JPS59160128A - Deflecting method of laser beam - Google Patents

Deflecting method of laser beam

Info

Publication number
JPS59160128A
JPS59160128A JP3454083A JP3454083A JPS59160128A JP S59160128 A JPS59160128 A JP S59160128A JP 3454083 A JP3454083 A JP 3454083A JP 3454083 A JP3454083 A JP 3454083A JP S59160128 A JPS59160128 A JP S59160128A
Authority
JP
Japan
Prior art keywords
laser beam
frequency
intensity
circuit
acousto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3454083A
Other languages
Japanese (ja)
Inventor
Hidekazu Seya
英一 瀬谷
Sumio Hosaka
純男 保坂
Akihiro Takanashi
高梨 明紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3454083A priority Critical patent/JPS59160128A/en
Publication of JPS59160128A publication Critical patent/JPS59160128A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a deflected beam having uniform intensity at a deflection angle over a wide range by providing a filter circuit which can correct the intensity of the acoustic wave propagating in an acousttooptic element according to the frequency thereof within a driving circuit for the acoustooptic element. CONSTITUTION:The output frequency of a voltage controlling oscillator 1 is determined by the DC voltage value applied on an input terminal 6 for a control voltage in a laser beam deflector and the oscillated output thereof is applied through a filter 2 and a power amplifier 3 to an acoustooptic element 4. The electric power applied on the element 4 is corrected with the frequency thereof by the filter circuit 2 having a suitable characteristic to negate the fluctuation in the deflecting efficiency of a laser beam 8 in the acoustic frequency range to be used by the change in the intensity of the acoustic wave. The beam 7 is thus deflected with the uniform intensity. The frequency characteristic of the circuit 2 is required to be adjusted by the deflecting efficiency characteristic of the element 4 and is made variable from the outside.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーザビーム偏向方式の改良に係シ、特にレー
ザを用いた高速精密加工装置あるいは表示装置等に好適
なレーザビーム偏向方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an improvement in a laser beam deflection method, and more particularly to a laser beam deflection method suitable for high-speed precision processing equipment or display devices using lasers.

〔背景技術〕[Background technology]

音響光学素子によるレーザビームの偏向効率はレーザビ
ーム入射角、素子中?伝搬する音響波ビームの強度およ
び周波数に依存する。レーザビームの偏向角を制御する
ためブラッグ条件が成立する付近の周波数領域で音響光
学素子を駆動する際、従来の方法では一定の音響波強度
で駆動しているため、偏向角の変化とともに偏向効率も
変動し、一様な強度の偏向ビームが得られないという欠
点があった。
What is the deflection efficiency of a laser beam by an acousto-optic element depending on the laser beam incidence angle and the inside of the element? It depends on the intensity and frequency of the propagating acoustic wave beam. When driving an acousto-optic element in the frequency range near where the Bragg condition is satisfied to control the deflection angle of the laser beam, conventional methods drive with a constant acoustic wave intensity, so the deflection efficiency changes as the deflection angle changes. This has the disadvantage that a deflected beam of uniform intensity cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の問題点を解決し、広い範囲の偏
向角において一様な強度の偏向ビームが得られるような
高速のレーザビーム偏向方式を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a high-speed laser beam deflection method that can obtain a deflected beam of uniform intensity over a wide range of deflection angles.

〔発明の概要〕[Summary of the invention]

上記の目的全達成するため、本発明では音響波強度によ
るレーザビーム偏向効率の変化に注目し、音響光学素子
駆動回路内に適当な特性ケ持つ沖波回路を設けて音響光
学素子に加わる電力?その周波数によシ補正できるよう
にしている。戸波回路の特性を適切に選ぶことにより、
使用する音響周波数領域内での偏向効率の変動全音響波
強度の変化で打ち消すことができる。
In order to achieve all of the above objectives, the present invention focuses on the change in laser beam deflection efficiency due to acoustic wave intensity, and installs an Oki wave circuit with appropriate characteristics in the acousto-optic element drive circuit to control the power applied to the acousto-optic element. It is possible to make corrections depending on the frequency. By appropriately selecting the characteristics of the Toba circuit,
Variations in deflection efficiency within the acoustic frequency range of use can be canceled out by changes in the total acoustic wave intensity.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図、第2図、第3図およ
び第4図によシ説明する。第1図は本発明を応用したレ
ーザビーム偏向器である。図においてlid電圧制御発
振器(VCO)、2は戸数器、3は電力増幅器、4は音
響光学素子、5はアパーチャ、6は制御電圧入力端子、
7は入射レーザビーム、8は偏向されたレーザビーム、
9は偏向を受けず直進したレーザビームである。本レー
ザビーム偏向器においては、6の制御電圧大刀端子に加
わる直流電圧値で1の電圧ftjlJ (411発振器
の出力周波数が定まる。この発振出方は2のp波器、3
の電力増幅器を通じて4の音響光学素子に加えられる。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4. FIG. 1 shows a laser beam deflector to which the present invention is applied. In the figure, the lid is a voltage controlled oscillator (VCO), 2 is a door turntable, 3 is a power amplifier, 4 is an acousto-optic element, 5 is an aperture, 6 is a control voltage input terminal,
7 is an incident laser beam, 8 is a deflected laser beam,
9 is a laser beam that is not deflected and travels straight. In this laser beam deflector, the output frequency of the voltage ftjlJ (411) is determined by the DC voltage value applied to the control voltage terminal 6.
is applied to the four acousto-optic elements through a power amplifier.

音響光学素子は、印加する周波数により偏向角が定まる
から、このレーザビーム偏向i−c’は6に加える電圧
によシビームの偏向角を制御できる。
Since the deflection angle of the acousto-optic element is determined by the applied frequency, the deflection angle of the laser beam can be controlled by the voltage applied to the laser beam deflection i-c'.

さて、2の沖波器の利得特性は4の音響光学素子の特性
によシ定めることができる。第2図は異方ブラッグ回折
を利用した音響光学素子?一定な電力で駆動した場合の
偏向効率特性である。図において素子への入力高周波C
力を増加すると入力周波数と偏向効率の関係は曲線10
→11→12のように変化するっこの特性から、素子へ
の入力周波数とその周波数で最高の偏向効率となる電力
の関係が第3図のように求まる。素子への入力電カケ第
3図に従うように与えると、偏向効率は第2図の曲線群
の包絡線として第4図のごとく得られ、入力電力が一定
である場合に比べてはるかに一様な偏向効率特性を得る
ことができる。従って本装置では素子に加わる電力が第
3図のような値となるよう戸数器2の周波数特性を定め
ている。具体戸 的には、上記のp波器2は低域通過波回路およびべ 高域通過p波回路から成る帯域通過F波器とし、低域通
過戸数回路および高域通過沖波回路の折点周波数を調整
して必要な周波数特性ケ得ている。
Now, the gain characteristics of the Oki transducer (2) can be determined by the characteristics of the acousto-optic element (4). Is Figure 2 an acousto-optic device that uses anisotropic Bragg diffraction? This is the deflection efficiency characteristic when driven with constant power. In the figure, the input high frequency C to the element
As the force increases, the relationship between input frequency and deflection efficiency becomes curve 10.
From this characteristic, which changes as →11 →12, the relationship between the input frequency to the element and the power that gives the highest deflection efficiency at that frequency can be determined as shown in FIG. When the input power to the element is given as shown in Figure 3, the deflection efficiency is obtained as the envelope of the curve group in Figure 2 as shown in Figure 4, and is much more uniform than when the input power is constant. It is possible to obtain excellent deflection efficiency characteristics. Therefore, in this device, the frequency characteristics of the door transceiver 2 are determined so that the power applied to the element has a value as shown in FIG. Specifically, the above-mentioned p-wave device 2 is a band-pass F-wave device consisting of a low-pass wave circuit and a high-pass p-wave circuit, and the corner frequency of the low-pass wave circuit and the high-pass wave circuit is The necessary frequency characteristics are obtained by adjusting.

なお、高響光学素子の偏向効率特性によって必要な沖波
器の特性は異なシ帯域通過p波器とは限らない。しかし
、これらはいずnも本発明の範囲を逸脱するものではl
I/10以上の説明のように戸数回路の周波数特性は音
響光学系子の偏向効率特性によシ調整する必要があり、
外部から可変とすることが望ましい。
Note that the characteristics of the Oki wave device required differ depending on the deflection efficiency characteristics of the high-acoustic optical element, and it is not limited to the bandpass p-wave device. However, none of these departs from the scope of the present invention.
As explained above for I/10, the frequency characteristics of the multi-unit circuit need to be adjusted according to the deflection efficiency characteristics of the acousto-optic element.
It is desirable to make it variable from the outside.

本実施例によれば、強度が偏向角によらず一様でしかも
強い偏向ビームが得られるという効果があり、レーザビ
ーム偏向器の特性を犬きく改善することができる。
According to this embodiment, it is possible to obtain a deflected beam whose intensity is uniform and strong regardless of the deflection angle, and the characteristics of the laser beam deflector can be significantly improved.

〔発明の効果〕〔Effect of the invention〕

本発明によnば、一様な強度でレーザビームを偏向する
ことが可能となる。これr半導体デバイス製造用のレテ
ィクル等のレーザビーム加工に応用すると高精度の加工
が可能となる。レティクルに使用する金属薄膜止金レン
ズで集光したレーザビームで走査する場合、レーザビー
ム強度とビームにより加工される線幅の関係は第5図の
ようになる。図よシ、レーザビーム強度の変化は加工線
幅の変動?もたらし加工精度を低下させる。即ち本発明
によシ偏向されたレーザビームの強度が一様となれば加
工精度が従来に比べ向上する。また、レーザによる2次
元表示装置への応用においては、偏向効率の一球化によ
シ全画面の明るさが一様となるから良好な画像が得られ
・る。さらに、素子への印加電力全一定とした場合に比
較して使用可能な偏向角範囲が広くとnる。この結果分
解可能点数が増加するから、それに比例して全偏向範囲
に対する解像度が向上する。
According to the present invention, it is possible to deflect a laser beam with uniform intensity. When applied to laser beam processing of reticles and the like for semiconductor device manufacturing, highly accurate processing becomes possible. When scanning with a laser beam focused by a metal thin film stopper lens used for a reticle, the relationship between the laser beam intensity and the line width processed by the beam is as shown in FIG. As shown in the figure, does the change in laser beam intensity change the processing line width? This results in a decrease in machining accuracy. That is, if the intensity of the laser beam deflected according to the present invention becomes uniform, the processing accuracy will be improved compared to the conventional method. Furthermore, when applied to a two-dimensional display device using a laser, a good image can be obtained because the brightness of the entire screen becomes uniform due to the uniformity of the deflection efficiency. Furthermore, the usable deflection angle range is wider than when the power applied to the element is completely constant. As a result, the number of resolvable points increases, and the resolution over the entire deflection range improves in proportion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるレーザビーム偏向方式の概略構成
ケ示すブロック図、第2図は音響光学素子ケ一定な電力
で駆動した場合の入力周波数に対する偏向効率特性を示
す曲線図、第3図は入力周波数と偏向効率を最高とする
入力電力の関係ケ示す曲線図、第4図は第3図、に基づ
いて入力電力の補正?行なった場合の偏向効率特性?示
す曲線図、第5図は金属薄膜のレーザビーム加工におけ
るレーザビーム強度と加工線幅の関係ケ示す曲線図であ
る。 1・・・電圧制御発振器、2・・・F波器、3・・・電
力増幅器、4・・・音響光学素子、訃・・アパーチャ、
6・・・制御電圧入力端子、7・・・入射レーザビーム
、8・・・偏向されたレーザビーム、9・・・偏向を受
けず直進したレーザビーム、10.11および12・・
・音響光学素子を一定な電力で駆動した場合の偏向効率
行第1図 石 2  図 罵 4  図 ■  5  図 L −1′八°ワ−
Figure 1 is a block diagram showing the schematic configuration of the laser beam deflection method according to the present invention, Figure 2 is a curve diagram showing the deflection efficiency characteristics with respect to input frequency when the acousto-optic element is driven with constant power, and Figure 3 is A curve diagram showing the relationship between input frequency and input power that maximizes deflection efficiency. Figure 4 is a curve diagram showing the relationship between input power and input power that maximizes deflection efficiency. Is the input power corrected based on Figure 3? What are the deflection efficiency characteristics when it is carried out? FIG. 5 is a curve diagram showing the relationship between laser beam intensity and processing line width in laser beam processing of metal thin films. DESCRIPTION OF SYMBOLS 1... Voltage controlled oscillator, 2... F wave generator, 3... Power amplifier, 4... Acousto-optic element, and... Aperture.
6... Control voltage input terminal, 7... Incident laser beam, 8... Deflected laser beam, 9... Laser beam traveling straight without being deflected, 10.11 and 12...
・Deflection efficiency row when an acousto-optic element is driven with constant power Figure 1 Stone 2 Figure 4 Figure ■ 5 Figure L -1'8°

Claims (1)

【特許請求の範囲】 1、 音響光学素子と音響光学素子駆動回路よ9成るレ
ーザビーム偏向方式において、音響光学素子内を伝搬す
る音響波の強度をその周波数に応じて補正できるように
、p波回路?晋響光学素子駆動回路内に設けたことを特
徴とするレーザビーム偏向方式〇 2、特許請求の範囲第1項記載のレーザビーム偏向方式
において、音響光学素子駆動回路内のp波回路の特性を
外部よシ調節可能・とじたことを特徴とするレーザビー
ム偏向方式。
[Claims] 1. In a laser beam deflection system consisting of an acousto-optic element and an acousto-optic element drive circuit, p-wave circuit? Shinkyo Laser beam deflection method 2, characterized in that it is provided in the acousto-optic element drive circuit, in the laser beam deflection method according to claim 1, the characteristics of the p-wave circuit in the acousto-optic element drive circuit are A laser beam deflection system that is externally adjustable and closed.
JP3454083A 1983-03-04 1983-03-04 Deflecting method of laser beam Pending JPS59160128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3454083A JPS59160128A (en) 1983-03-04 1983-03-04 Deflecting method of laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3454083A JPS59160128A (en) 1983-03-04 1983-03-04 Deflecting method of laser beam

Publications (1)

Publication Number Publication Date
JPS59160128A true JPS59160128A (en) 1984-09-10

Family

ID=12417122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3454083A Pending JPS59160128A (en) 1983-03-04 1983-03-04 Deflecting method of laser beam

Country Status (1)

Country Link
JP (1) JPS59160128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111332A (en) * 1990-01-26 1992-05-05 Dainippon Screen Mfg. Co., Ltd. Method of and apparatus for controlling deflection of optical beams
JP2012053331A (en) * 2010-09-02 2012-03-15 Ricoh Co Ltd Electrostatic latent image measurement apparatus and electrostatic latent image measurement method
JP2012113187A (en) * 2010-11-26 2012-06-14 Ricoh Co Ltd Method and device for measuring electrostatic latent image
JP2012208220A (en) * 2011-03-29 2012-10-25 Ricoh Co Ltd Electrostatic latent image measuring method and electrostatic latent image measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111332A (en) * 1990-01-26 1992-05-05 Dainippon Screen Mfg. Co., Ltd. Method of and apparatus for controlling deflection of optical beams
JP2012053331A (en) * 2010-09-02 2012-03-15 Ricoh Co Ltd Electrostatic latent image measurement apparatus and electrostatic latent image measurement method
JP2012113187A (en) * 2010-11-26 2012-06-14 Ricoh Co Ltd Method and device for measuring electrostatic latent image
JP2012208220A (en) * 2011-03-29 2012-10-25 Ricoh Co Ltd Electrostatic latent image measuring method and electrostatic latent image measuring device

Similar Documents

Publication Publication Date Title
JP2835097B2 (en) Correction method for charged beam astigmatism
JPS61240553A (en) Device for drawing picture by the use of ion beam
US5631113A (en) Electron-beam exposure system for reduced distortion of electron beam spot
US4776654A (en) Scanning optical system
JPS6321167B2 (en)
JPS59160128A (en) Deflecting method of laser beam
US4275306A (en) Alignment apparatus
US6639180B1 (en) Method for describing a predetermined desired course with a beam consisting of particles or waves and use of this method
JPH0234139B2 (en)
JPH0534733A (en) Laser light scanning device
US4044248A (en) Method and apparatus for linearizing a mirror galvanometer
JPS62147435A (en) Scanning type optical microscope
JP3191438B2 (en) Optical recording method and optical recording device
JP3522444B2 (en) Light beam modulator
JP2002244072A (en) Laser beam machine
JP7027538B2 (en) Electron beam device
JP2003030867A (en) Focus control method, focus controller and master disk exposure device using this controller
JP3504680B2 (en) Optical element and light beam scanning device
US20230314793A1 (en) Optical scanning device, driving method of optical scanning device, and image drawing system
JPS60152386A (en) Laser working device
JPH043620B2 (en)
JPS6086528A (en) Optical deflecting device
JPS5852203B2 (en) Distortion correction method for rotating polygon mirror type optical beam scanner
JPH0720403A (en) Laser light position controller
JPS6115572Y2 (en)