JP2006009118A - Method for producing iron-based sintered mechanical component - Google Patents

Method for producing iron-based sintered mechanical component Download PDF

Info

Publication number
JP2006009118A
JP2006009118A JP2004190908A JP2004190908A JP2006009118A JP 2006009118 A JP2006009118 A JP 2006009118A JP 2004190908 A JP2004190908 A JP 2004190908A JP 2004190908 A JP2004190908 A JP 2004190908A JP 2006009118 A JP2006009118 A JP 2006009118A
Authority
JP
Japan
Prior art keywords
iron
inner diameter
based sintered
hole
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190908A
Other languages
Japanese (ja)
Inventor
Junya Sunada
純也 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2004190908A priority Critical patent/JP2006009118A/en
Publication of JP2006009118A publication Critical patent/JP2006009118A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Gears, Cams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the degradation of production yield rate the deterioration of productivity due to a resizing process by providing a method for producing an iron-based sintered hanical component by which the deterioration of the dimensional precision is suppressedd by offsetting the influence to the dimensional precision with local heating. <P>SOLUTION: The inner diameter hole 3 in the iron-based sintered mechanical component 10 obtained by sintering is corrected into a reverse-tapered hole having the larger inner diameter at the sticking-out part in the diameter direction, that is, at the tooth part 2 side and thereafter, a high frequency-hardening and a tempering to the tooth part 2 are applied so as to approach to the straight-shape to the inner diameter hole 3 after heat-treatment by utilizing the difference of shrinkage amount at each part in the axial direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、円筒軸部の一端側外周に高周波焼き入れして強化する歯部や鍔などの径方向突き出し部を備えている鉄系焼結機械部品を、矯正工程を増加させずに精度良く製造できる鉄系焼結機械部品の製造方法に関する。   This invention is an iron-based sintered machine component having a toothed portion and a radial protruding portion such as a flaw strengthened by induction hardening on the outer periphery of one end side of a cylindrical shaft portion with high accuracy without increasing the correction process. The present invention relates to a method for manufacturing iron-based sintered machine parts that can be manufactured.

首記の鉄系焼結機械部品の代表的なものとして、例えば、ボス部を有する焼結スプロケットや焼結歯車などがある。この焼結スプロケットや焼結歯車は、焼結後にサイジングによる寸法矯正を行い、その後、一端外周の歯部の高周波焼き入れと焼き戻しを実施している。   Typical examples of the iron-based sintered machine parts mentioned above include sintered sprockets and sintered gears having a boss portion. These sintered sprockets and sintered gears are subjected to dimensional correction by sizing after sintering, and then induction hardening and tempering of teeth on the outer periphery of one end are performed.

寸法矯正は、内径孔については、その孔をストレートコアでしごく方法で行われる。その寸法矯正後の鉄系焼結機械部品10の断面の一例を図8(a)に示す。   The dimension correction is performed by a method of squeezing the inner diameter hole with a straight core. An example of a cross section of the iron-based sintered machine part 10 after the dimension correction is shown in FIG.

図示の鉄系焼結機械部品10は、焼結スプロケットや焼結歯車であって、ボス部(円筒軸部)1の一端外周に歯部2を有し、寸法矯正された内径孔3はストレート孔になっている。   An iron-based sintered machine component 10 shown in the figure is a sintered sprocket or sintered gear, and has a tooth portion 2 on one outer periphery of a boss portion (cylindrical shaft portion) 1, and the calibrated inner diameter hole 3 is straight. It is a hole.

この鉄系焼結機械部品10は、寸法矯正後に歯部2を強化するための熱処理、即ち、高周波焼き入れと焼き戻しを実施する。その焼き入れと焼き戻しでの加熱は、歯部2のみについて行われる。この局部加熱が原因で、熱処理後の鉄系焼結機械部品10に局部的な寸法変化が起こり(加熱した部分が収縮する)、図8(b)に示すように、内径孔3にテーパがつく。   The iron-based sintered machine component 10 performs heat treatment for strengthening the tooth portion 2 after dimensional correction, that is, induction hardening and tempering. The heating by the quenching and tempering is performed only for the tooth portion 2. Due to this local heating, a local dimensional change occurs in the iron-based sintered machine part 10 after the heat treatment (the heated portion shrinks), and as shown in FIG. I will.

この寸法変化のために要求寸法精度を満たせなくなることがあり、製造の歩留り(良品率)が悪化する。また、熱処理後の寸法が要求精度から外れた場合には、熱処理後に再サイジングを行って不良品を減らしているが、この方法を採ると生産性が悪くなり、コストにも影響が出てくる。   Due to this dimensional change, the required dimensional accuracy may not be satisfied, and the manufacturing yield (non-defective product rate) deteriorates. In addition, if the dimensions after heat treatment deviate from the required accuracy, re-sizing is performed after heat treatment to reduce defective products, but if this method is used, productivity will deteriorate and cost will be affected. .

なお、下記特許文献1は、鉄系焼結機械部品の安定した矯正を可能ならしめるために、サイジングに用いるダイの内面やコアロッドの外面に複数の突起を設けてその突起で被矯正体をしごくことを開示しているが、この方法は、上記の問題の解決策とはなり得ない。
特開平8−215756号公報
In Patent Document 1 below, in order to enable stable correction of iron-based sintered machine parts, a plurality of protrusions are provided on the inner surface of a die used for sizing and the outer surface of a core rod, and the object to be corrected is ironed by the protrusions. However, this method cannot be a solution to the above problem.
JP-A-8-215756

この発明は、局部加熱による寸法精度への影響が相殺されて内径孔の寸法精度悪化が抑えられる鉄系焼結機械部品の製造方法を提供して、製造の歩留りの悪化、再サイジングを行うことによる生産性の悪化をなくすことを課題としている。   The present invention provides a method for manufacturing an iron-based sintered machine part in which the influence on the dimensional accuracy due to local heating is offset and the deterioration of the dimensional accuracy of the inner diameter hole is suppressed, and the manufacturing yield is deteriorated and resizing is performed. The problem is to eliminate the deterioration of productivity caused by

上記の課題を解決するため、この発明においては、原料粉末を混合する工程、混合した原料粉末を圧粉成形して成形体を得る工程及び成形体を焼結する工程を経て円筒軸部の一端側外周に径方向突き出し部を有する鉄系焼結機械部品を作製した後、この鉄系焼結機械部品の内径孔を前記突き出し部のある側が内径大となるテーパ孔に矯正する工程と、前記径方向突き出し部の高周波焼き入れと焼き戻しを行う熱処理工程とを経る鉄系焼結機械部品の製造方法を提供する。   In order to solve the above-mentioned problems, in the present invention, one end of the cylindrical shaft portion is subjected to a step of mixing raw material powder, a step of compacting the mixed raw material powder to obtain a molded body, and a step of sintering the molded body. After producing an iron-based sintered machine component having a radially protruding portion on the outer periphery, correcting the inner diameter hole of the iron-based sintered machine component into a tapered hole having a larger inner diameter on the side having the protruding portion; and Provided is a method for manufacturing an iron-based sintered machine part that undergoes induction hardening and tempering of a radially protruding portion.

内径孔の矯正は、機械加工でも可能であるが、サイジングによる矯正が効率的で好ましい。   The correction of the inner diameter hole can be performed by machining, but correction by sizing is efficient and preferable.

鉄系焼結機械部品の代表的なものとしては、ボス部の一端側外周に歯部を有する焼結スプロケットや焼結歯車などがある。これらの部品は、量産されることが多く、その量産品にこの発明を適用すると特に大きな効果を期待できる。焼結スプロケットや焼結歯車は、ボス部の内径孔をテーパ孔に矯正し、その後、前記歯部の高周波焼き入れと焼き戻しを行う。   Typical iron-based sintered machine parts include sintered sprockets and sintered gears having teeth on the outer periphery of one end of the boss. These parts are often mass-produced, and a particularly great effect can be expected when the present invention is applied to the mass-produced products. In the sintered sprocket and the sintered gear, the inner diameter hole of the boss portion is corrected to a tapered hole, and then the induction hardening and tempering of the tooth portion are performed.

この発明においては、鉄系焼結機械部品の内径孔を熱処理によって寸法変化を起こす側で大径となるテーパ孔に矯正しており、熱処理による寸法収縮量がテーパ孔の孔径差によって吸収される。従って、熱処理後の内径孔はほぼストレートになり、その孔の寸法精度が向上して製造の歩留りが向上する。また、内径孔の寸法精度向上により熱処理後の再サイジングが不要になって生産性も向上する。   In this invention, the inner diameter hole of the iron-based sintered machine part is corrected to a tapered hole having a larger diameter on the side where the dimensional change is caused by the heat treatment, and the dimensional shrinkage due to the heat treatment is absorbed by the difference in the hole diameter of the tapered hole. . Therefore, the inner diameter hole after the heat treatment becomes almost straight, and the dimensional accuracy of the hole is improved and the manufacturing yield is improved. Further, the improvement in the dimensional accuracy of the inner diameter hole eliminates the need for resizing after the heat treatment, thereby improving the productivity.

以下、この発明の実施の形態を添付図面の図1乃至図7に基づいて説明する。図1の10は、ボス部1の一端側外周に歯部2を有する焼結スプロケットや焼結歯車などの鉄系焼結機械部品である。この鉄系焼結機械部品10は、原料粉末を混合する工程、混合した原料粉末を圧粉成形して成形体を得る工程及び成形体を焼結する工程を経て作製される。   Embodiments of the present invention will be described below with reference to FIGS. 1 to 7 of the accompanying drawings. Reference numeral 10 in FIG. 1 denotes an iron-based sintered machine component such as a sintered sprocket or a sintered gear having a tooth portion 2 on one end side outer periphery of the boss portion 1. The iron-based sintered machine part 10 is manufactured through a process of mixing raw material powder, a process of compacting the mixed raw material powder to obtain a molded body, and a process of sintering the molded body.

この鉄系焼結機械部品10の内径孔3は、焼結を完了した段階ではストレート孔になっている。そこでこの内径孔3を歯部2のある側が大径となる図1(a)の如きテーパ孔(図はテーパの勾配を誇張して示している)に矯正する。   The inner diameter hole 3 of the iron-based sintered machine part 10 is a straight hole when the sintering is completed. Therefore, the inner diameter hole 3 is corrected to a tapered hole as shown in FIG. 1 (a) in which the side where the tooth portion 2 is located has a larger diameter (the taper gradient is exaggerated).

孔の矯正は、機械加工では生産性が悪いので、サイジングで行う。焼結後の鉄系焼結機械部品10をダイ(図示せず)にセットし、この状態で外周にテーパをつけたコアロッドを内径孔3に圧入し、孔面をコアロッドでしごいてストレート孔をテーパ孔に変化させる。   Hole correction is performed by sizing because productivity is poor in machining. The sintered iron-based sintered machine part 10 is set on a die (not shown), and in this state, a core rod having a tapered outer periphery is press-fitted into the inner diameter hole 3, and the hole surface is squeezed with the core rod to obtain a straight hole. Is changed to a tapered hole.

このようにして矯正した鉄系焼結機械部品10を、熱処理に供して歯部2の高周波焼き入れと焼き戻しを行う。高周波焼き入れは、図2に示すような高周波誘導加熱装置20を用いて行う。図示の高周波誘導加熱装置20は、高周波誘導加熱用コイル21と冷却液の噴射孔22aを有する環状の冷却ジャケット22とを組み合わせたものであり、図3に示すように、回転機能と昇降機能を有するワークテーブル23で支えた鉄系焼結機械部品10を上昇させて高周波誘導加熱装置20の内側に進入させ、高周波誘導加熱用コイル21に通電して鉄系焼結機械部品10を回転させながら歯部2を所定温度になるまで加熱する。次に、冷却ジャケット22の噴射孔22aから冷却液を噴射して歯部2を所定の温度になるまで適切な速度で冷却し、焼き入れを完了する。   The iron-based sintered machine part 10 thus corrected is subjected to heat treatment to induction-harden and temper the tooth portion 2. Induction hardening is performed using a high-frequency induction heating apparatus 20 as shown in FIG. The illustrated high-frequency induction heating device 20 is a combination of a high-frequency induction heating coil 21 and an annular cooling jacket 22 having a coolant injection hole 22a. As shown in FIG. The iron-based sintering machine component 10 supported by the work table 23 is lifted to enter the inside of the high-frequency induction heating device 20, and the high-frequency induction heating coil 21 is energized while rotating the iron-based sintering machine component 10. The tooth part 2 is heated until it reaches a predetermined temperature. Next, cooling liquid is injected from the injection hole 22a of the cooling jacket 22 to cool the tooth portion 2 at an appropriate speed until the temperature reaches a predetermined temperature, and the quenching is completed.

この後、鉄系焼結機械部品10を後段の工程に搬送して焼き戻しを行う。その焼き戻しは、部品を炉に入れて加熱する炉中焼き戻し法で行うこともできるが、設備のライン化が図れる誘導焼き戻し法で行うと好ましい。誘導焼き戻しは、低周波誘導加熱用コイルの内側にワークテーブルで支えた部品を進入させ、その部品を回転させながら目的部位の誘導加熱を行うものである。この誘導焼き戻しでの加熱後の冷却は、空冷でよい。   Thereafter, the iron-based sintered machine part 10 is conveyed to a subsequent process and tempered. The tempering can be performed by an in-furnace tempering method in which a part is put in a furnace and heated, but it is preferable to perform the tempering by an induction tempering method that can achieve a line of equipment. In the induction tempering, a part supported by a work table is entered inside a low frequency induction heating coil, and the target part is induction heated while rotating the part. The cooling after heating in this induction tempering may be air cooling.

以上の熱処理を行うと、サイジングによってテーパ勾配を持つように矯正された内径孔3が、図1(b)に示すようにほぼストレートになり、孔の寸法精度が向上して製造の歩留りが良くなる。また、そのために、熱処理後の再サイジングが不要になる。   When the above heat treatment is performed, the inner diameter hole 3 corrected so as to have a taper gradient by sizing becomes almost straight as shown in FIG. 1B, and the dimensional accuracy of the hole is improved and the production yield is improved. Become. For this reason, re-sizing after heat treatment becomes unnecessary.

−実施例−
この発明の効果を評価するために、2wt%Cu−0.8wt%C−残Feの組成の鉄系焼結合金で形成された図4の焼結スプロケットをこの発明の方法で製造した。
-Example-
In order to evaluate the effect of the present invention, the sintered sprocket of FIG. 4 formed of an iron-based sintered alloy having a composition of 2 wt% Cu-0.8 wt% C-residual Fe was manufactured by the method of the present invention.

ボス部1の一端外周に歯部2を有し、また、内径孔3の内面に5本のリブ4を定ピッチで設けたこの焼結スプロケットの設計寸法は、歯先径:127mm、歯底径:116mm、ボス部径:87mm、内径孔13の大径部径d2 :80mm、小径部径d1 :54mm、全長(図5のL):20mm、歯部厚み(図5のt):9mm、歯数:42枚である。また、ボス部1の成形密度:6.95g/cm3 、歯部2とリブ4の成形密度:7.0g/cm3 である。 The design dimensions of this sintered sprocket having a tooth portion 2 on one end outer periphery of the boss portion 1 and having five ribs 4 provided at a constant pitch on the inner surface of the inner diameter hole 3 are a tooth tip diameter: 127 mm, a tooth bottom Diameter: 116 mm, boss part diameter: 87 mm, large diameter part diameter d 2 of the inner diameter hole 13: 80 mm, small diameter part diameter d 1 : 54 mm, full length (L in FIG. 5): 20 mm, tooth thickness (t in FIG. 5) : 9 mm, number of teeth: 42. The molding density of the boss part 1 is 6.95 g / cm 3 , and the molding density of the tooth part 2 and the rib 4 is 7.0 g / cm 3 .

この焼結スプロケットを、焼結後にテーパコアでサイジングして内径孔3をテーパ孔に矯正した。テーパコアは、長さ10mm当たりの外径変化量を、内径孔の小径部成形部については0.070mm、大径部成形部については0.074mmにしたものを用いた。 長さ10mm当たりのテーパの大きさは、高周波熱処理することによる寸法変化量を30個の平均値から求めて、サイジング寸法を決定した。   The sintered sprocket was sized with a tapered core after sintering to correct the inner diameter hole 3 into a tapered hole. As the taper core, the outer diameter change amount per 10 mm in length was set to 0.070 mm for the small diameter portion molding portion of the inner diameter hole and 0.074 mm for the large diameter portion molding portion. The size of the taper per 10 mm length was determined by determining the amount of dimensional change due to high-frequency heat treatment from the average value of 30 pieces.

矯正後の焼結スプロケットの歯部2を、高周波誘導加熱装置を用いて焼き入れし、その後さらに誘導焼き戻しを行った。   The teeth 2 of the sintered sprocket after correction were quenched using a high frequency induction heating device, and then induction tempering was further performed.

こうして得られた焼結スプロケットの内径孔の小径部と大径部の軸方向各部の寸法変化を調べた。図5は、測定位置の説明図である。鍔面(外周に歯部を形成した鍔の端面)5を高さ0の起点とし、ここから軸方向に2mm離れた位置を鍔面からの高さ2mm、4mm離れた位置を鍔面からの高さ4mmとして軸方向各部の寸法変化を鍔面5からの高さ18mmの位置まで2mm間隔で測定した。   The dimensional change of each axial portion of the small diameter portion and large diameter portion of the inner diameter hole of the sintered sprocket thus obtained was examined. FIG. 5 is an explanatory diagram of the measurement position. The ridge surface (end surface of the ridge with teeth formed on the outer periphery) 5 is the starting point of height 0, and the position 2 mm away from this in the axial direction is 2 mm from the ridge surface, and the position 4 mm away from the ridge surface The dimensional change of each part in the axial direction with a height of 4 mm was measured at intervals of 2 mm from the flange surface 5 to a position of height 18 mm.

その結果を図6、図7に示す。図6、図7は試料数30個平均のデータであって、図中Aは矯正前の焼結体の内径孔の寸法変化、Bは矯正に用いたテーパコアの寸法変化、Cは矯正後の内径孔の寸法変化、Dは孔の矯正と歯部の熱処理とを施した後の内径孔の寸法変化を各々示している。BとCの同一測定点における寸法差は、サイジング後のスプリングバックによるものである。   The results are shown in FIGS. 6 and 7 are data on the average number of 30 samples, where A is the dimensional change of the inner diameter hole of the sintered body before correction, B is the dimensional change of the taper core used for correction, and C is the value after correction. The dimensional change of the inner diameter hole, D, shows the dimensional change of the inner diameter hole after the hole correction and the tooth part heat treatment. The dimensional difference at the same measurement point of B and C is due to the spring back after sizing.

このケースでの内径孔の寸法規格は、小径部:φ54+0.06/−0、大径部:φ80±0.04であり、その範囲を図6、図7に縦の太線で示した。これらの図からわかるように、熱処理後の内径孔はほぼストレートになり、規格寸法内に収まっている。   The dimensional standard of the inner diameter hole in this case is a small diameter portion: φ54 + 0.06 / −0 and a large diameter portion: φ80 ± 0.04, and the range is shown by vertical thick lines in FIGS. As can be seen from these figures, the inner diameter hole after the heat treatment is almost straight and is within the standard size.

なお、熱処理前の内径孔の矯正をストレートコアで行う従来の方法では、例えば、内径孔の大径部について、鍔面5からの高さ2mmの位置での熱処理後寸法を規格内に収めようとすると、鍔面からの高さ18mmの位置での熱処理後寸法が規格から外れ、また、鍔面からの高さ18mmの位置での熱処理後寸法を規格内に収めようとすると、鍔面からの高さ2mmの位置での熱処理後寸法が規格から外れる。   In the conventional method of correcting the inner diameter hole before the heat treatment with the straight core, for example, the post-heat treatment dimension at the position of 2 mm in height from the flange surface 5 is kept within the standard for the large diameter portion of the inner diameter hole. Then, the dimension after heat treatment at the position of 18 mm in height from the collar surface is out of the standard, and if the dimension after heat treatment at the position of 18 mm in height from the collar surface is within the standard, The dimension after heat treatment at the position of 2 mm in height is out of the standard.

(a)この発明の方法で内径孔を矯正した鉄系焼結機械部品の断面図、(b)図1(a)の鉄系焼結機械部品の熱処理後の断面図(A) Cross-sectional view of iron-based sintered machine part whose inner diameter hole is corrected by the method of the present invention, (b) Cross-sectional view after heat treatment of iron-based sintered machine part of FIG. 1 (a) 高周波誘導加熱装置の概要を示す斜視図A perspective view showing an outline of a high-frequency induction heating device 高周波誘導加熱装置での歯部の加熱状態を示す断面図Sectional drawing which shows the heating state of the tooth | gear part in a high frequency induction heating apparatus 評価試験に用いた焼結スプロケットの正面図Front view of sintered sprocket used for evaluation test 寸法測定位置の説明図Illustration of dimension measurement position 内径孔の小径部の寸法変化の評価試験結果を示す図The figure which shows the evaluation test result of the dimensional change of the small diameter part of an internal diameter hole 内径孔の大径部の寸法変化の評価試験結果を示す図The figure which shows the evaluation test result of the dimensional change of the large diameter part of an internal diameter hole (a)従来の方法で内径孔を矯正した鉄系焼結機械部品の断面図、(b)図8(a)の鉄系焼結機械部品の熱処理後の断面図(A) Cross-sectional view of an iron-based sintered machine part whose inner diameter hole has been corrected by a conventional method, (b) Cross-sectional view after heat treatment of the iron-based sintered machine part of FIG. 8 (a)

符号の説明Explanation of symbols

1 ボス部
2 歯部
3 内径孔
4 リブ
5 鍔面
10 鉄系焼結機械部品
20 高周波誘導加熱装置
21 高周波誘導加熱用コイル
22 冷却ジャケット
22a 噴射孔
DESCRIPTION OF SYMBOLS 1 Boss part 2 Tooth part 3 Inner diameter hole 4 Rib 5 Face 10 Iron-type sintering machine component 20 High frequency induction heating apparatus 21 High frequency induction heating coil 22 Cooling jacket 22a Injection hole

Claims (3)

原料粉末を混合する工程、混合した原料粉末を圧粉成形して成形体を得る工程及び成形体を焼結する工程を経て円筒軸部の一端側外周に径方向突き出し部を有する鉄系焼結機械部品を作製した後、この鉄系焼結機械部品の内径孔を前記突き出し部のある側が内径大となるテーパ孔に矯正する工程と、前記径方向突き出し部の高周波焼き入れと焼き戻しを行う熱処理工程とを経る鉄系焼結機械部品の製造方法。   Iron-based sintering having a radially protruding portion on the outer periphery of one end of the cylindrical shaft through a step of mixing raw material powder, a step of compacting the mixed raw material powder to obtain a molded body, and a step of sintering the molded body After the machine part is manufactured, a process of correcting the inner diameter hole of the iron-based sintered machine part into a tapered hole having a larger inner diameter on the side where the protruding part is provided, and induction hardening and tempering of the radial protruding part are performed. A method of manufacturing an iron-based sintered machine part that undergoes a heat treatment process. 前記内径孔の矯正をサイジングによって行う請求項1に記載の鉄系焼結機械部品の製造方法。   The method for manufacturing an iron-based sintered machine part according to claim 1, wherein the correction of the inner diameter hole is performed by sizing. 鉄系焼結機械部品が、ボス部の一端側外周に歯部を有する焼結スプロケットまたは焼結歯車であり、この焼結スプロケットまたは焼結歯車のボス部の内径孔をテーパ孔に矯正し、その後、前記歯部の高周波焼き入れと焼き戻しを行う請求項1又は2に記載の鉄系焼結機械部品の製造方法。   The iron-based sintered machine part is a sintered sprocket or sintered gear having a tooth portion on one end side outer periphery of the boss portion, and the inner diameter hole of the boss portion of the sintered sprocket or sintered gear is corrected to a taper hole, Then, the manufacturing method of the iron-type sintered machine part of Claim 1 or 2 which performs induction hardening and tempering of the said tooth | gear part.
JP2004190908A 2004-06-29 2004-06-29 Method for producing iron-based sintered mechanical component Pending JP2006009118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190908A JP2006009118A (en) 2004-06-29 2004-06-29 Method for producing iron-based sintered mechanical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190908A JP2006009118A (en) 2004-06-29 2004-06-29 Method for producing iron-based sintered mechanical component

Publications (1)

Publication Number Publication Date
JP2006009118A true JP2006009118A (en) 2006-01-12

Family

ID=35776678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190908A Pending JP2006009118A (en) 2004-06-29 2004-06-29 Method for producing iron-based sintered mechanical component

Country Status (1)

Country Link
JP (1) JP2006009118A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298172A (en) * 2007-05-31 2008-12-11 Sumitomo Denko Shoketsu Gokin Kk Sintered metal sprocket having mark on side surface
CN105312583A (en) * 2014-08-04 2016-02-10 吴雯雯 High-performance powder metallurgy gear convenient to assemble
CN114029514A (en) * 2021-12-15 2022-02-11 江阴全华丰精锻有限公司 Gear inner hole drum shape optimization method
JPWO2022123715A1 (en) * 2020-12-10 2022-06-16

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298172A (en) * 2007-05-31 2008-12-11 Sumitomo Denko Shoketsu Gokin Kk Sintered metal sprocket having mark on side surface
CN105312583A (en) * 2014-08-04 2016-02-10 吴雯雯 High-performance powder metallurgy gear convenient to assemble
JPWO2022123715A1 (en) * 2020-12-10 2022-06-16
JP7330427B2 (en) 2020-12-10 2023-08-22 公益財団法人応用科学研究所 Gears and their manufacturing method
CN114029514A (en) * 2021-12-15 2022-02-11 江阴全华丰精锻有限公司 Gear inner hole drum shape optimization method
CN114029514B (en) * 2021-12-15 2023-12-08 江阴全华丰精锻有限公司 Drum-shaped optimization method for inner hole of gear

Similar Documents

Publication Publication Date Title
US8529711B2 (en) Induction heat treatment method, induction heat treatment installation and induction-heat-treated product
US20080206497A1 (en) Method of manufacturing sleeve for fluid-dynamic bearing and sleeve manufactured by the method
DE102012212416A1 (en) Method and device for producing a rotor for an induction motor
JP2006009118A (en) Method for producing iron-based sintered mechanical component
KR102015643B1 (en) Heater apparatus
JP2013124416A (en) Method for manufacturing bearing ring of rolling bearing
JP5584935B2 (en) Induction hardening jig
EP3978163B1 (en) Electromagnetic vibration stirring device of semi-solid high pressure casting equipment
CN110508822A (en) A kind of gear ring preparation process
CN111057832A (en) Heat treatment deformation control method for spiral bevel gear
JPS609822A (en) Method and heating coil for non-uniform tempering of step part of stepped member and its neighboring part
JPS63137125A (en) Method for hardening crank shaft
JP2006219706A (en) Heat-treated iron based sintered component and method for producing the same
CN107775002A (en) A kind of method for avoiding rotating shuttle rack from being collapsed when sintering
KR101402223B1 (en) method for processing of LM guide rail
JP2007039725A (en) Partial quenching method for boss-fitted work, and quenched boss-fitted component
CN106854686A (en) A kind of shaping methods of ultrahigh-strength steel thin-wall housing quenching distortion
JP2003191288A (en) Plastic molded article
CN109158545A (en) A kind of production technology of ball bearing
US7645964B2 (en) High frequency heat treatment method for fine bottom-closed hole
JP4919556B2 (en) Gear manufacturing method
Rudnev Computer Modeling Helps Prevent
JP2001293531A (en) Inner diameter precision improving method of work and manufacturing method of cam shaft
JP6350866B2 (en) Sinter hardening method
JP2018161665A (en) Manufacturing method of cogged material