JP4235336B2 - Induction hardening method of rack bar and induction hardening apparatus thereof - Google Patents

Induction hardening method of rack bar and induction hardening apparatus thereof Download PDF

Info

Publication number
JP4235336B2
JP4235336B2 JP2000048422A JP2000048422A JP4235336B2 JP 4235336 B2 JP4235336 B2 JP 4235336B2 JP 2000048422 A JP2000048422 A JP 2000048422A JP 2000048422 A JP2000048422 A JP 2000048422A JP 4235336 B2 JP4235336 B2 JP 4235336B2
Authority
JP
Japan
Prior art keywords
rack bar
frequency induction
induction heating
back surface
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000048422A
Other languages
Japanese (ja)
Other versions
JP2001234245A (en
Inventor
精一 沢津橋
啓一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2000048422A priority Critical patent/JP4235336B2/en
Publication of JP2001234245A publication Critical patent/JP2001234245A/en
Application granted granted Critical
Publication of JP4235336B2 publication Critical patent/JP4235336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ラックバーの歯面を含んだ全周面を一発焼入法により高周波焼入する方法及びその焼入装置に関するものである。
【0002】
【従来の技術】
図8は、従来より一般的に用いられているステアリング用ラックバー1を示すものであって、このステアリング用ラックバー1は片側面に軸線Xに対して角度θをなす斜歯2を有し、この斜歯2の歯面3とは反対側の面が背面(半円筒面)4となされている。従来においては、この種のステアリング用ラックバー1の歯面3を焼入するために図9に示される高周波直接通電焼入装置5aが用いられ、その背面4を焼入するために図10に示される高周波直接通電焼入装置5bが用いられている。また、前記歯面3及び背面4を同時に焼入するために図11に示される高周波直接通電装置6が用いられている。
【0003】
これらの装置5a,5b或いは6は、図9,図10及び図11に示すように、電気的絶縁材7,7’を介して第一導体8,8’と第二導体9,9’をそれぞれサンドイッチ状に組み合わせて成る部材であって、被焼入体であるステアリンググラックバー1の歯面3或いは背面4にそれぞれ対向して配設される単位導体10,10’と、これらの単位導体10,10’の第一導体8,8’に接続され、前記歯面3或いは背面4の長手方向の一端に当接配置される第一接触電極11,11’と、前記単位導体10,10’の第二導体9,9’に接続され、前記歯面3或いは背面4の長手方向の他端に当接配置される第二接触電極12,12’と、これらの第二接触電極12,12’の間の領域において前記歯面3或いは背面4に冷却液を噴出し得る冷却液噴射手段13,13’を備えた近接導体14、14’と、前記一対の第一導体8,8’と第二導体9,9’が接続される高周波電源15、15’とをそれぞれ備えている。さらに、ラックバー押圧用の一対の油圧シリンダー16,16’も備えられている。
【0004】
【発明が解決しようとする課題】
上述の如き従来の高周波直接通電焼入装置5a,5b或いは6を用いて、ラックバー1の歯面3及び背面4を焼入した場合、次の如き問題点が生ずる。すなわち、高周波直接通電焼入装置5a,5bを用いてラックバー1の歯面3及び背面4を二工程で高周波焼入した場合の焼入硬化層パターンは、図12に示す如き焼入硬化層パターンTとなる。この焼入硬化層パターンTにおいて斜線部Wで示した硬化層部分は、焼入処理が重複した部分であり、始めの焼入処理により得られる硬化層部分とその後の焼入処理荷より得られる硬化層部分の境界部分Wが軟化し、その上、焼割れが発生しやすい。また、二工程で焼入するため焼入処理時間を長く要することとなり、作業性並びに生産性が著しく低くなるという不具合がある。さらに、二台の高周波直接通電焼入装置5a,5bを必要とするので、設備費が高くなるという問題点がある。
【0005】
また、高周波直接通電焼入装置6を用いてラックバー1の歯面3及び背面4を一工程で同時に高周波焼入した場合の焼入硬化層パターンは、図13に示す如き焼入硬化層パターンTとなる。本装置6による焼入では、上述の境界部分W(図12参照)に相当する部分W’の硬化層が浅くなる。また、設備上の問題点として、ワーク押圧機構、着脱機構等が非常に複雑となり、既述の二台の焼入装置5a,5bよりもさらに高価なものとなる。
【0006】
本発明は、このような問題点を解消すべくなされたものであって、その目的は、直接通電法を用いずにラックバーの歯面及び背面を同時に効率良く焼入でき、しかも良好な焼入硬化層パターンをラックバーの全周面に形成することができるようなラックバーの高周波焼入方法及び高周波焼入装置を提供することにある。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、本発明では、被焼入体であるラックバーの歯面及び背面を含めた全周面を高周波焼入する方法において、
前記ラックバーの軸線方向に沿って配置され、かつ、前記ラックバーの歯面及び背面にそれぞれ対向する一対の主導体を有する高周波誘導加熱コイルを用い、(a) 前記ラックバーを前記高周波誘導加熱コイルに対して静止させた状態の下で高周波誘導加熱する工程と、
(b) 次いで、前記ラックバーをその軸線を中心に回転させることにより、前記ラックバーを前記高周波誘導加熱コイルに対して回転させた状態下で高周波誘導加熱をさらに継続して行なう工程と、
(c) しかる後に、前記ラックバーの全周面が所要の焼入温度に高周波誘導加熱された時点で、前記ラックバーの全周面を急速冷却する工程と、
をそれぞれ順次に施行するようにしている。
また、本発明では、前記ラックバーを静止状態で高周波誘導加熱する静止加熱、及び、前記ラックバーを回転状態で高周波誘導加熱する回転加熱を、同一の周波数電流、或いは、それぞれ異なる周波数電流を前記高周波誘導加熱コイルに流すことにより行うようにしている。
また、本発明では、前記静止加熱及び回転加熱を、同一電力、或いはそれぞれ異なる電力を前記高周波誘導加熱コイルに供給することにより行うようにしている。
また、本発明では、
(a) 被焼入体であるラックバーの軸線方向に沿って配置され、かつ、前記ラックバーの歯面及び背面にそれぞれ対向する一対の主導体を有する高周波誘導加熱コイルと、
(b) 前記ラックバーの歯面及び背面を前記一対の主導体に対向した状態で前記ラックバーを静止状態で保持する保持機構と、
(c) 前記保持機構にて保持された前記ラックバーを回転駆動する回転駆動機構と、
(d) 前記ラックバーに向けて冷却液を噴射する冷却液噴射機構と、
をそれぞれ具備し、
前記ラックバーを前記保持機構にて静止状態に保持した状態の下で前記高周波誘導加熱コイルにて予備加熱した後に、前記ラックバーを前記回転駆動機構にてその軸線を中心に回転駆動させた状態の下で前記高周波誘導加熱コイルにて本加熱し、前記ラックバーの歯面及び背面を含む全周面が所要の焼入温度に達した直後に前記冷却液噴射機構から冷却液を噴射して前記ラックバーの全周面を焼入するようにしたことを特徴とするラックバーの高周波焼入装置。
また、本発明では、中空部を有するパイプ部材にて前記一対の主導体をそれぞれ構成すると共に、前記ラックバーの歯面及び背面に対向配置される前記一対の主導体の対向壁部に複数の冷却液噴射口をそれぞれ設け、前記複数の冷却液噴射口から冷却液を噴射するようにしている。
また、本発明では、前記ラックバーの歯面に対向する前記主導体の対向壁部を平坦状の壁部とし、前記ラックバーの背面に対向する前記主導体の対向壁部を断面半円形状の壁部としている。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態について図1〜図7を参照して説明する。
【0009】
図1及び図2は、本発明に係る高周波焼入方法を施行するために用いられる高周波焼入装置20を示すものである。本装置20は、図1及び図2に示すように、ラックバー1の歯面3及び背面4に対向するように互いに平行状に配置されて上下方向に沿って延びる左右一対の主導体21a,21bと、これらの主導体21a,21bの上下両端部に接続されて互いに平行状に配置された上下一対の環状副導体22a,22bと、前記主導体21bの中間箇所の切断部の上下両部にそれぞれ接続された一対の電流供給導体23a,23bとから成る高周波誘導加熱コイル19を具備している。
【0010】
図2及び図3に示す如く、上述の主導体21a,21bは冷却液流通用の中空部24a,24bを有する導電性のパイプ部材にて構成されており、環状副導体22a,22bは中空部を有しない導電性のリング部材にて構成されている。そして、前記主導体21a,21bの中空部24a,24bにそれぞれ連通する各一対の冷却液導入管25a,25bが主導体21a,21bの外側壁部26a,26bに接続されている。さらに、ラックバー1の歯面3及び背面4に対向する主導体21a,21bの内側壁部27a,27bには、所要の孔径を有し、かつ、所要のピッチ間隔を隔てて開口された複数の冷却液噴射孔28a,28bが設けられている。かくして、主導体21a,21bの中空部24a,24b内にそれぞれ導入された冷却液(焼入液)がこれらの冷却液導入管25a,25bから噴射されるようになっている。
【0011】
なお、後述の静止加熱時及び焼入冷却時にラックバー1の歯面3に対向配置される主導体21aの内側壁部27aは、平面となされる一方、焼入冷却時にラックバー1の背面4に対向される主導体21bの内側壁部27bは前記背面4の曲率の対応する形状の湾曲面(半円形面)となされている(図1,図2及び図3参照)。
【0012】
ここで、高周波焼入装置20の製作手順について述べると、次の通りである。
【0013】
(a) まず、ラックバー1の歯面3に沿うように形成される一方の主導体21aの一端部(上端部)αを、一方の環状副導体22aの軸方向と直交する下面にろう付けにより接合すると共に、ラックバー1の背面4に沿うように形成される主導体21bの一端部(上端部)βを、一方の環状副導体22bの軸方向に直交する下面であってかつ前記主導体21aの一端部αが接合されている接合位置に対して180度離間した箇所にろう付けにより接合する(図1及び図2参照)。
【0014】
(b) 次いで、前記一方の主導体21aの他端部(下端部)γを、前記他方の環状副導体22bの軸方向に直交する面にろう付けにより接合すると共に、前記他方の主導体21bの他端部(下端部)δを前記一方の主導体21aの他端部γが接合されている接合位置に対して180゜離間した位置において、前記他方の環状副導体22bの軸方向に直交する面にろう付けにより接合する。
【0015】
(c) そして、一方の主導体21a若しくは他方の主導体21bの所定の中間位置に電流供給導体23a,23bの一端部を上記と同様の方法で接合してコイル電路を形成し、このコイル電路に高周波電源29から電流供給導体23a,23bを介して高周波誘導加熱コイル19に高周波電力が供給されるように構成する。なお、電流供給導体23a,23bの間には、例えば4フッ化エチレン(商標名;テフロン)等の耐熱性絶縁材からなる板状絶縁部材30を挿入配設することにより、これらの間の電気的絶縁を図るように構成する。
【0016】
次に、上述のような構成の高周波焼入装置20を用いてラックバー1の全周面(歯面3及び背面4を含む)を一発焼入する際の操作手順について述べると、以下の通りである。
【0017】
(1) まず、高周波焼入装置20の上方に配置されている図外のワーク固定治具にラックバー1の下端部を載置し、ラックバー1の上端部を図外のセンターにより押さえることにより、ラックバー1を垂直に立てた状態で保持する。
(2) 次に、ラックバー1を図外のワーク昇降機構により下降させ、焼入装置20内の所定の加熱位置で停止させる。
(3) 次いで、ラックバー1の歯面3及び背面4をそれぞれ高周波誘導加熱コイル19の主導体21a及び主導体21bにそれぞれ対向せしめた状態で、ラックバー1を固定配置する。
(4) この後に、高周波電源29から所要周波数・所要出力の高周波電力を焼入装置20の高周波誘導加熱コイル19に供給してこのコイル19に高周波電流を流すことにより、ラックバー1の歯面3及び背面4の静止加熱(ラックバー1を静止させた状態の下での高周波誘導加熱)を開始して所要時間にわたって高周波誘導加熱を行なう。
(5) 歯面3及び背面4が所要加熱温度及び所要加熱深さに到達した時点でラックバー1をその軸線X(図8参照)を中心に図外の回転機構により所要の回転数をもって回転させ、ラックバー1の全周面(ワーク全周面)の回転加熱(ラックバー1を回転させた状態の下での高周波誘導加熱)を行う。
(6) そして、この回転加熱によりラックバー1の全周面が所要の焼入温度に到達した時点で、高周波誘導加熱コイル19への通電を遮断し加熱を停止する。
(7) 次いで、歯面3側の主導体21a及び背面4側の主導体22bの内側壁部(ワーク対向面)27a,27bに開孔された冷却液噴射冷孔28a,28bから所要圧力・所要流量の冷却液を回転状態のラックバー1の周面に向けて噴射し、このラックバー1の周面の表面温度が常温になるまで急冷する。
(8) そして、ラックバー1の周面の表面温度が常温にまで急冷された時点で、冷却液の噴射及びラックバー1の回転を共に停止し、一連の焼入処理を終了する。
(9) しかる後に、ワークを所定の位置まで上昇させ、ワーク固定治具30及びセンター31よりラックバーを取り外し、次工程に移送する。
【0018】
上述の一連の焼入操作を要約して述べると、ラックバー1を高周波焼入装置20内の所定の位置、すなわち、図2に示す如く主導体21aにラックバー1の歯面3が対向配置されかつ主導体21bにラックバー1の背面4が対向配置されるような位置に配置して静止状態で固定し、この静止状態の下で高周波誘導加熱コイル19に通電することにより前記歯面3及び背面4の静止加熱を行う。そして、所要時間にわたる静止加熱にて前記歯面3及び背面4が所要温度に到達すると同時に、図外のワーク保持治具を図外の回転駆動手段によりラックバー1の軸線Xを中心に所要の回転速度で回転させながら、所要時間にわたり回転加熱を行い(高周波誘導加熱コイル19の通電状態は維持)、歯面3及び背面4を含むラックバー1の全周面が所要焼入温度に到達した時点で、高周波誘導加熱コイル19への高周波電流の供給を遮断すると同時に、一対の主導体21a,21bに設けられた複数の冷却液噴射孔28a,28bから所要圧力・所要流量の冷却液を回転状態のラックバー1に向けて噴射し、このラックバー1の表面を所要時間にわたって急速冷却することにより焼入処理を行なう。
【0019】
なお、図1に示されている矢印Rは瞬間における電流の流れ方向を示すものであるが、本実施形態で用いられている高周波誘導加熱コイル19は既述の如く各一対の主導体21a,21b及び環状副導体22a,22bから構成されたものであるため、高周波誘導加熱コイル19の通電時には、環状副導体22a,22bに流れる電流の2倍の電流が主導体21a,21bに流れることとなる。すなわち、一対の環状副導体22a,22bのそれぞれは環状の導体を2つに分岐してこの2つの同形状の導体が一対の主導体21a,21bを介して互いに並列接続されたコイル電路を形成しているため、主導体21a,21bのそれぞれに流れる高周波電流を例えばIアンペアとすると、それぞれの環状副導体22a,22bに流れる高周波電流は、I/2アンペアとなる。
【0020】
上述の如き高周波焼入装置20を使用した本発明の高周波焼入方法によりラックバー1の全周面を焼入した場合、図4に示すような焼入硬化層パターンが得られた。この場合、図4に示すように、歯面3の歯高よりも深く、かつ、歯高に対して直交する歯面3の長手方向(図4において左右方向)の中央部からその左右両側に向かうにつれて徐々に深くなるような硬化層パターンT1 が歯面3の側に形成されると共に、前記硬化層パターンT1 の両部にそれぞれ連なる均一な断面円弧状の硬化層パターンT2 が背面4の側に形成された。
【0021】
このような本発明の高周波焼入方法により得られる焼入硬化層パターンTと、本発明の高周波焼入方法を用いずにその他の方法で得られる焼入硬化層パターンとの相違を確認するために、次のような実験を行った。
【0022】
まず、高周波誘導加熱の開始から終了までの全期間においてラックバー1に回転を与えることなく常に静止させた状態で高周波誘導加熱を行ない、その他の加熱条件は、図4に示したものと同一として、静止加熱のみによる高周波誘導加熱を行って急速冷却したところ、図5に示す如き焼入硬化層パターンが得られた。具体的には、図5に示すように、歯面3の歯高よりも深く、かつ、深さが均一な硬化層パターンT1 ’が歯面3の側に形成されると共に、この硬化層パターンT1 ’の左右両部からかなり遠くに離れた位置から均一に延びる断面円弧状の硬化層パターンT2 ’が背面4の側に形成された。すなわち、この場合には、歯面3の側の主導体21aと背面4の側の主導体21bとによって歯面3と背面4とが別々に分離したかたちで加熱されることとなるため、歯面3及び背面4における硬化層パターンT1 ’,T2 ’が連続せずに、互いに分離したものとなった。
【0023】
また、高周波誘導加熱の開始から終了までの全期間において静止加熱を全く行わず、その他の加熱条件は図4に示したものと同一として、回転加熱のみを行ったところ、図6に示す如き焼入硬化層パターンが得られた。具体的には、図6に示すように、背面4の側には均一な硬化層パターンT1 ''が得られるが、歯面3の側には左右方向の中央部が最も浅くかつその左右両部にいくにつれて徐々に深くなる硬化層パターンT2 ''となる。すなわち、この場合には、一対の主導体21a,21bによって、歯面3及び背面4の表面が連続したかたちで加熱されることとなるため、歯面3の表面に形成される硬化層パターンT1 ''と背面4の表面に形成される硬化層パターンT2 ''とは互いに分離せずに連続した硬化層パターンとなるが、歯面3の左右両部に近ずくにつれて硬化層は深くなるものの、歯面3の中央部では、歯底3aの領域まで加熱されずに浅い硬化層となる。このような硬化層パターンT1 ''、T2 ''となるのは、歯面3側の負荷が軽いことと、回転加熱のみによって加熱されるため、歯底3aの領域まで充分に深く加熱されなかったことに起因する。
【0024】
また、図4のものと同様の条件で静止加熱を行った後に、回転加熱をすることなく直ちに急速冷却を行ったところ、図7に示す如き焼入硬化層パターンが得られた。この焼入硬化層パターンの形状は、図5に示す焼入硬化層パターンと類似した形状であり、因みに、これら両者の硬化層の深さを互いに比較した場合には、歯面3側の硬化層パターンT1 ''' については歯面3の中央部において前者が後者の約2/3であり、背面4側の硬化層パターンT2 ''' については前者が後者の約2/3である。
【0025】
本発明に係る高周波焼入方法により得られる図4の硬化層パターンと、従来の高周波焼入方法により得られる図5,図6及び図7の硬化層パターンとを比較すれば明らかなように、図4の硬化層パターンは理想的なパターン、すなわち歯面3側の表面に形成される硬化層パターンT1 と背面4側の表面に形成される硬化層パターンT2 とが分離することなく互いに連続し、かつ、歯面3側の硬化層パターンT1 が歯面3の全域において歯底3aよりも充分に深く形成されるようなパターン(図4参照)となっていることがわかる。このような理想的なパターンとなるのは、本発明に係る高周波焼入方法では、第1段階において静止加熱により歯面3及び背面4を所要深さに予備加熱し、しかる後の第2段階において回転加熱により歯面3及び背面4を含めたラックバー1の全周面を本加熱するようにしているため(すなわち、静止加熱と回転加熱を組み合わせて行うようにしているため)である。
【0026】
以下に、本発明に係るラックバーの高周波焼入方法の具体的な施行条件の一例を述べる。
(1) ラックバーの寸法
寸法条件
(ア) 全長 : 620mm
(イ) 焼入部: 175mm
(ウ) 外径 : 32mm
(エ) 歯高 : 5mm
(オ) 歯幅 : 18mm

Figure 0004235336
【0027】
以上、本発明の一実施形態につき述べたが、本発明はこの実施例に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、既述の実施形態では、ラックバー1を縦置きにして静止加熱及び回転加熱を行なうようにしたが、ラックバー1を横置きにして静止加熱及び回転加熱を行なうようにしても良い。また、既述の実施形態では、一対の主導体21a,21bに冷却液噴射孔28a,28bを設けてこれら一対の主導体21a,21bを冷却液噴射機構として兼用するようにしたが、これとは別個独立の冷却液噴射環を冷却液噴射機構として設けてこの冷却液噴射環から冷却液をラックバー1に噴射し、或いはこの冷却液噴射環及び前記主導体21a,21の冷却液噴射孔28a,28bから同時に冷却液をラックバー1に噴射するようにしても良い。
【0028】
【発明の効果】
請求項1に記載の本発明に係る高周波焼入方法は、ラックバーの歯面及び背面を含む全周面を高周波焼入する方法において、ラックバーの歯面及び背面にそれぞれ対向配置される一対の主導体を有する高周波誘導加熱コイルを用い、所要時間にわたり静止加熱(予備加熱)を行った後に、所要時間にわたり回転加熱(本加熱)を行い、所要焼入温度に加熱されたラックバーの全周面(表面)を急速冷却して焼入するようにしたものであるから、本発明によれば、ラックバーの歯面及び背面にそれぞれ形成される焼入硬化層が分離することなく互いに連続し、かつ、ラックバーの歯面部分においては歯底まで充分に深い焼入硬化層になると共にラックバーの背面部分においては比較的薄い均一な焼入硬化層になる良好な(理想的な)焼入硬化層パターンを得ることができる。
【0029】
また、請求項2に記載の本発明に係る高周波焼入方法は、ラックバーを静止状態で高周波誘導加熱する静止加熱、及び、ラックバーを回転状態で高周波誘導加熱する回転加熱を、同一の周波数電流、或いはそれぞれ異なる周波数電流を高周波誘導加熱コイルに流すことにより行うようにしたものであるから、本発明によれば、被焼入体であるラックバーの形状、寸法、或いは焼入仕様に応じた焼入が可能となる。
【0030】
また、請求項3に記載の本発明に係る高周波焼入方法は、静止加熱及び回転加熱を、同一電力、或いはそれぞれ異なる電力を高周波誘導加熱コイルに供給することにより行うようにしたものであるから、本発明によれば、上記と同様にラックバーの形状、寸法或いは焼入仕様に応じた焼入が可能となる。
【0031】
また、請求項4に記載の本発明に係る高周波焼入装置は、被焼入体であるラックバーの軸線方向に沿って配置され、かつ、ラックバーの歯面及び背面にそれぞれ対向配置される一対の主導体を有する高周波誘導加熱コイルと、ラックバーの歯面及び背面を一対の主導体に対向した状態でラックバーを静止状態で保持する保持機構と、保持機構にて保持されたラックバーを回転駆動する回転駆動機構と、ラックバーに向けて冷却液を噴射する冷却液噴射機構とをそれぞれ具備し、ラックバーを保持機構にて静止状態に保持した状態の下で高周波誘導加熱コイルにて予備加熱した後に、ラックバーを回転駆動機構にてその軸線を中心に回転駆動させた状態の下で高周波誘導加熱コイルにて本加熱し、ラックバーの歯面及び背面を含む全周面が所要の焼入温度に達した直後に冷却液噴射機構から冷却液を噴射してラックバーの全周面を焼入するようにしたものであるから、本発明の高周波焼入方法を容易に実施することができ、安価で、実用的で利用価値が高く、産業上極めて有益なラックバーの高周波焼入装置を提供することができる。
【0032】
また、請求項5に記載の本発明に係る高周波焼入装置は、中空部を有するパイプ部材にて一対の主導体をそれぞれ構成すると共に、ラックバーの歯面及び背面に対向配置される一対の主導体の対向壁部に複数の冷却液噴射口をそれぞれ設け、複数の冷却液噴射口から冷却液を噴射するようにしたものであるから、高周波誘導加熱コイルの主導体を冷却液噴射手段として兼用することができ、従って冷却液噴射環などの部材を別個に配設する必要がなく、構成がシンプルな装置にすることが可能となる。
【0033】
また、請求項6に記載の本発明に係る高周波焼入装置は、ラックバーの歯面に対向する主導体の対向壁部を平坦状の壁部とし、ラックバーの背面に対向する主導体の対向壁部を断面半円形状の壁部としたものであるから、ラックバーの静止加熱の際にラックバーの背面と高周波誘導加熱コイルとの間の間隔を対向領域において均一にすることができ、ひいては前記背面に均一な焼入硬化層を形成することが可能となる。
【図面の簡単な説明】
【図1】本発明に係るラックバーの高周波焼入方法を実施するための高周波焼入装置を示す斜視図である。
【図2】図1におけるA−A線断面図である。
【図3】図1におけるB−B線断面図である。
【図4】本発明に係る高周波焼入方法及び高周波焼入装置にて焼入されたラックバーの焼入硬化層パターンを示す断面図である。
【図5】回転加熱を加えず加熱開始から加熱終了までの全期間にわたり静止加熱のみで加熱して焼入処理した場合のラックバーの焼入硬化層パターンを示す断面図である.
【図6】静止加熱をせず加熱関始から加熱終了まで回転加熱のみで加熱して焼入処理した場合のラックバーの焼入硬化硬化層パターンを示す断面図である。
【図7】静止加熱後に回転加熱を行なうことなく焼入処理した場合のラックバーの焼入硬化層パターンを示すラックバーの断面図である。
【図8】被焼入体であるステアリング用ラックバーの側面図である。
【図9】従来の歯面焼入用の高周波直接通電焼入装置の側面図である。
【図10】従来の背面焼入用の高周波直接通電焼入装置の側面図である。
【図11】従来の歯面及び背面同時焼入用の高周波直接通電焼入装置の側面図である。
【図12】図9及び図10にそれぞれ示す従来の高周波直接通電焼入装置にて、歯面と背面とを二工程で焼入処理した場のラックバーの焼入硬化層パターンを示す断面図である。
【図13】図11に示す従来の高周波直接通電焼入装置にて、歯面及び背面を同時に一工程で焼入処理した場合のラックバーの焼入硬化層パターンを示す断面図である。
【符号の説明】
1 ステアリング用ラックバー
3 歯面
4 背面
19 高周波誘導加熱コイル
20 焼入装置
21a,21b 主導体
22a,22b 環状副導体
23a,23b 電流供給導体
24a,24b 中空部
25a,25b 冷却液導入管
26a,26b 外側壁部
27a,27b 内側壁部(対向壁部)
28a,28b 冷却液噴射孔
29 高周波電源
30 板状絶縁部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of induction hardening the entire peripheral surface including the tooth surfaces of a rack bar by a single quenching method and a quenching apparatus thereof.
[0002]
[Prior art]
FIG. 8 shows a steering rack bar 1 generally used conventionally. The steering rack bar 1 has inclined teeth 2 having an angle θ with respect to the axis X on one side surface. The surface opposite to the tooth surface 3 of the inclined tooth 2 is a back surface (semi-cylindrical surface) 4. Conventionally, a high frequency direct current quenching apparatus 5a shown in FIG. 9 is used to quench the tooth surface 3 of this type of steering rack bar 1, and FIG. 10 illustrates that the back surface 4 is quenched. A high-frequency direct current quenching apparatus 5b shown is used. Moreover, in order to quench the tooth surface 3 and the back surface 4 at the same time, a high-frequency direct energization device 6 shown in FIG. 11 is used.
[0003]
As shown in FIGS. 9, 10 and 11, these devices 5a, 5b or 6 connect the first conductors 8, 8 ′ and the second conductors 9, 9 ′ via the electrical insulating materials 7, 7 ′. The unit conductors 10 and 10 ', which are members combined in a sandwich shape, respectively, are disposed so as to oppose the tooth surface 3 or the back surface 4 of the steering gruck bar 1 that is to be hardened, and these unit conductors. A first contact electrode 11, 11 ′ connected to the first conductors 8, 8 ′ of the 10, 10 ′ and abuttingly disposed at one end in the longitudinal direction of the tooth surface 3 or the back surface 4; A second contact electrode 12, 12 ′ connected to the second conductor 9, 9 ′ and abuttingly disposed at the other longitudinal end of the tooth surface 3 or the back surface 4, and the second contact electrode 12, A coolant sprayer capable of spraying coolant onto the tooth surface 3 or the back surface 4 in the region between 12 ' And 'proximal conductor 14, 14 provided with a' 13, the pair of first conductor 8, 8 'and the second conductor 9, 9' are provided with respective high-frequency power source 15, 15 'and the connected. Furthermore, a pair of hydraulic cylinders 16 and 16 'for pressing the rack bar are also provided.
[0004]
[Problems to be solved by the invention]
When the tooth surface 3 and the back surface 4 of the rack bar 1 are quenched using the conventional high-frequency direct current quenching apparatus 5a, 5b or 6 as described above, the following problems occur. That is, when the tooth surface 3 and the back surface 4 of the rack bar 1 are induction-hardened in two steps using the high-frequency direct current hardening apparatus 5a, 5b, the hardened hardened layer pattern is a hardened hardened layer as shown in FIG. Pattern T is obtained. The hardened layer portion indicated by the hatched portion W in this hardened and hardened layer pattern T is a portion where the hardening treatment is overlapped, and is obtained from the hardened layer portion obtained by the first hardening treatment and the subsequent hardening treatment load. The boundary portion W of the hardened layer portion is softened, and furthermore, cracking is likely to occur. In addition, since quenching is performed in two steps, a long quenching time is required, and workability and productivity are remarkably lowered. Furthermore, since two high frequency direct current quenching apparatuses 5a and 5b are required, there is a problem that the equipment cost becomes high.
[0005]
Further, when the tooth surface 3 and the back surface 4 of the rack bar 1 are simultaneously induction-hardened in one process using the high-frequency direct current quenching apparatus 6, the hardened hardened layer pattern as shown in FIG. T. In hardening by this apparatus 6, the hardened layer of the part W 'equivalent to the above-mentioned boundary part W (refer FIG. 12) becomes shallow. Further, as a problem on the equipment, the work pressing mechanism, the attaching / detaching mechanism and the like become very complicated, and more expensive than the two quenching apparatuses 5a and 5b described above.
[0006]
The present invention has been made to solve such problems. The object of the present invention is to efficiently quench the tooth surface and the back surface of the rack bar at the same time without using the direct energization method. An object of the present invention is to provide an induction hardening method and an induction hardening apparatus for a rack bar which can form a hardened layer pattern on the entire circumferential surface of the rack bar.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, in the present invention, in the method of induction hardening the entire peripheral surface including the tooth surface and the back surface of the rack bar that is the object to be hardened,
A high-frequency induction heating coil having a pair of main conductors arranged along the axial direction of the rack bar and opposed to the tooth surface and the back surface of the rack bar is used. (A) The rack bar is subjected to the high-frequency induction heating. High-frequency induction heating under a stationary state with respect to the coil;
(B) Next, the step of rotating the rack bar about its axis to further continue high frequency induction heating in a state where the rack bar is rotated with respect to the high frequency induction heating coil;
(C) After that, when the entire circumferential surface of the rack bar is induction-heated to the required quenching temperature by high frequency induction, the step of rapidly cooling the entire circumferential surface of the rack bar;
Are enacted sequentially.
Further, in the present invention, static heating for high-frequency induction heating of the rack bar in a stationary state and rotational heating for high-frequency induction heating of the rack bar in a rotating state are performed using the same frequency current or different frequency currents. This is done by flowing it through a high frequency induction heating coil.
In the present invention, the static heating and the rotary heating are performed by supplying the same electric power or different electric powers to the high-frequency induction heating coil.
In the present invention,
(A) a high-frequency induction heating coil having a pair of main conductors arranged along the axial direction of the rack bar, which is a body to be hardened, and facing the tooth surface and the back surface of the rack bar;
(B) a holding mechanism that holds the rack bar in a stationary state with the tooth surfaces and the back surface of the rack bar facing the pair of main conductors;
(C) a rotation drive mechanism that rotationally drives the rack bar held by the holding mechanism;
(D) a coolant injection mechanism that injects coolant toward the rack bar;
Each with
The rack bar is preliminarily heated by the high-frequency induction heating coil in a state where the rack bar is held stationary by the holding mechanism, and then the rack bar is rotationally driven around its axis by the rotational drive mechanism. The main body is heated by the high-frequency induction heating coil, and the coolant is sprayed from the coolant spray mechanism immediately after the entire circumferential surface including the tooth surface and back surface of the rack bar reaches the required quenching temperature. An induction hardening apparatus for a rack bar, wherein the entire circumferential surface of the rack bar is hardened.
In the present invention, the pipe member having a hollow portion constitutes the pair of main conductors, and a plurality of opposing wall portions of the pair of main conductors disposed to face the tooth surfaces and the back surface of the rack bar. Coolant spray ports are provided, respectively, and coolant is sprayed from the plurality of coolant spray ports.
In the present invention, the opposing wall portion of the main conductor facing the tooth surface of the rack bar is a flat wall portion, and the opposing wall portion of the main conductor facing the back surface of the rack bar is semicircular in cross section. And the walls.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0009]
FIG.1 and FIG.2 shows the induction hardening apparatus 20 used in order to enforce the induction hardening method which concerns on this invention. As shown in FIGS. 1 and 2, the device 20 includes a pair of left and right main conductors 21 a that are arranged in parallel with each other so as to face the tooth surface 3 and the back surface 4 of the rack bar 1 and extend in the vertical direction. 21b, a pair of upper and lower annular sub-conductors 22a and 22b connected to both upper and lower ends of these main conductors 21a and 21b and arranged in parallel with each other, and upper and lower portions of a cut portion at an intermediate position of the main conductor 21b Are provided with a high frequency induction heating coil 19 comprising a pair of current supply conductors 23a and 23b connected to each other.
[0010]
As shown in FIGS. 2 and 3, the main conductors 21a and 21b described above are formed of conductive pipe members having hollow portions 24a and 24b for circulating coolant, and the annular sub-conductors 22a and 22b are hollow portions. It is comprised with the electroconductive ring member which does not have. A pair of coolant introduction pipes 25a and 25b communicating with the hollow portions 24a and 24b of the main conductors 21a and 21b are connected to the outer wall portions 26a and 26b of the main conductors 21a and 21b, respectively. Furthermore, the inner wall portions 27a and 27b of the main conductors 21a and 21b facing the tooth surface 3 and the back surface 4 of the rack bar 1 have a plurality of holes having a predetermined hole diameter and spaced by a predetermined pitch interval. The coolant injection holes 28a and 28b are provided. Thus, the cooling liquid (quenched liquid) introduced into the hollow portions 24a and 24b of the main conductors 21a and 21b is jetted from these cooling liquid introduction pipes 25a and 25b.
[0011]
The inner wall portion 27a of the main conductor 21a disposed opposite to the tooth surface 3 of the rack bar 1 during static heating and quenching cooling, which will be described later, is flat, while the back surface 4 of the rack bar 1 is subjected to quench cooling. The inner wall portion 27b of the main conductor 21b opposed to each other is a curved surface (semicircular surface) having a shape corresponding to the curvature of the back surface 4 (see FIGS. 1, 2 and 3).
[0012]
Here, the production procedure of the induction hardening apparatus 20 will be described as follows.
[0013]
(A) First, one end (upper end) α of one main conductor 21a formed along the tooth surface 3 of the rack bar 1 is brazed to the lower surface orthogonal to the axial direction of one annular sub-conductor 22a. And one end (upper end) β of the main conductor 21b formed along the back surface 4 of the rack bar 1 is a lower surface orthogonal to the axial direction of one annular sub-conductor 22b and the main The body 21a is joined by brazing at a position 180 degrees away from the joining position where the one end α of the body 21a is joined (see FIGS. 1 and 2).
[0014]
(B) Next, the other end (lower end) γ of the one main conductor 21a is joined to a surface orthogonal to the axial direction of the other annular sub-conductor 22b by brazing, and the other main conductor 21b is joined. Is perpendicular to the axial direction of the other annular sub-conductor 22b at a position 180 ° away from the joining position where the other end γ of the one main conductor 21a is joined. Join to the surface to be brazed.
[0015]
(C) Then, one end portions of the current supply conductors 23a and 23b are joined to a predetermined intermediate position of the one main conductor 21a or the other main conductor 21b by the same method as described above to form a coil electric circuit. The high-frequency power is supplied from the high-frequency power source 29 to the high-frequency induction heating coil 19 through the current supply conductors 23a and 23b. A plate-like insulating member 30 made of a heat-resistant insulating material such as tetrafluoroethylene (trade name: Teflon) is inserted and disposed between the current supply conductors 23a and 23b. It is configured to achieve mechanical insulation.
[0016]
Next, an operation procedure when the entire circumferential surface (including the tooth surface 3 and the back surface 4) of the rack bar 1 is quenched by using the induction hardening apparatus 20 having the above-described configuration will be described. Street.
[0017]
(1) First, the lower end portion of the rack bar 1 is placed on a workpiece fixing jig (not shown) disposed above the induction hardening apparatus 20, and the upper end portion of the rack bar 1 is pressed by a center (not shown). Thus, the rack bar 1 is held vertically.
(2) Next, the rack bar 1 is lowered by a workpiece lifting mechanism (not shown) and stopped at a predetermined heating position in the quenching apparatus 20.
(3) Next, the rack bar 1 is fixedly disposed in a state where the tooth surface 3 and the back surface 4 of the rack bar 1 are opposed to the main conductor 21a and the main conductor 21b of the high-frequency induction heating coil 19, respectively.
(4) Thereafter, the high frequency power of the required frequency / required output from the high frequency power supply 29 is supplied to the high frequency induction heating coil 19 of the quenching apparatus 20 and a high frequency current is caused to flow through the coil 19, whereby the tooth surface of the rack bar 1. 3 and the back surface 4 are heated statically (high frequency induction heating with the rack bar 1 being stationary) and high frequency induction heating is performed over a required time.
(5) When the tooth surface 3 and the back surface 4 reach the required heating temperature and the required heating depth, the rack bar 1 is rotated around the axis X (see FIG. 8) at a required rotational speed by a rotation mechanism not shown. Then, rotational heating (high-frequency induction heating under a state in which the rack bar 1 is rotated) is performed on the entire circumferential surface (work circumferential surface) of the rack bar 1.
(6) Then, when the entire circumferential surface of the rack bar 1 reaches the required quenching temperature by this rotational heating, the energization to the high frequency induction heating coil 19 is cut off and the heating is stopped.
(7) Next, the required pressure from the coolant injection cold holes 28a, 28b opened in the inner wall portions (work-opposing surfaces) 27a, 27b of the main conductor 21a on the tooth surface 3 side and the main conductor 22b on the back surface 4 side. A coolant having a required flow rate is sprayed toward the peripheral surface of the rotating rack bar 1 and rapidly cooled until the surface temperature of the peripheral surface of the rack bar 1 reaches room temperature.
(8) Then, when the surface temperature of the peripheral surface of the rack bar 1 is rapidly cooled to room temperature, both the injection of the coolant and the rotation of the rack bar 1 are stopped, and the series of quenching processes is completed.
(9) After that, the work is raised to a predetermined position, the rack bar is removed from the work fixing jig 30 and the center 31, and transferred to the next process.
[0018]
To summarize the above-described series of quenching operations, the rack bar 1 is disposed at a predetermined position in the induction hardening apparatus 20, that is, the tooth surface 3 of the rack bar 1 faces the main conductor 21a as shown in FIG. In addition, the tooth surface 3 is fixed by placing it at a position where the back surface 4 of the rack bar 1 is opposed to the main conductor 21b and fixing it in a stationary state, and energizing the high frequency induction heating coil 19 in this stationary state. And static heating of the back surface 4 is performed. Then, the tooth surface 3 and the back surface 4 reach the required temperature by static heating over the required time, and at the same time, the workpiece holding jig (not shown) is driven around the axis X of the rack bar 1 by the rotation driving means (not shown). While rotating at the rotation speed, the heating was performed over the required time (the energized state of the high frequency induction heating coil 19 was maintained), and the entire circumferential surface of the rack bar 1 including the tooth surface 3 and the back surface 4 reached the required quenching temperature. At the time, the supply of the high-frequency current to the high-frequency induction heating coil 19 is interrupted, and at the same time, the coolant having the required pressure and the required flow rate is rotated from the plurality of coolant injection holes 28a and 28b provided in the pair of main conductors 21a and 21b. A quenching process is performed by spraying toward the rack bar 1 in a state and rapidly cooling the surface of the rack bar 1 over a required time.
[0019]
Note that the arrow R shown in FIG. 1 indicates the current flow direction at the moment, but the high-frequency induction heating coil 19 used in this embodiment has a pair of main conductors 21a, 21b and the annular subconductors 22a and 22b, when the high-frequency induction heating coil 19 is energized, a current twice as large as the current flowing through the annular subconductors 22a and 22b flows through the main conductors 21a and 21b. Become. That is, each of the pair of annular sub-conductors 22a and 22b divides the annular conductor into two and forms a coil electric circuit in which the two identical conductors are connected in parallel to each other via the pair of main conductors 21a and 21b. Therefore, if the high-frequency current flowing through each of the main conductors 21a and 21b is, for example, I amperes, the high-frequency current flowing through each of the annular sub-conductors 22a and 22b is I / 2 amperes.
[0020]
When the entire circumferential surface of the rack bar 1 was quenched by the induction hardening method of the present invention using the induction hardening apparatus 20 as described above, a quenched hardened layer pattern as shown in FIG. 4 was obtained. In this case, as shown in FIG. 4, it is deeper than the tooth height of the tooth surface 3 and from the central part in the longitudinal direction (left and right direction in FIG. 4) of the tooth surface 3 perpendicular to the tooth height to the left and right sides thereof. gradually with depth comprising such cured layer pattern T 1 is formed on the side of the tooth surfaces 3, the hardened layer pattern T hardened layer pattern T 2 of the uniform arcuate cross section contiguous respectively to both parts 1 back toward 4 side formed.
[0021]
In order to confirm the difference between the quench hardening layer pattern T obtained by the induction hardening method of the present invention and the quench hardening layer pattern obtained by other methods without using the induction hardening method of the present invention. In addition, the following experiment was conducted.
[0022]
First, during the entire period from the start to the end of the high frequency induction heating, the high frequency induction heating is performed in a state where the rack bar 1 is always kept stationary without giving rotation, and other heating conditions are the same as those shown in FIG. When rapidly cooled by high frequency induction heating only by static heating, a hardened and hardened layer pattern as shown in FIG. 5 was obtained. Specifically, as shown in FIG. 5, a hardened layer pattern T 1 ′ deeper than the tooth height of the tooth surface 3 and having a uniform depth is formed on the tooth surface 3 side. A hardened layer pattern T 2 ′ having an arc cross section extending uniformly from a position far away from both the left and right portions of the pattern T 1 ′ was formed on the back surface 4 side. That is, in this case, the tooth surface 3 and the back surface 4 are heated separately by the main conductor 21a on the tooth surface 3 side and the main conductor 21b on the back surface 4 side. The cured layer patterns T 1 ′ and T 2 ′ on the surface 3 and the back surface 4 were not continuous but separated from each other.
[0023]
In addition, static heating is not performed at all during the period from the start to the end of the high frequency induction heating, and the other heating conditions are the same as those shown in FIG. A cured layer pattern was obtained. Specifically, as shown in FIG. 6, a uniform hardened layer pattern T 1 ″ is obtained on the back surface 4 side, but the central portion in the left-right direction is the shallowest on the tooth surface 3 side and the left and right sides thereof. The cured layer pattern T 2 ″ is gradually deepened as it goes to both portions. That is, in this case, since the surfaces of the tooth surface 3 and the back surface 4 are heated in a continuous manner by the pair of main conductors 21a and 21b, the hardened layer pattern T formed on the surface of the tooth surface 3 is used. 1 ″ and the cured layer pattern T 2 ″ formed on the surface of the back surface 4 become a continuous cured layer pattern without being separated from each other, but the cured layer becomes deeper as it approaches the left and right parts of the tooth surface 3. However, in the central part of the tooth surface 3, it becomes a shallow hardened layer without being heated up to the region of the tooth bottom 3a. Such hardened layer patterns T 1 ″ and T 2 ″ are heated sufficiently deeply to the region of the tooth bottom 3a because the load on the tooth surface 3 side is light and only the rotary heating is used. Due to not being done.
[0024]
In addition, after static heating was performed under the same conditions as in FIG. 4, rapid cooling was performed immediately without rotating heating, and a quenched hardened layer pattern as shown in FIG. 7 was obtained. The shape of this hardened and hardened layer pattern is similar to that of the hardened and hardened layer pattern shown in FIG. 5. Incidentally, when the depths of both hardened layers are compared with each other, the hardened surface on the tooth surface 3 side is hardened. For the layer pattern T 1 ″ ″, the former is about 2/3 of the latter at the center of the tooth surface 3, and for the cured layer pattern T 2 ″ ″ on the back surface 4 side, the former is about 2/3 of the latter. is there.
[0025]
As can be seen by comparing the cured layer pattern of FIG. 4 obtained by the induction hardening method according to the present invention with the cured layer pattern of FIGS. 5, 6 and 7 obtained by the conventional induction hardening method, The cured layer pattern in FIG. 4 is an ideal pattern, that is, the cured layer pattern T 1 formed on the surface on the tooth surface 3 side and the cured layer pattern T 2 formed on the surface on the back surface 4 side are not separated from each other. It can be seen that the hardened layer pattern T 1 on the tooth surface 3 side is a pattern (see FIG. 4) that is continuous and sufficiently deeper than the tooth bottom 3a. In the induction hardening method according to the present invention, such an ideal pattern is obtained by preheating the tooth surface 3 and the back surface 4 to a required depth by static heating in the first step, and then the second step. This is because the entire peripheral surface of the rack bar 1 including the tooth surface 3 and the back surface 4 is heated by rotation heating (that is, static heating and rotation heating are performed in combination).
[0026]
Below, an example of the concrete enforcement conditions of the induction hardening method of the rack bar which concerns on this invention is described.
(1) Dimensions and dimensions of rack bar (A) Total length: 620mm
(I) Hardened part: 175mm
(C) Outer diameter: 32 mm
(D) Tooth height: 5mm
(E) Tooth width: 18mm
Figure 0004235336
[0027]
Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various modifications and changes can be made based on the technical idea of the present invention. For example, in the above-described embodiment, the rack bar 1 is placed vertically to perform stationary heating and rotational heating. However, the rack bar 1 may be placed horizontally to perform stationary heating and rotational heating. In the above-described embodiment, the pair of main conductors 21a and 21b are provided with the coolant injection holes 28a and 28b, and the pair of main conductors 21a and 21b are also used as the coolant injection mechanism. Is provided with a separate and independent cooling liquid injection ring as a cooling liquid injection mechanism, and the cooling liquid is injected from the cooling liquid injection ring onto the rack bar 1, or the cooling liquid injection ring and the cooling liquid injection holes of the main conductors 21a and 21 are provided. You may make it spray a cooling liquid simultaneously to the rack bar 1 from 28a, 28b.
[0028]
【The invention's effect】
The induction hardening method according to the present invention as set forth in claim 1 is a method of induction hardening the entire circumferential surface including the tooth surface and back surface of the rack bar, and a pair of electrodes disposed facing the tooth surface and back surface of the rack bar. Using a high-frequency induction heating coil having a main conductor, static heating (preliminary heating) is performed for the required time, followed by rotational heating (main heating) for the required time, and the entire rack bar heated to the required quenching temperature. Since the peripheral surface (surface) is rapidly cooled and hardened, according to the present invention, the hardened and hardened layers respectively formed on the tooth surface and the back surface of the rack bar are continuous with each other without being separated. In addition, a hardened and hardened layer sufficiently deep to the bottom of the tooth surface of the rack bar and a relatively thin and hardened hardened layer on the back surface of the rack bar are good (ideal). Quenched hardened layer It is possible to obtain a turn.
[0029]
Further, the induction hardening method according to the second aspect of the present invention is the same frequency for the stationary heating for high-frequency induction heating in a stationary state and the rotational heating for high-frequency induction heating in a rotating state of the rack bar. According to the present invention, according to the shape, size, or quenching specification of the rack bar to be hardened, the current or different frequency currents are passed through the high frequency induction heating coil. Hardening is possible.
[0030]
Further, the induction hardening method according to the third aspect of the present invention is such that static heating and rotary heating are performed by supplying the same power or different power to the high frequency induction heating coil. According to the present invention, quenching according to the shape, size, or quenching specification of the rack bar is possible as described above.
[0031]
In addition, the induction hardening apparatus according to the fourth aspect of the present invention is disposed along the axial direction of the rack bar, which is the object to be hardened, and is disposed to face the tooth surface and the back surface of the rack bar. A high-frequency induction heating coil having a pair of main conductors, a holding mechanism for holding the rack bar in a stationary state with the tooth surfaces and back of the rack bar facing the pair of main conductors, and a rack bar held by the holding mechanism Respectively, and a high-frequency induction heating coil under a state where the rack bar is held stationary by the holding mechanism. After the preliminary heating, the rack bar is heated by a high frequency induction heating coil under a state in which the rack bar is rotated around its axis by the rotation drive mechanism, and the entire circumferential surface including the tooth surface and the back surface of the rack bar is obtained. Required Immediately after reaching the quenching temperature, the coolant is sprayed from the coolant spray mechanism to quench the entire circumferential surface of the rack bar, so that the induction hardening method of the present invention can be easily carried out. Thus, it is possible to provide an induction hardening apparatus for a rack bar that is inexpensive, practical, highly useful, and extremely useful in industry.
[0032]
In addition, the induction hardening apparatus according to the present invention described in claim 5 includes a pair of main conductors each formed by a pipe member having a hollow portion, and a pair of opposingly arranged on the tooth surface and the back surface of the rack bar. A plurality of coolant injection ports are provided on the opposing wall portion of the main conductor, and the coolant is injected from the plurality of coolant injection ports. Therefore, the main conductor of the high frequency induction heating coil is used as the coolant injection means. Therefore, it is not necessary to separately provide a member such as a cooling liquid injection ring, and it is possible to provide a device having a simple configuration.
[0033]
According to a sixth aspect of the present invention, the induction hardening apparatus according to the present invention is configured such that the opposing wall portion of the main conductor facing the tooth surface of the rack bar is a flat wall portion, and the main conductor opposing the back surface of the rack bar is used. Since the opposing wall portion has a semicircular cross section, the space between the back surface of the rack bar and the high-frequency induction heating coil can be made uniform in the opposing region during static heating of the rack bar. As a result, a uniform hardened and hardened layer can be formed on the back surface.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an induction hardening apparatus for carrying out an induction hardening method for a rack bar according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a cross-sectional view taken along line BB in FIG.
FIG. 4 is a cross-sectional view showing a hardened hardened layer pattern of a rack bar quenched by an induction hardening method and an induction hardening apparatus according to the present invention.
FIG. 5 is a cross-sectional view showing a hardened hardened layer pattern of a rack bar when the heat treatment is performed only by static heating over the entire period from the start of heating to the end of heating without applying rotary heating.
FIG. 6 is a cross-sectional view showing a quench-hardened hardened layer pattern of a rack bar when subjected to a quenching process by heating only by rotary heating from the beginning of heating to the end of heating without static heating.
FIG. 7 is a cross-sectional view of a rack bar showing a hardened hardened layer pattern of the rack bar when subjected to a quenching process without performing a rotary heating after static heating.
FIG. 8 is a side view of a steering rack bar that is to be hardened.
FIG. 9 is a side view of a conventional high-frequency direct current quenching apparatus for tooth surface quenching.
FIG. 10 is a side view of a conventional high frequency direct current quenching apparatus for backside quenching.
FIG. 11 is a side view of a conventional high frequency direct current quenching apparatus for simultaneous quenching of tooth surfaces and back surfaces.
12 is a cross-sectional view showing a hardened hardened layer pattern of a rack bar in a case where a tooth surface and a back surface are hardened in two steps by the conventional high-frequency direct current hardening apparatus shown in FIGS. 9 and 10, respectively. It is.
13 is a cross-sectional view showing a hardened hardened layer pattern of a rack bar when the tooth surface and the back surface are simultaneously hardened in one step by the conventional high frequency direct current hardening apparatus shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steering rack bar 3 Tooth surface 4 Back surface 19 High frequency induction heating coil 20 Hardening device 21a, 21b Main conductor 22a, 22b Annular subconductor 23a, 23b Current supply conductor 24a, 24b Hollow part 25a, 25b Coolant introduction pipe 26a, 26b Outer wall part 27a, 27b Inner wall part (opposing wall part)
28a, 28b Coolant injection hole 29 High frequency power supply 30 Plate-like insulating member

Claims (6)

被焼入体であるラックバーの歯面及び背面を含めた全周面を高周波焼入する方法において、
前記ラックバーの軸線方向に沿って配置され、かつ、前記ラックバーの歯面及び背面にそれぞれ対向配置される一対の主導体を有する高周波誘導加熱コイルを用い、
(a) 前記ラックバーを前記高周波誘導加熱コイルに対して静止させた状態の下で高周波誘導加熱する工程と、
(b) 次いで、前記ラックバーをその軸線を中心に回転させることにより、前記ラックバーを前記高周波誘導加熱コイルに対して回転させた状態下で高周波誘導加熱をさらに継続して行なう工程と、
(c) しかる後に、前記ラックバーの全周面が所要の焼入温度に高周波誘導加熱された時点で、前記ラックバーの全周面を急速冷却する工程と、
をそれぞれ順次に施行することを特徴とするラックバーの高周波焼入方法。
In the method of induction-quenching the entire circumferential surface including the tooth surface and back surface of the rack bar that is to be hardened,
Using a high frequency induction heating coil having a pair of main conductors arranged along the axial direction of the rack bar and opposed to the tooth surface and the back surface of the rack bar,
(A) high-frequency induction heating in a state where the rack bar is stationary with respect to the high-frequency induction heating coil;
(B) Next, the step of rotating the rack bar about its axis to further continue high frequency induction heating in a state where the rack bar is rotated with respect to the high frequency induction heating coil;
(C) After that, when the entire circumferential surface of the rack bar is induction-heated to the required quenching temperature by high frequency induction, the step of rapidly cooling the entire circumferential surface of the rack bar;
The induction hardening method of the rack bar, which is performed sequentially.
前記ラックバーを静止状態で高周波誘導加熱する静止加熱、及び、前記ラックバーを回転状態で高周波誘導加熱する回転加熱を、同一の周波数電流、或いはそれぞれ異なる周波数電流を前記高周波誘導加熱コイルに流すことにより行うことを特徴とする請求項1に記載のラックバーの高周波焼入方法。The same frequency current or different frequency currents are caused to flow through the high frequency induction heating coil for stationary heating for high frequency induction heating of the rack bar in a stationary state and for rotary heating for high frequency induction heating of the rack bar in a rotating state. The method of induction hardening of a rack bar according to claim 1, wherein: 前記静止加熱及び回転加熱を、同一電力、或いはそれぞれ異なる電力を前記高周波誘導加熱コイルに供給することにより行うことを特徴とする請求項1に記載のラックバーの高周波焼入方法。2. The induction hardening method for a rack bar according to claim 1, wherein the stationary heating and the rotary heating are performed by supplying the same electric power or different electric powers to the high frequency induction heating coil. (a) 被焼入体であるラックバーの軸線方向に沿って配置され、かつ、前記ラックバーの歯面及び背面にそれぞれ対向配置される一対の主導体を有する高周波誘導加熱コイルと、
(b) 前記ラックバーの歯面及び背面を前記一対の主導体に対向した状態で前記ラックバーを静止状態で保持する保持機構と、
(c) 前記保持機構にて保持された前記ラックバーを回転駆動する回転駆動機構と、
(d) 前記ラックバーに向けて冷却液を噴射する冷却液噴射機構と、
をそれぞれ具備し、
前記ラックバーを前記保持機構にて静止状態に保持した状態の下で前記高周波誘導加熱コイルにて予備加熱した後に、前記ラックバーを前記回転駆動機構にてその軸線を中心に回転駆動させた状態の下で前記高周波誘導加熱コイルにて本加熱し、前記ラックバーの歯面及び背面を含む全周面が所要の焼入温度に達した直後に前記冷却液噴射機構から冷却液を噴射して前記ラックバーの全周面を焼入するようにしたことを特徴とするラックバーの高周波焼入装置。
(A) a high-frequency induction heating coil having a pair of main conductors arranged along the axial direction of the rack bar, which is a to-be-hardened body, and opposed to the tooth surface and the back surface of the rack bar;
(B) a holding mechanism that holds the rack bar in a stationary state with the tooth surfaces and the back surface of the rack bar facing the pair of main conductors;
(C) a rotation drive mechanism that rotationally drives the rack bar held by the holding mechanism;
(D) a coolant injection mechanism that injects coolant toward the rack bar;
Each with
The rack bar is preliminarily heated by the high-frequency induction heating coil in a state where the rack bar is held stationary by the holding mechanism, and then the rack bar is rotationally driven around its axis by the rotational drive mechanism. The main body is heated by the high-frequency induction heating coil, and the coolant is sprayed from the coolant spray mechanism immediately after the entire circumferential surface including the tooth surface and back surface of the rack bar reaches the required quenching temperature. An induction hardening apparatus for a rack bar, wherein the entire circumferential surface of the rack bar is hardened.
中空部を有するパイプ部材にて前記一対の主導体をそれぞれ構成すると共に、前記ラックバーの歯面及び背面に対向配置される前記一対の主導体の対向壁部に複数の冷却液噴射口をそれぞれ設け、前記複数の冷却液噴射口から冷却液を噴射するようにしたことを特徴とする請求項4に記載のラックバーの高周波焼入装置。Each of the pair of main conductors is configured by a pipe member having a hollow portion, and a plurality of coolant injection ports are provided on opposing wall portions of the pair of main conductors arranged to face the tooth surface and the back surface of the rack bar. The induction hardening apparatus for a rack bar according to claim 4, wherein the cooling liquid is provided from the plurality of cooling liquid injection ports. 前記ラックバーの歯面に対向する前記主導体の対向壁部を平坦状の壁部とし、前記ラックバーの背面に対向する前記主導体の対向壁部を断面半円形状の壁部としたことを特徴とする請求項5に記載のラックバーの高周波焼入装置。The facing wall portion of the main conductor facing the tooth surface of the rack bar is a flat wall portion, and the facing wall portion of the main conductor facing the back surface of the rack bar is a semicircular wall portion. The induction hardening apparatus for a rack bar according to claim 5.
JP2000048422A 2000-02-25 2000-02-25 Induction hardening method of rack bar and induction hardening apparatus thereof Expired - Fee Related JP4235336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048422A JP4235336B2 (en) 2000-02-25 2000-02-25 Induction hardening method of rack bar and induction hardening apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048422A JP4235336B2 (en) 2000-02-25 2000-02-25 Induction hardening method of rack bar and induction hardening apparatus thereof

Publications (2)

Publication Number Publication Date
JP2001234245A JP2001234245A (en) 2001-08-28
JP4235336B2 true JP4235336B2 (en) 2009-03-11

Family

ID=18570507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048422A Expired - Fee Related JP4235336B2 (en) 2000-02-25 2000-02-25 Induction hardening method of rack bar and induction hardening apparatus thereof

Country Status (1)

Country Link
JP (1) JP4235336B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010956A (en) * 2002-06-06 2004-01-15 Toyoda Mach Works Ltd Heat treatment method of rack bar, and rack bar
CN100456896C (en) * 2004-07-16 2009-01-28 宫电高周波设备(上海)有限公司 Direct-electrifying heating device
JP4978767B2 (en) * 2005-09-16 2012-07-18 株式会社ジェイテクト Steering device
JP5072234B2 (en) * 2006-02-21 2012-11-14 株式会社ミヤデン Rack bar induction hardening equipment
DE102007015314B4 (en) * 2007-03-28 2015-04-16 Efd Induction Gmbh Inductor for induction hardening of metallic workpieces
CN102002575B (en) * 2010-09-29 2012-07-04 大连大显精密轴有限公司 Transverse feed type high-frequency quenching mechanism
JP5331171B2 (en) * 2011-07-22 2013-10-30 電気興業株式会社 High frequency induction heating coil and high frequency induction heating method
KR101301909B1 (en) 2012-02-06 2013-08-30 주식회사 피에스텍 Heat treatment apparatus for linear element
JP6628398B2 (en) * 2015-09-15 2020-01-08 株式会社ミヤデン Electric heating device for steering rack bar
CN107034346A (en) * 2017-06-12 2017-08-11 上海赫丁格热处理有限公司 Hexagon hollow object inductor and quenching machine
JP7101092B2 (en) * 2018-09-25 2022-07-14 高周波熱錬株式会社 Quenching equipment and quenching method for rack bars
CN110106339B (en) * 2019-05-15 2024-07-30 宁夏天地奔牛实业集团有限公司 Continuous rack high-efficiency induction quenching method
CN112176173B (en) * 2020-09-07 2022-05-27 舒城久联精密机械有限公司 Automatic high-frequency quenching device for machining motor shaft
CN112553427B (en) * 2020-11-28 2022-07-08 浙江索特传动科技有限公司 Quenching equipment for V-shaped guide rail rack
WO2023026903A1 (en) * 2021-08-23 2023-03-02 日本精工株式会社 Rack shaft, method for manufacturing same, and rack-and-pinion steering gear unit

Also Published As

Publication number Publication date
JP2001234245A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP4235336B2 (en) Induction hardening method of rack bar and induction hardening apparatus thereof
US4894501A (en) Method and apparatus for induction heating of gear teeth
JP2000087135A (en) Induction heating and hardening apparatus for shaft member with foot
JP3582783B2 (en) High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method
JP2005133123A (en) Induction-heating apparatus
JP2014224298A (en) Movement hardening apparatus and movement hardening method for long work
JP2023512702A (en) Split multi-coil electric induction heating system for heating multiple features of bearing components simultaneously
JP5096065B2 (en) High frequency induction heating coil and high frequency induction heating method
JP2002235111A (en) Low strain hardening apparatus and hardening method
JP2006028589A (en) Hardening and tempering method with direct electric-conduction hardening apparatus
JP2004131823A (en) Method and apparatus for induction-hardening rack bar
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
JP4255694B2 (en) Method and apparatus for manufacturing barrel of twin screw extruder
JPS58213828A (en) Induction hardening method of inside surface of bottomed cylindrical body
JP2002356719A (en) Induction hardening method for cam shaft
JPH0553844B2 (en)
JP3059165B1 (en) Heating coil for induction hardening of a cylindrical body having an opening on the outer peripheral surface and quenching and cooling method
JP2596779Y2 (en) High-frequency transfer heat treatment equipment for rod-shaped workpieces
JP2632106B2 (en) High frequency heating coil
JP2001329313A (en) High frequency heating coil body
JPH0144770B2 (en)
JP3092093B2 (en) Induction hardening equipment
JPH06330178A (en) Movable induction hardening apparatus for bar-like work
JP4209227B2 (en) High frequency induction heating method and apparatus for crankshaft
JPH11302735A (en) One side hardening apparatus for flat plate annular work and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees