and the end of the conductor CL, each of the connecting conductors CJ and CJ connects the end of the conductor CL from the outer periphery of the part furthest away from the conductor CL in the width direction of the conductor CS. It is bent into a shape, that is, a forge, to connect the two. Therefore conductor C8 and connecting conductor C
A notch shown as K is formed between C8 and J. For example, in FIG. 2(d), the current flowing toward the end of conductor C8 at a certain moment is indicated by the arrow. As shown in FIG. 1, the conductor CJi is once pulled upward (10) and raised upward, and the connecting conductor CJi descends to reach the conductor CL, and then the conductor CLr (flows away toward the other end). This is where the most distinctive feature of the technical idea of the present invention is embodied, and by doing so, even if magnetic flux is generated from the connecting conductor CJ, it is shielded by the conductor C3-CL and has almost no effect on the workpiece W. Therefore, the magnetic flux 8 generated from the conductor C8 and the magnetic flux ρt generated from the conductor CL are discontinuous and separated.

また上記接続導体CJの構成は導体C8および導体CL
それぞれの巾方向における電流密度の一様化、即ち巾方
向の磁束密度の均一化をもたらす。これは以下に述べる
比較例と対照することで明確に理解できるであろう。
Furthermore, the configuration of the above-mentioned connecting conductor CJ is conductor C8 and conductor CL.
This results in uniformity of current density in each width direction, that is, uniformity of magnetic flux density in the width direction. This can be clearly understood by comparing it with the comparative example described below.

第3図(a)〜(e)K示す比較例加熱コイルC(は・
クユクWの小径部Sに対向する導体CISと大径部りに
対向する導体C“Lとはそれぞれの端部を最短距離で連
結されてなり、本発明実施加熱コイルCとは似て非なる
ものである。何故ならば、導体CISから発生する磁束
βSと導体C“Lから発生する磁束Ωtとは第3図(b
)に示すように接続部C“Jから発生する磁束0コで連
続しており、これがため最短経路を流れようとする電流
の性質上、接続部の隅部C“Aに電流が集中して流れ、
従って当該隆部C“Aの対向するワークWの肩Aに対し
て磁束が集中するばかりでなく、導体C〃Sの図示巾方
向下方側と導体C“Lの図示巾方向上方側とに電流が集
中して流れる傾向を生じ、それぞれの導体C“S−C“
Lにおける巾方向の磁束密度を不均一にし、ワークWの
被加熱部両端部近傍は殆んど昇温しない結果を招来する
ものである。従って比較例加熱コイルC〃は本発明技術
思想を具現したものではない。
Fig. 3 (a) to (e) Comparative example heating coil C (shown in K)
The conductor CIS facing the small diameter part S of Kuyuku W and the conductor C"L facing the large diameter part are connected at their respective ends by the shortest distance, and are similar to and different from the heating coil C according to the present invention. This is because the magnetic flux βS generated from the conductor CIS and the magnetic flux Ωt generated from the conductor C"L are shown in Fig. 3 (b).
), the magnetic flux generated from the connection part C'J is continuous with 0, and because of this, the current tends to flow through the shortest path, so the current concentrates at the corner part C'A of the connection part. flow,
Therefore, not only magnetic flux concentrates on the shoulder A of the workpiece W that the ridge C"A faces, but also current flows to the lower side in the width direction of the conductor C"S and the upper side of the conductor C"L in the width direction as shown. causes a tendency to concentrate and flow, and each conductor C “S-C”
This makes the magnetic flux density in the width direction in L non-uniform, resulting in almost no temperature rise in the vicinity of both ends of the heated portion of the workpiece W. Therefore, the comparative example heating coil C does not embody the technical idea of the present invention.

以上述べた本発明の実施例加熱コイルCはワークWの小
径部Sの被加熱部長路が長く、大径部りの被加熱部長さ
が比較的短かい場合であったが、第4図に示す加熱コイ
ルCFi小径部S・大径部りそれぞれの被加熱部長さが
ともに大であって、これに伴いそれぞれの被加熱部に対
向する導体中が広く、また加熱温度全Ts(TLとする
場合の実施例である。
In the heating coil C according to the embodiment of the present invention described above, the heated portion of the small diameter portion S of the workpiece W is long, and the heated portion of the large diameter portion is relatively short. The heated portions of the small diameter portion S and large diameter portion of the heating coil CFi shown in FIG. This is an example of the case.

当該加熱コイルCVcおける接続導体CJは、小径部S
に対向する導体C8の図示上方と大径部りに対向する導
体CLの図示下方との外周部、即ち導体中方向で互いに
最も離間した位置の外周部金口字型に折曲して接続して
いる。従って導体C8と接続導体CtLとの間には切込
みに、が、また導体C8と接続導体CJとの間には切込
みに2が形成されることとなる。
The connecting conductor CJ in the heating coil CVc has a small diameter portion S.
The outer periphery of the upper part of the conductor C8 facing the large diameter part and the lower part of the conductor CL facing the large diameter part, that is, the outer periphery parts of the conductor at the positions furthest apart from each other in the middle direction, are bent into a metal cap shape and connected. ing. Therefore, a notch 2 is formed between the conductor C8 and the connecting conductor CtL, and a notch 2 is formed between the conductor C8 and the connecting conductor CJ.

ところで単巻回導体を如何にして所定周角度部分導体と
残余周角度部分導体とに分割設定するかを次に説明する
Now, how to divide the single-turn conductor into a predetermined circumferential angle partial conductor and a remaining circumferential angle partial conductor will be described below.

単巻回導体には所定の電流が流れているので、当該電流
によって導体から発生する磁束はどの部分でも一様であ
る。しかしワークWのそれぞれの平行部における被加熱
部長さに応じて導体C8およびCLそれぞれの巾は設定
されているので、例えば導体1巻回を2分(13) してワークWと導体とが静止状態で対向しているならば
、被加熱面の単位面積当り印加される磁束密度は導体中
によって決まり、導体l〕が広ければ薄く、狭ければ濃
くなる。しかし、ワークWFi回転せしめておくので、
1回転する間にそれぞれの平行部の単位面積当り印加す
る磁束の量をもし同じにすれば昇温速度は同一となり、
こnと逆に異ならしめれば昇温速度は異ってくる。本発
明では前述の如く導体C8およびCLそれぞれから発生
する磁束は分離されているので云わば独立した端面型加
熱コイルと考えてよく、従って公知計算式ケ用いて導体
C8およびCLそれぞれの巾に応じて回転中のワークW
の被加熱部単位面積当り印加する磁束の量が異るように
単巻回導体の巻回周を分割して所定周角度部分導体と残
余周角度部分導体とすればよい。
Since a predetermined current flows through the single-turn conductor, the magnetic flux generated from the conductor by the current is uniform in all parts. However, since the widths of the conductors C8 and CL are set according to the length of the heated portion of each parallel part of the workpiece W, for example, one turn of the conductor is divided into two (13) and the workpiece W and the conductor are stationary. If they are facing each other in the state, the magnetic flux density applied per unit area of the heated surface is determined by the inside of the conductor; the wider the conductor, the thinner the conductor, and the narrower the conductor, the thicker the magnetic flux density. However, since the work WFi is kept rotating,
If the amount of magnetic flux applied per unit area of each parallel part during one rotation is the same, the heating rate will be the same,
Conversely, if n is made different, the rate of temperature rise will be different. In the present invention, as described above, the magnetic fluxes generated from each of the conductors C8 and CL are separated, so they can be considered as independent end-face heating coils. Workpiece W being rotated
The winding circumference of the single-turn conductor may be divided into a predetermined circumferential angle partial conductor and a remaining circumferential angle partial conductor such that the amount of magnetic flux applied per unit area of the heated portion is different.

従ってコイル設計に際しては端面方向の洩れ磁束による
加熱部の逃げについてのみ経験的な考慮を払えばよい。
Therefore, when designing the coil, it is only necessary to give empirical consideration to the escape of the heated portion due to leakage magnetic flux in the direction of the end face.

(14) また、従来加熱コイルでは、加熱温度を高くする平行部
と加熱コイル内周壁との間隙を適正間隙とし、低くする
平行部と加熱コイル内周壁との間隙を上記適正間隙より
広くしたが、どれだけ広くするかは加熱設定条件によっ
て極めてむずかしく、経験と過去のデータ等から予測決
定する以外に方法がなかった。
(14) In addition, in conventional heating coils, the gap between the parallel portion that increases the heating temperature and the inner circumferential wall of the heating coil is set as an appropriate gap, and the gap between the parallel portion that lowers the heating temperature and the inner circumferential wall of the heating coil is made wider than the appropriate gap. However, it is extremely difficult to determine how wide the heating setting should be, and there was no other way than to make a prediction based on experience and past data.

しかし、本発明では両平行部それぞれと導体との間隙を
一定とし、導体の巻回周角度から加熱温度に差をもたせ
ることができるので、極めて容易となる。なお間隙と周
角度とを併用した調整をすることも勿論可能である。
However, in the present invention, the gap between each of the parallel parts and the conductor is constant, and the heating temperature can be varied depending on the winding angle of the conductor, so it is extremely easy to do so. Note that it is of course possible to perform adjustment using both the gap and the circumferential angle.

上記構成からなる本発明加熱コイルCを用いて軸回軸す
るワークWを加熱すれば、小径部Sの被加熱部は導体C
Sから発生する磁束σSが、また大径部りの被加熱部は
導体CLから発生する磁束Ωtがそれぞれ単位面積当り
所定の異る密度をもって印加され、かつそれぞれの被加
熱部の長さ方向に偏ることなく印加されるので、両被加
熱部とも所定時間内に所定の異る温度まで加熱される。
When a rotating workpiece W is heated using the heating coil C of the present invention having the above configuration, the heated portion of the small diameter portion S is heated by the conductor C.
The magnetic flux σS generated from S and the magnetic flux Ωt generated from the conductor CL are applied to the large-diameter heated part at predetermined different densities per unit area, and in the length direction of each heated part. Since the power is applied evenly, both parts to be heated are heated to predetermined different temperatures within a predetermined time.

上記加熱に伴ってそれぞれの導体が対向する両被加熱部
に挾まれている段部は両被加熱部から熱伝導で流入する
熱を王とした昇温源とし、導体C3−CLからの洩れ磁
束による僅少な発熱によって補熱されて昇温する。かく
して段部を含むそれぞれ所定長さにわたる平行部は1シ
ヨツト加熱で温度差のある所定温度まで加熱され、当該
加熱で硬さに差のある焼戻し処理がなされることとなる
As a result of the above heating, the stepped portion of each conductor sandwiched between the opposing heated parts becomes a temperature rise source mainly due to the heat flowing in from both heated parts by thermal conduction, and leakage from the conductor C3-CL. The temperature is increased by supplementing heat by a small amount of heat generated by the magnetic flux. In this way, the parallel portions each having a predetermined length, including the stepped portions, are heated in one shot to a predetermined temperature with a difference in temperature, and this heating results in a tempering treatment with a difference in hardness.

本発明者は本発明の効果を確認するため次の実験を行っ
た。
The inventor conducted the following experiment to confirm the effects of the present invention.

実験例 (1)供試体;段付き部材・・・材質SCM415H相
当材 ○小径相当径・・・30咽σ 長さ・・・30洞 段部より20mmにわたり ネジ切りあり ○大径部 径・・・44諭ρ 長さ・・・長尺 段部より45mmにわたり スプライン加工あり 当該供試体は全長全表面に浸炭焼入れ が施され表面硬さがHRC57〜60 となっている (2)実験粂件;小径部全長をネジの山からo/)深さ
0.4 tm ’jで硬さHRC40〜36に、大径部
の段部から1011III+までをスプラインの山から
深さ0.4 tmまでを硬さHRC45にそれぞれ焼戻
しする。
Experimental example (1) Specimen: Stepped member...Material SCM415H equivalent material ○Small diameter equivalent diameter...30mm σ Length...30 Threaded over 20mm from the stepped part ○Large diameter part Diameter...・44 length ρ Length: 45 mm from the long stepped part is splined.The specimen has been carburized and quenched over its entire length and has a surface hardness of HRC 57 to 60. (2) Experimental case; Harden the entire length of the small diameter part from the thread crest to a depth of 0.4 tm 'j to a hardness of HRC 40 to 36, and harden the large diameter part from the stepped part to 1011III+ to a depth of 0.4 tm from the spline crest. Each is tempered to HRC45.

(3)実験方法;第2図に示される形状の加熱コイルを
使用した。加熱コイルの寸 法ならびに加熱条件は下記のとおりで あった。
(3) Experimental method: A heating coil having the shape shown in FIG. 2 was used. The dimensions of the heating coil and heating conditions were as follows.

加熱コイル寸法 小径部対向導体の巻回周角度・・・210゜大径部対向
導体の巻回周角度・・・150゜ただし接続部導体の巾
方向中央を基 準とした角層 (17) 加熱条件 電源出力;8KW 周波数;8KHz 力ロ熱時間; 385ec (4)実験結果;上記焼戻し後の供試体の硬さをビッカ
ース硬度計により測定し、 測定値をロックウェル硬さHRCに換 算して第5図に示す拡大断面図上に記 入した。
Heating coil dimensions: Winding circumferential angle of small-diameter opposing conductor: 210° Winding circumferential angle of large-diameter opposing conductor: 150° However, square layer (17) based on the widthwise center of the connecting conductor. Conditions Power output: 8KW Frequency: 8KHz Power and heat time: 385ec (4) Experimental results: The hardness of the specimen after tempering was measured using a Vickers hardness meter, and the measured value was converted to Rockwell hardness HRC. It was written on the enlarged cross-sectional view shown in Figure 5.

上記実験結果から、両平行部にはそれぞれ個別の加熱が
同時に施され、その結果小径部は硬さHRC40〜36
の範囲内となる焼戻しが、また大径部10橢は硬さHR
C45となる焼戻しがそれぞれ施されたことが確認され
、同時に段部の置部および肩も加熱不足およびオーバー
ヒートがなく焼戻しされたことが明瞭となり、本発明が
段部近傍の不等焼戻しに極めて効果的であることが実証
された。
From the above experimental results, both parallel parts are individually heated at the same time, and as a result, the small diameter part has a hardness of HRC 40 to 36.
The hardness of the large diameter part 10 is within the range of hardness HR.
It was confirmed that each part had been tempered to C45, and at the same time, it was clear that the resting part and shoulder of the stepped part were also tempered without insufficient heating or overheating, indicating that the present invention is extremely effective in uneven tempering near the stepped part. It has been proven to be effective.

上述のとおり、本発明は単巻回加熱コイルでありながら
、あたかも2箇の端面型加熱コ(18) イルを使う如く磁束を非連続かつ分離して平行部それぞ
れの被加熱部へ独立に作用させるという極めて画期的な
技術思想からなるので、本発明の実施によって (1)従来、段部における肩のオーバーヒートや隅部の
加熱不足全防止するための溝や鍔のある内周壁をもった
加熱コイルの設計・製作の困難さが解消され、 (2)設計・製作は両平行部それぞれの被加熱部を加熱
する端面型加熱コイルの如く計算上からめて周角度を割
出すだけで極めて容易となり、 (3)シかも、平行部それぞれを加熱温度に差金つけ、
かつそれぞれの平行部では軸方向均一に加熱することが
可能なので所望の不等焼戻しが極めて容易となり、 (4)その上、段部のオーバーヒートや加熱不足が皆無
であるので焼戻しむらが生ずることがないなど、その粛
される技術的・生産的さらには経済的な効果は顕著であ
る。
As mentioned above, although the present invention is a single-turn heating coil, the magnetic flux is discontinuous and separated, as if two end-face heating coils (18) were used, and it acts independently on the heated portion of each parallel portion. By implementing the present invention, (1) conventionally, the inner circumferential wall with grooves and flanges was used to completely prevent overheating of shoulders and insufficient heating of corners at stepped portions; The difficulty in designing and manufacturing heating coils has been resolved. (2) Designing and manufacturing is extremely easy, just by calculating the circumferential angle, as in the case of end-face heating coils that heat the heated parts of both parallel parts. (3) At the same time, the parallel parts are heated at different temperatures,
In addition, each parallel part can be heated uniformly in the axial direction, making it extremely easy to achieve the desired uneven tempering. (4) Furthermore, there is no overheating or insufficient heating of the stepped parts, so uneven tempering does not occur. The technical, production, and even economic effects of this reduction are significant.

さらに本発明の技術思想は本願が目的とする段付き部材
の段部近傍不等焼戻しとは全く逆に、回転中の両平行部
の被加熱部それぞれの単位面積当りの印加磁束量を同一
とする如く単巻回導体を分割してそれぞれの被加熱部へ
対向せしめることによって、段部にオーバーヒートや加
熱不足が生せしめることなく段部會含むそれぞれの平行
部所定長さ部分を均一加熱することも可能であり、これ
により均一焼戻しは勿論のこと均一焼入れをなしうるも
のであることも付言しておく。
Furthermore, the technical idea of the present invention is to apply the same amount of magnetic flux per unit area to each heated part of both parallel parts during rotation, which is completely contrary to the uneven tempering near the stepped part of a stepped member which is the object of the present application. By dividing the single-turn conductor and making it face each heated part, a predetermined length of each parallel part including the stepped part can be uniformly heated without causing overheating or insufficient heating of the stepped part. It should be added that this is also possible, and that this allows not only uniform tempering but also uniform quenching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明不等焼戻しの対象となる段付き部
材の正面断面図、第1図(b)i’j従米加熱コイルの
一部切り欠き正面図、第1図(c)は従来加熱コイルに
在する問題点全説明するための断面正面図、第2図(a
)〜(d)はそnぞれ本発明実施例加熱コイルの平面図
・斜視図・(a)におけるI−I線断面図および■−■
線断面図、第3図(a)〜Cc)はそnぞれ比較例加熱
コイルの斜視図・断面正面図および磁束線図、第4図は
本発明の他の実施例加熱コイルの一部断面正面図、第5
図は本発明加熱コイルによる焼戻し実験結果を示す硬さ
分布図である。 W・・・段付き部材、S、L・・・平行部、C・・・加
熱コイル、C8,CL・・・所定周角度部分導体および
残余周角度部分導体、CJ・・・接続導体。 特許出願人 高周波熱錬株式会社 代理人 弁理士 小 林 傅 (21) 第 2 図 (C) Q (J 第 3 図 (a) 第2図(d) 第 3 図 (b) 第 3 図 (c)第4図 W 第5図 箱ふらの塚さ−−−−−−0,4mm −−−−−−0
,2mm碩桿イ帖HRC\ 1 B−40 丁 40−40 10 m m 38−39 39−39 土 39−40 40−38 38−38 38−38 ” mm36−37 + 36−37 36−36 37−37 36−36 36−36 38−38 10 m m 37 3 s +0−′“394545 38−38 37−38 43−43
Fig. 1(a) is a front cross-sectional view of a stepped member to be subjected to uneven tempering of the present invention, Fig. 1(b) is a partially cutaway front view of the i'j subordinate heating coil, Fig. 1(c) is a cross-sectional front view for explaining all the problems that exist in conventional heating coils, and Fig. 2 (a)
) to (d) are respectively a plan view, a perspective view, a sectional view taken along line II in (a), and ■-■ of the heating coil according to the embodiment of the present invention.
3(a) to Cc) are respectively a perspective view, a cross-sectional front view, and a magnetic flux line diagram of a heating coil of a comparative example, and FIG. 4 is a part of a heating coil of another example of the present invention. Sectional front view, 5th
The figure is a hardness distribution diagram showing the results of a tempering experiment using the heating coil of the present invention. W...Stepped member, S, L...Parallel portion, C...Heating coil, C8, CL...Predetermined circumferential angle partial conductor and remaining circumferential angle partial conductor, CJ...Connecting conductor. Patent applicant Koshuha Netsuren Co., Ltd. Representative Patent attorney Fu Kobayashi (21) Figure 2 (C) Q (J Figure 3 (a) Figure 2 (d) Figure 3 (b) Figure 3 (c) ) Fig. 4 W Fig. 5 Box Furano Mound Size---0.4mm ---------0
, 2mm HRC 1 B-40 40-40 10 mm 38-39 39-39 39-40 40-38 38-38 38-38 ” mm36-37 + 36-37 36-36 37 -37 36-36 36-36 38-38 10 mm 37 3 s +0-'394545 38-38 37-38 43-43

Claims (1)

【特許請求の範囲】 1、)段付き部材の段部を境としてこれに接続する一方
の平行部の所定長さ部分と他方の平行部の所定長さ部分
とに温度差をつけて同時に焼戻しを施す場合において、
単巻回加熱コイルにおける導体の所定周角度部分は一方
の平行部に、残余周角度部分は他方の平行部にそれぞれ
対向させるとともに、当該所定周角度部分導体から発生
する磁束と残余周角度部分導体から発生する磁束と全部
材に対して非連続かつ分離とすることによって、軸回転
する段付き部材の両平行部それぞれの所定長さ部分を対
向する各周角度部分導体で個別に異る昇温速度をもって
加熱し、段部は加熱される平行部からの熱伝導金主たる
昇温源として昇温せしめるようにしたことを特徴とする
段付き部材の段部近傍不等戻し方法。 2、)平行部それぞれの所定長さ部分を異る昇温速度を
もって加熱する所定周角度部分の導体と残余周角度部分
の導体との周角度全1それぞれの導体から発生する磁束
が対向する回転中のそれぞれの所定長さ部分に単位面積
当り異る磁束量で印加される如く、それぞれの導体中に
応じて設定することを特徴とする特許請求の範囲第1項
記載の段付き部材の段部近傍不等焼戻し方法。 3、)軸回転する段付き部材の段部とこれに接続する両
平行部それぞれの所定長さにわたる部分とを焼戻しする
単巻回加熱コイルにおいて、当該単巻回加熱コイルにお
ける単巻回導体の所定周角度部分を一方の平行部に、残
余周角度部分全他方の平行部にそれぞれ対応せしめる如
く分割するとともに両平行部それぞれの所定長さに応じ
た導体中に形成し、当該所定周角度部分導体と残余周角
度部分導体との端部がそれぞれの導体中方向で互いに最
も離間した位置の外周部分を結ぶ接続導体によって接続
式几て閉回路に構成されてなり、段部分境に両平行部の
所定長さ部分それぞれに単位面積当り所望の異る磁束量
を印加可能に設定したことを特徴とする段付き部材の段
部近傍不等焼戻し用加熱コイル。
[Claims] 1.) Simultaneously tempering with a temperature difference between a predetermined length portion of one parallel portion and a predetermined length portion of the other parallel portion connected to the step portion of the stepped member. When applying
In a single-turn heating coil, the predetermined circumferential angle portion of the conductor faces one parallel portion, and the remaining circumferential angle portion faces the other parallel portion, and the magnetic flux generated from the predetermined circumferential angle portion conductor and the remaining circumferential angle portion conductor By making the magnetic flux generated from the magnetic flux discontinuous and separate for all members, the temperature rises individually in each circumferential angle portion conductor facing a predetermined length portion of both parallel parts of the stepped member that rotates. 1. A method for unevenly returning a step part of a stepped member, characterized in that the step part is heated at a high speed, and the step part is heated as a main temperature increase source from the parallel part heated by heat conduction. 2.) Rotation in which the magnetic fluxes generated from the conductors at each of the circumferential angles of the conductor at the predetermined circumferential angle portion and the conductor at the remaining circumferential angle portion are opposed, heating the predetermined length portions of each parallel portion at different heating rates. The steps of the stepped member according to claim 1 are set in accordance with the inside of each conductor so that different amounts of magnetic flux per unit area are applied to each predetermined length portion of the step member. Non-uniform tempering method. 3.) In a single-turn heating coil that tempers the step part of the stepped member that rotates on its axis and the predetermined length portions of both parallel parts connected thereto, the single-turn conductor in the single-turn heating coil The predetermined circumferential angle portion is divided so that it corresponds to one parallel portion, and the remaining circumferential angle portion corresponds to the other parallel portion, respectively, and is formed into a conductor according to a predetermined length of each of both parallel portions, and the predetermined circumferential angle portion is The end portions of the conductor and the remaining circumferential angle portion conductor are configured into a connected closed circuit by connecting conductors that connect the outer circumferential portions of the conductors at the positions furthest apart from each other in the middle direction of each conductor, and both parallel portions are formed at the step boundary. 1. A heating coil for uneven tempering near a stepped portion of a stepped member, characterized in that a desired different amount of magnetic flux can be applied per unit area to each predetermined length portion of the stepped member.
JP58114343A 1983-06-27 1983-06-27 Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part Pending JPS609822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58114343A JPS609822A (en) 1983-06-27 1983-06-27 Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114343A JPS609822A (en) 1983-06-27 1983-06-27 Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part

Publications (1)

Publication Number Publication Date
JPS609822A true JPS609822A (en) 1985-01-18

Family

ID=14635386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114343A Pending JPS609822A (en) 1983-06-27 1983-06-27 Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part

Country Status (1)

Country Link
JP (1) JPS609822A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171183U (en) * 1986-04-18 1987-10-30
JPS633098U (en) * 1986-06-25 1988-01-09
JPS63153499U (en) * 1987-03-30 1988-10-07
US5082567A (en) * 1990-11-08 1992-01-21 Occidental Chemical Corporation Regeneration of cationic exchange resins
JPH04206292A (en) * 1990-11-29 1992-07-28 Fuji Denshi Kogyo Kk Coil body for tempering
CN103740895A (en) * 2013-12-16 2014-04-23 浙江欧迪恩传动科技股份有限公司 Constant velocity universal joint bell-shaped case quenching inductor
JP2015220062A (en) * 2014-05-16 2015-12-07 住友電工焼結合金株式会社 High-frequency heating coil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171183U (en) * 1986-04-18 1987-10-30
JPS633098U (en) * 1986-06-25 1988-01-09
JPS63153499U (en) * 1987-03-30 1988-10-07
US5082567A (en) * 1990-11-08 1992-01-21 Occidental Chemical Corporation Regeneration of cationic exchange resins
JPH04206292A (en) * 1990-11-29 1992-07-28 Fuji Denshi Kogyo Kk Coil body for tempering
CN103740895A (en) * 2013-12-16 2014-04-23 浙江欧迪恩传动科技股份有限公司 Constant velocity universal joint bell-shaped case quenching inductor
JP2015220062A (en) * 2014-05-16 2015-12-07 住友電工焼結合金株式会社 High-frequency heating coil

Similar Documents

Publication Publication Date Title
KR101158697B1 (en) Multi frequency heat treatment of a workpiece by induction heating
EP2160264A1 (en) Induction coil, method and device for the inductive heating of metal components
JPS609822A (en) Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part
US2556243A (en) Means and method of simultaneous hardening of opposite surfaces of thin metallic members
JP2012515430A (en) Induction heating treatment of workpieces with complex shapes
US20070068911A1 (en) Device and method for drying electrode coating
JP2000068043A (en) Induction heating coil of tapered body
JP5096065B2 (en) High frequency induction heating coil and high frequency induction heating method
US2692934A (en) High-frequency inductor arrangement for controlling the induced heat pattern
JPS609820A (en) Method and heating coil for uniform heating of step part of stepped member and its neighboring part
JPS6273592A (en) Secondary inductor combination type induction heating coil for heating crankshaft with small shoulder
JP5907332B2 (en) Crankshaft induction hardening method and induction induction heating coil
JP2007294466A (en) High-frequency induction heating method
DE19708276A1 (en) Device and method for casting strips of metal, in particular steel, in two-roll strip casting machines
US3144365A (en) Method of heat treating elongated steel articles
JP6812999B2 (en) Induction heating device for metal strips, manufacturing method for metal strips, and manufacturing method for alloyed hot-dip galvanized steel sheets
JPS6347766B2 (en)
JPH108130A (en) Method for controlling quenching depth
JPH0136907Y2 (en)
JPS5817244B2 (en) Gear induction hardening method
JPH0114288B2 (en)
US7645964B2 (en) High frequency heat treatment method for fine bottom-closed hole
JP2623254B2 (en) Heating coil for hardening the peripheral one shot
JP2006009118A (en) Method for producing iron-based sintered mechanical component
JP4557240B2 (en) Induction hardening method and gear