JPS591624A - Uniform heating method of surface of shaft body having bulged part - Google Patents

Uniform heating method of surface of shaft body having bulged part

Info

Publication number
JPS591624A
JPS591624A JP57110416A JP11041682A JPS591624A JP S591624 A JPS591624 A JP S591624A JP 57110416 A JP57110416 A JP 57110416A JP 11041682 A JP11041682 A JP 11041682A JP S591624 A JPS591624 A JP S591624A
Authority
JP
Japan
Prior art keywords
high frequency
shaft
shaft body
electrode
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57110416A
Other languages
Japanese (ja)
Other versions
JPH0114292B2 (en
Inventor
Akira Tamori
田守 明
Iwao Iwasaki
岩崎 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Koshuha Netsuren KK
Original Assignee
Neturen Co Ltd
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Koshuha Netsuren KK filed Critical Neturen Co Ltd
Priority to JP57110416A priority Critical patent/JPS591624A/en
Publication of JPS591624A publication Critical patent/JPS591624A/en
Publication of JPH0114292B2 publication Critical patent/JPH0114292B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To heat uniformly and quicly the surface of a shaft body having a bulged part in the stage of heating said shaft body by direct conduction of high frequency electric current by heating supplementally the bulged part of the shaft body with an induction heating coil in which said high frequency electric current flows. CONSTITUTION:The high frequency electric current flowing from a high frequency power source E in an arrow direction passes through an induction heating coil C winding the bulged part Wa of a shaft body W to an electrode part 3, from which the current flows to the end part of the shaft part Wb1. The current flows from the part Wb1 in the direction of the shaft part Wb2, flows from the end part of the part Wb2 to an electrode part 4 and is fed back to the source E. The output of the high frequency current to be conducted is requlated according to the thickness of a tempering layer, a tempering temp. and various other conditions, and is conducted for a prescribed time. The surface layer of the body W is thus resistance-heated by the high frequency current flowing in the surface layer, and the bulged part Wa is superposed with the induction heating by the magnetic flux from the coil C, and is thereby heated to approximately the same temp. as the temp. in the shaft parts Wb1, Wb2.

Description

【発明の詳細な説明】 本発明は膨大部のある軸体の表面均一加熱方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for uniformly heating the surface of a shaft having an enlarged portion.

全長にわたりほぼ同一径からなる軸体の焼入れや焼戻し
のための表面均一加熱には誘導加熱がもちいられている
。しかし例えば第1図に示すような所定部分に膨大部W
aのある軸体Wの場合、膨大部Waの軸部wb とでは
質量に差があるため、誘導加熱手段による加熱では膨大
部Waの昇温が軸部wbの昇温にくらべて低く、全表面
にわたる均一加熱を得ることが極めて困難である。この
ため膨大部Waのある軸体Wの表面に均一な硬化層を形
成する場合には、従来浸炭方法によっており、また表面
均一焼戻しをする場合には電気炉加熱によっていた。上
記浸炭方法および電気炉加熱は公知の如くともに長時間
を要するものであるので、生産効率が悪くその改善が希
求されていた。
Induction heating is used to uniformly heat the surface of a shaft body for hardening and tempering, which has approximately the same diameter over its entire length. However, for example, as shown in FIG.
In the case of a shaft W with a, there is a difference in mass between the ampullae Wa and the shaft wb, so when heated by induction heating means, the temperature increase in the ampulla Wa is lower than that of the shaft wb, and the total It is extremely difficult to obtain uniform heating over the surface. For this reason, when forming a uniform hardened layer on the surface of the shaft body W having the enlarged portion Wa, a carburizing method has conventionally been used, and when uniformly tempering the surface, heating in an electric furnace has been used. As is well known, both the carburizing method and electric furnace heating require a long time, resulting in poor production efficiency and a need for improvement.

本発明は膨大部Waのある軸体Wの表面を均一に硬化す
る場合や均一に焼戻しする場合、従来方法に存する上述
の問題点を解決するためになされたもので、膨大部Wa
と軸部wbとの表面を均一な温度に昇温せしめることを
可能とする加熱方法を提供するものであり、これによっ
て均一な表面焼入れによる硬化層の形成や均一な焼戻し
に資するものである。
The present invention has been made in order to solve the above-mentioned problems that exist in the conventional method when uniformly hardening or uniformly tempering the surface of the shaft W having the ampullae Wa.
The present invention provides a heating method that makes it possible to raise the surface of the shaft portion wb to a uniform temperature, thereby contributing to the formation of a hardened layer through uniform surface hardening and uniform tempering.

本発明の要旨は、膨大部のある軸体を加熱する場合にお
いて、上記軸体の両端部それぞれを電極で把持し、両電
極のうちの一方はこれに直列接続された、膨大部と所定
間隙をへたてて対向する誘導加熱コイルを介して高周波
電源に接続し、他方は直接高周波電源に接続し、上記高
周波電源から調整された出力による高周波電流を通電し
、直接通電により加熱される軸体の抵抗発熱が低い膨大
部を誘導加熱コイルの磁束で誘導加熱して補熱するよう
にしたことを特徴とする膨大部のある軸体の表面均一加
熱方法にある。
The gist of the present invention is that when heating a shaft body having an ampulla, both ends of the shaft body are gripped by electrodes, and one of the two electrodes is connected in series to the ampullae and a predetermined gap. One side is connected to a high frequency power source through an induction heating coil facing the other side, and the other side is directly connected to a high frequency power source, and a high frequency current is passed through the adjusted output from the high frequency power source, and the shaft is heated by direct energization. This method provides a method for uniformly heating the surface of a shaft body having an ampulla, characterized in that the ampullae in which resistance heat generation is low is reheated by induction heating with the magnetic flux of an induction heating coil.

本発明を第2図および第3図に従って説明する。The present invention will be explained with reference to FIGS. 2 and 3.

第2図は本発明を膨大部のある軸体の焼戻し加熱に実施
する場合の一実施例装置を示している。当該焼戻し装置
は入力端子部1、誘導加熱部2、一方の電極部3および
他方の電極部4とによって構成されている。上記入力端
子部1は絶縁材11をはさんで互いに逆方向に屈折し7
(L字形をなす一方の入力端子部材1aと他方の入力端
子部材1bとからなり、互いに逆方向に開くそれぞれの
辺部には複数の?、シト穴12が穿設されていて、当該
がシト穴12を貫通する図示しないボルトによって、こ
れも図示しない高周波電源のそれぞれの出力端子と緊定
され、電気的に接続される。
FIG. 2 shows an embodiment of an apparatus in which the present invention is applied to tempering and heating a shaft body having an enlarged portion. The tempering device includes an input terminal section 1, an induction heating section 2, one electrode section 3, and the other electrode section 4. The input terminal portion 1 is bent in opposite directions with an insulating material 11 in between.
(It consists of one input terminal member 1a and the other input terminal member 1b that form an L shape, and a plurality of holes 12 are bored in each side that opens in opposite directions. By bolts (not shown) passing through the holes 12, these are tightened and electrically connected to respective output terminals of a high frequency power source (also not shown).

誘導加熱部2は、例えば上記入力端子部1の電源側から
突出する入力端子部材1aおよび1bの突出辺から所定
間隔をへだてた位置に配置され、かつその軸線が上記絶
縁材11を含む平面上にあって絶縁材11の端面に平行
する如(巻回された加熱コイルCと当該加熱コイルCの
絶縁材21をはさんで入力端子部1方向へ垂直に伸びて
いるコイルリード22・23および上記コイルリード2
2が所定位置で外側に屈折したのち、さらに入力端子部
1方向へ伸び、その先端に形成されているコイルリード
接続端子221とからなる。上記コイルリード22の外
側への屈折は入力端子1aの突出辺の厚さとほぼ等しい
だけ屈折するように設定されており、入力端子部材1a
の突出辺外側面とコイルリード接続端子221の内側面
とは接触し、ボルト222を介して入力端子部材1aに
緊定され、電気的に接続される。一方コイルリード23
は、所定位置で図視右方へ直角に屈折し、後述する一方
の電極部3の電極リードに連続する。一方の電極部3は
例えば上記加熱コイルCの端面から所定間隔をへだてて
平行する板状電極31と当該電極31から直角に屈折し
て上記コイルリード23に連続する電極リード32とか
らなり、コイルリード23と電極リード32とは電気的
に接続される。他方の電極部4は上記加熱コイルCの端
面から図視左方へ所定間隔をへだてて平行する板状電極
41と当該電極41から外側へ屈折したのち、さらに入
力端子部1方向へ伸びる電極リード42および当該電極
リード42の先端に形成されている電極リード接続端子
421とからなる。上記電極41から外側へ屈折する電
極リード42は入力端子部材1bの突出辺の厚さとほぼ
等しいだけ屈折するように設定されており、入力端子部
材1bの突出辺外側面と電極リード接続端子421の内
側面とは接触し、ボルト締結により当該入力端子部材1
bと電極リード接続端子421とは緊定され、電気的に
接続される。而して両電極31・41の対向する平面間
の間隔は被焼戻し軸体Wの軸長よりやや狭(、両電極3
1・41それぞれの厚みを含む両者間の間隔は被焼戻し
軸体Wの軸長よりやや広く、かつ被焼戻し軸体Wにおけ
る例えば第1図に示す膨大部Waの右側軸部Wb、  
の長さが加熱コイルCと電極31との間隔と、また膨大
部Waの左側軸部wb、  の長さが加熱コイルCと電
極41との間隔とに適合するように諸元が設定される。
The induction heating section 2 is arranged, for example, at a position separated by a predetermined distance from the protruding sides of the input terminal members 1a and 1b that protrude from the power supply side of the input terminal section 1, and whose axis line is on the plane containing the insulating material 11. Coil leads 22 and 23 extending perpendicularly toward the input terminal section 1 across the wound heating coil C and the insulating material 21 of the heating coil C, parallel to the end surface of the insulating material 11, Above coil lead 2
2 is bent outward at a predetermined position, and further extends toward the input terminal portion 1, and includes a coil lead connection terminal 221 formed at the tip thereof. The outward refraction of the coil lead 22 is set to be approximately equal to the thickness of the protruding side of the input terminal 1a, and
The outer surface of the protruding side of the coil lead connection terminal 221 is in contact with the inner surface of the coil lead connection terminal 221, and is tightened to the input terminal member 1a via the bolt 222 to be electrically connected. On the other hand, coil lead 23
is bent at a right angle in the figure at a predetermined position, and continues to an electrode lead of one electrode section 3, which will be described later. One electrode part 3 is composed of, for example, a plate-shaped electrode 31 that is parallel to the end surface of the heating coil C at a predetermined distance, and an electrode lead 32 that is bent at a right angle from the electrode 31 and continues to the coil lead 23. Lead 23 and electrode lead 32 are electrically connected. The other electrode section 4 includes a plate-shaped electrode 41 that is parallel to the end surface of the heating coil C at a predetermined distance to the left in the drawing, and an electrode lead that is bent outward from the electrode 41 and further extends in the direction of the input terminal section 1. 42 and an electrode lead connection terminal 421 formed at the tip of the electrode lead 42. The electrode lead 42 bent outward from the electrode 41 is set to be bent by an amount approximately equal to the thickness of the protruding side of the input terminal member 1b, so that the outer surface of the protruding side of the input terminal member 1b and the electrode lead connecting terminal 421 are bent. The input terminal member 1 is in contact with the inner surface, and the input terminal member 1 is connected by bolt fastening.
b and the electrode lead connection terminal 421 are tightened and electrically connected. Therefore, the distance between the opposing planes of both electrodes 31 and 41 is slightly narrower than the axial length of the shaft body W to be tempered.
1.41 The distance between the two including their respective thicknesses is slightly wider than the axial length of the shaft W to be tempered, and the right shaft portion Wb of the ampulla Wa shown in FIG.
The specifications are set so that the length of matches the distance between the heating coil C and the electrode 31, and the length of the left axis wb of the ampulla Wa, and the length of matches the distance between the heating coil C and the electrode 41. .

また、電極31・41の対向面には加熱コイルCの軸線
の延長線にあたる点を中心として当該軸線にそって反対
側まで電極を貫通する軸体Wの軸部wbの径とほぼ等し
い内径の貫通孔33および43がそれぞれ設けしれてい
る。上記貫通孔33および43は電極31および41を
先端端面から電極リード方向端部へかけて半ば以上縦割
りにする如き、当該貫通孔33および43の軸線を含む
所定巾の切欠きSによって、それぞれ2分割されている
。従って、それぞれの電極31・41における分割部片
には柔軟性が付与され、切欠きSの巾の拡開または縮小
および貫通孔33・34の内径の拡大または縮小が所定
の範囲内で可能となる。
In addition, the opposing surfaces of the electrodes 31 and 41 have an inner diameter approximately equal to the diameter of the shaft portion wb of the shaft body W that extends from a point corresponding to an extension of the axis of the heating coil C to the opposite side along the axis. Through holes 33 and 43 are provided, respectively. The through holes 33 and 43 are formed by cutouts S of a predetermined width including the axes of the through holes 33 and 43, such that the electrodes 31 and 41 are vertically divided more than halfway from the tip end face to the end in the electrode lead direction. It is divided into two parts. Therefore, flexibility is imparted to the divided pieces in each of the electrodes 31 and 41, and the width of the notch S can be enlarged or reduced, and the inner diameter of the through holes 33 and 34 can be enlarged or reduced within a predetermined range. Become.

また本実施例装置には図示しない電極挟圧装置が付加さ
れていて、電極31および41の巾方向端面を矢印Pに
従って挟圧するように構成されている。
Further, an electrode clamping device (not shown) is added to the apparatus of this embodiment, and is configured to clamp the widthwise end surfaces of the electrodes 31 and 41 in the direction of arrow P.

上記構成からなる装置を用いて、第1図に示す膨大部W
aのある軸体Wを焼戻しする場合を以下に説明する。
Using the apparatus having the above configuration, the ampulla W shown in FIG.
The case of tempering the shaft body W with a is explained below.

先ず軸体Wを焼戻し装置の加熱コイルCに対する電極3
1および41の配置方向に合わせて軸部Wb1およびW
b2が位置するように方向合せをしたうえで、軸部Wb
1およびWb、の長さが例えばWbI>Wb2であれば
、膨大部Waが加熱コイルCと電極31との間の空間前
方にある如き状態から軸体w’を装置方向へ前進させ、
軸部wb、を電極31の切欠きSに割込ませて貫通孔3
3まで押し込む。ついで軸木Wを固視左方へ移動せしめ
、軸部Wb2を加熱コイルC内に挿通して前進させ、そ
の先端を電極41の貫通孔43内に嵌入せしめる。
First, the shaft body W is attached to the electrode 3 for the heating coil C of the tempering device.
Shaft portions Wb1 and W in accordance with the arrangement direction of 1 and 41.
After aligning the direction so that b2 is positioned, the shaft portion Wb
If the lengths of 1 and Wb are, for example, WbI>Wb2, the shaft w' is advanced toward the device from a state where the ampulla Wa is in front of the space between the heating coil C and the electrode 31,
The shaft portion wb is inserted into the notch S of the electrode 31 to form the through hole 3.
Push it all the way to 3. Next, the shaft Wb2 is fixedly moved to the left, and the shaft portion Wb2 is inserted into the heating coil C and moved forward, so that its tip is fitted into the through hole 43 of the electrode 41.

上記電極31の切欠きSを介する軸部wb、の貫通孔3
3への割り込みおよび軸部Wb2の先端の電極410貫
通孔43への嵌入は、前述の如く電極の分割部片に柔軟
性があるので支障なく行われる。この状態において、軸
体Wの両軸端はそれぞれ電極31の貫通孔33内および
電極410貫通孔43内に収容され、かつ膨大部Waは
加熱コイルC内にあってその外周をコイル周壁と所定間
隙を保持している。ついで図示しない電極挟圧装置を用
いて電極31および41それぞれを矢印P方向から挟圧
し、貫通孔33お上び43それぞれの孔内に収容されて
いる軸KWの両端部を孔壁で圧着し、当該電極31およ
び41によって軸体Wを把持する。この状態において高
周波電源を投入し、調整された出力による所定周波数の
高周波電流を当該高周波電源の出力端子から本装置の入
力端子部1へ通電する。第3図は本発明における電流回
路を示すものであって、例えば高周波電源Eから矢印方
向へ流れる高周波電流は、軸体Wの膨大部Waを巻回す
る加熱コイルCを経て電極部3に至り、当該電極部3の
電極31の貫通孔33の孔壁を介して軸部WbIの端部
へ流れ、ついで軸部wb、から軸部wb、方向へ向い、
当該軸部Wb2の端部から電極部4の電極410貫通孔
43の孔壁を介して当該電極部4に至り、高周波電源E
に帰還する。
Through hole 3 of shaft portion wb through notch S of electrode 31
3 and the insertion of the tip of the shaft portion Wb2 into the through hole 43 of the electrode 410 can be carried out without any problem because the divided parts of the electrode are flexible as described above. In this state, both axial ends of the shaft body W are accommodated in the through hole 33 of the electrode 31 and the through hole 43 of the electrode 410, respectively, and the enlarged portion Wa is inside the heating coil C, and its outer periphery is aligned with the coil peripheral wall. Maintains a gap. Then, using an electrode clamping device (not shown), each of the electrodes 31 and 41 is clamped from the direction of arrow P, and both ends of the shaft KW accommodated in each of the through holes 33 and 43 are crimped with the hole walls. , the shaft body W is gripped by the electrodes 31 and 41. In this state, the high frequency power source is turned on, and a high frequency current of a predetermined frequency due to the adjusted output is passed from the output terminal of the high frequency power source to the input terminal section 1 of the apparatus. FIG. 3 shows a current circuit according to the present invention. For example, a high frequency current flowing in the direction of the arrow from a high frequency power source E reaches the electrode portion 3 via a heating coil C that winds around the enlarged portion Wa of the shaft body W. , flows through the hole wall of the through hole 33 of the electrode 31 of the electrode part 3 to the end of the shaft part WbI, and then flows from the shaft part wb toward the shaft part wb,
The end of the shaft portion Wb2 reaches the electrode portion 4 through the hole wall of the electrode 410 through hole 43 of the electrode portion 4, and the high frequency power source E
to return to.

通電される高周波電流は、使用している高周波電源の周
波数、軸体の表面からの焼戻し層の厚さ、焼戻し温度そ
の他の諸条件に応じてその出力を調整し、所定時間通電
される。
The output of the high-frequency current is adjusted according to the frequency of the high-frequency power source being used, the thickness of the tempering layer from the surface of the shaft body, the tempering temperature, and other conditions, and the high-frequency current is supplied for a predetermined period of time.

かくして、軸体Wの表層は、表層を流れる高周波電流に
よって抵抗発熱する。この際、表層部の質量が太きいた
め、流れる高周波電流の電流密度が粗となって抵抗発熱
の度合の低い膨大部Waには加熱コイルCからの磁束に
よる誘導加熱が上記抵抗発熱に重畳されるので、膨大部
Waは軸部wbの昇温とほぼ同一に昇温する。所定通電
時間経過後、高周波電源Eを断とし、ついで電極挟圧装
置による電極31および41の矢印P方向への挟圧を解
除としたのち、全表層が所定の均一温度にまで加熱され
て焼戻しが完了した軸体Wを、装置への装着時とは逆操
作、即ち軸部Wb2の端部が貫通孔43および加熱コイ
ルCそれぞれから脱出するまで右移動させたうえ、貫通
孔33に嵌装されている軸部W b lを切欠きSを通
して電極31より離脱せしめて全焼戻し工程を終了する
Thus, the surface layer of the shaft body W generates resistance heat due to the high frequency current flowing through the surface layer. At this time, since the mass of the surface layer is large, the current density of the flowing high-frequency current becomes coarse, and the induction heating due to the magnetic flux from the heating coil C is superimposed on the resistance heat generation in the ampulla Wa where the degree of resistance heat generation is low. Therefore, the temperature of the ampullae portion Wa increases almost the same as the temperature increase of the shaft portion wb. After a predetermined energization time has elapsed, the high-frequency power source E is turned off, and then the clamping force of the electrodes 31 and 41 in the direction of the arrow P by the electrode clamping device is released, and then the entire surface layer is heated to a predetermined uniform temperature and tempered. After completion of the process, the shaft Wb2 is moved to the right until the end of the shaft Wb2 escapes from the through hole 43 and the heating coil C, and then the shaft Wb2 is fitted into the through hole 33 by the reverse operation of the installation into the device. The shaft portion W b l that has been removed is removed from the electrode 31 through the notch S, and the entire tempering process is completed.

上記は膨大部のある軸体の焼戻しを行う場合の実施例で
あるが、本発明は焼入れのための加熱にも用いられる。
Although the above is an example in which a shaft body having an enlarged portion is tempered, the present invention can also be used for heating for hardening.

この場合、軸体は所定焼入れ温度にまで表層を加熱され
たのち冷却水槽中に投入して急冷焼入れされるか、また
は実施例装置のほかに軸部に対する冷却液噴射機構を設
けるとともに膨大部に対する冷却液噴射孔を加熱コイル
に設け、加熱軸体を冷却液噴射機構と冷却液噴射孔から
冷却液を噴射して急冷するようにしてもよい。
In this case, the surface layer of the shaft body is heated to a predetermined quenching temperature and then put into a cooling water tank for rapid cooling quenching, or a cooling liquid injection mechanism for the shaft part is provided in addition to the apparatus of the embodiment, and a cooling liquid injection mechanism is provided for the ampulla part. A coolant injection hole may be provided in the heating coil, and the heating shaft may be rapidly cooled by injecting the coolant from the coolant injection mechanism and the coolant injection hole.

上記実施例では装置の自己冷却機構については触れなか
ったが、通電時間、加熱温度、連続操業度等の諸条件か
ら必要あれば自己冷却機構が当然付設される。尚電極は
実施例に示されるような板状体に限定されるものではな
く、軸体の端部を把持して通電可能なものであれば本発
明の目的が達せられる。
Although the self-cooling mechanism of the apparatus was not mentioned in the above embodiment, a self-cooling mechanism is naturally added if necessary due to various conditions such as energization time, heating temperature, and continuous operation rate. Note that the electrode is not limited to a plate-like body as shown in the embodiments, but the object of the present invention can be achieved as long as it can be gripped at the end of the shaft and energized.

本発明によれば、膨大部のある軸体の表面均一加熱を極
めて短時間で行うことが可能となり、しかも加熱温度の
均一性が確保されるとともに直接通電による抵抗発熱を
主とし誘導加熱を従とした電気エネルギーの使用方法で
あるのでエネルギーの変換効率が顕著で経済性が良好で
あり、実用性に優れている。
According to the present invention, it is possible to uniformly heat the surface of a shaft body with a large portion in an extremely short time, and moreover, uniformity of heating temperature is ensured. Since it is a method of using electrical energy, it has remarkable energy conversion efficiency, good economic efficiency, and excellent practicality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用対象である膨大部のある軸体の正
面図、第2図は本発明の一実施例装置の斜視図、第3図
は本発明の実施例電流回路図である。 31・41・・・電極、 C・・・誘導加熱コイル、 E・・・高周波電源、 W・・・軸体、 Wa ・・・軸体の膨大部。 特許出願人 高周波熱錬株式会社 代理人 弁理士 小 林  傅 第 1WJ 第3図 第2図
Fig. 1 is a front view of a shaft body with an enlarged portion to which the present invention is applied, Fig. 2 is a perspective view of a device according to an embodiment of the present invention, and Fig. 3 is a current circuit diagram of an embodiment of the present invention. . 31, 41... Electrode, C... Induction heating coil, E... High frequency power supply, W... Shaft body, Wa... Ampulla of the shaft body. Patent Applicant Koshuha Netsuren Co., Ltd. Agent Patent Attorney Fudai Kobayashi 1WJ Figure 3 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 膨大部のある軸体を加熱する場合において、上記軸体の
両端部それぞれを電極で把持し、両電極のうちの一方は
これに直列接続された、膨大部と所定間隙をへたてて対
向する誘導加熱コイルを介して高周波電源に接続し、他
方は直接高周波電源に接続し、上記高周波電源から調整
された出力による高周波電流を通電し、直接通電により
加熱される軸体の抵抗発熱が低い膨大部を誘導加熱コイ
ルの磁束で誘導加熱して補熱するようにしたことを特徴
とする膨大部のある軸体の表面均一加熱方法。
When heating a shaft body with an ampulla, both ends of the shaft body are held by electrodes, and one of the two electrodes is connected in series to this and faces the ampullae with a predetermined gap. The induction heating coil is connected to a high frequency power source through an induction heating coil, and the other side is directly connected to a high frequency power source, and a high frequency current is passed through the adjusted output from the high frequency power source, so that the resistance heat generation of the shaft heated by direct current is low. A method for uniformly heating the surface of a shaft body having an ampulla, characterized in that the ampullae is reheated by induction heating with the magnetic flux of an induction heating coil.
JP57110416A 1982-06-26 1982-06-26 Uniform heating method of surface of shaft body having bulged part Granted JPS591624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110416A JPS591624A (en) 1982-06-26 1982-06-26 Uniform heating method of surface of shaft body having bulged part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110416A JPS591624A (en) 1982-06-26 1982-06-26 Uniform heating method of surface of shaft body having bulged part

Publications (2)

Publication Number Publication Date
JPS591624A true JPS591624A (en) 1984-01-07
JPH0114292B2 JPH0114292B2 (en) 1989-03-10

Family

ID=14535212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110416A Granted JPS591624A (en) 1982-06-26 1982-06-26 Uniform heating method of surface of shaft body having bulged part

Country Status (1)

Country Link
JP (1) JPS591624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313290A (en) * 2014-10-28 2015-01-28 芜湖世特瑞转向系统有限公司 High-frequency quenching device and method for steering gear rack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681624A (en) * 1979-12-07 1981-07-03 High Frequency Heattreat Co Ltd Uniform tempering method of shaft body having plural parts of different masses
JPS56139622A (en) * 1980-03-31 1981-10-31 Denki Kogyo Kk Heat treatment method of threaded part by high-frequency induction heating and its device
JPS5769850U (en) * 1980-10-17 1982-04-27

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681624A (en) * 1979-12-07 1981-07-03 High Frequency Heattreat Co Ltd Uniform tempering method of shaft body having plural parts of different masses
JPS56139622A (en) * 1980-03-31 1981-10-31 Denki Kogyo Kk Heat treatment method of threaded part by high-frequency induction heating and its device
JPS5769850U (en) * 1980-10-17 1982-04-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313290A (en) * 2014-10-28 2015-01-28 芜湖世特瑞转向系统有限公司 High-frequency quenching device and method for steering gear rack

Also Published As

Publication number Publication date
JPH0114292B2 (en) 1989-03-10

Similar Documents

Publication Publication Date Title
US4081658A (en) Electrically heated soldering device
EP0206620A2 (en) Self-heating, self-soldering bus bar
JPH0159335B2 (en)
US3446930A (en) Cross-field inductor for heating electrically conducting workpieces
JPS591624A (en) Uniform heating method of surface of shaft body having bulged part
US20210276112A1 (en) Soldering tool for inductive soldering
US2759085A (en) Method of heating a workpiece by high-frequency currents
JP3865451B2 (en) High frequency direct current quenching equipment for rack bar
JPH1069968A (en) Induction heating method and device
US3284606A (en) Heat sink material and applications thereof
JP3860634B2 (en) High frequency direct current quenching equipment for rack bar
JPH0354134Y2 (en)
JPH03111517A (en) Method for uniformly heating slab
JP2001329313A (en) High frequency heating coil body
US2867708A (en) Methods and apparatus for induction heating
EP0062355B1 (en) Inductive heating device and methods employing a heating coil and workpieces heated thereby
JPS6132374B2 (en)
JP2007282340A (en) Method for annealing stator core for motor
JPH02254116A (en) Apparatus and method for high frequency power conducting induction quenching
JP3361337B2 (en) Groove heating device
JP2941369B2 (en) Railgun type accelerator
JP2545869Y2 (en) High frequency heating coil
JPS6332129Y2 (en)
JPH08218117A (en) Heating coil for plural stepped work
JP2531333Y2 (en) Hardened coil for direct current