JPS5916002A - Pi controlling method - Google Patents

Pi controlling method

Info

Publication number
JPS5916002A
JPS5916002A JP12438282A JP12438282A JPS5916002A JP S5916002 A JPS5916002 A JP S5916002A JP 12438282 A JP12438282 A JP 12438282A JP 12438282 A JP12438282 A JP 12438282A JP S5916002 A JPS5916002 A JP S5916002A
Authority
JP
Japan
Prior art keywords
control
time
constant
gain
order lag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12438282A
Other languages
Japanese (ja)
Other versions
JPH0578041B2 (en
Inventor
Akira Inoue
章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12438282A priority Critical patent/JPS5916002A/en
Publication of JPS5916002A publication Critical patent/JPS5916002A/en
Publication of JPH0578041B2 publication Critical patent/JPH0578041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Abstract

PURPOSE:To simplify algorithm and to improve control precision by finding parameters of a PI control expression from a gain, time constant, process variables, and overshoot control time of control response as parameters of a first- order lag system. CONSTITUTION:The measured value (u) of an air capacity detector 7 and measured value (x) of a DO detector 6 are inputted to a controlled system identifying part 12. The identifying part 12 calculates the gain K and time constant T of the first-order lag system from the measured values (u) and (x). A PI control constant adjusting part 13 calculates the proportional gain KP and integral time T1 of a PI controller from the gain K and time constant T. The controlled system identifying part 12 performs the arithmetic at every control period. The PI control constant adjusting part 13 performs the arithmetic so that an attenuation constant xsi and overshoot time tP are constant. Even when the characteristics of a controlled system vary, the overshoot time is constant, so quick response is satisfied and gain characteristics to frequency response are desirable all the time.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は一次遅れ系で近似される制御対象に対しPI(
比例・積分)制御装置により制御を行なうPI制御方法
に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides PI (
The present invention relates to a PI control method that performs control using a proportional/integral (proportional/integral) control device.

〔発明の技術的背景およびその問題点〕一般に入力U(
8)と出力X(S)の関係が(1)式で表わされる系は
一次遅れ系と呼ばれている。
[Technical background of the invention and its problems] In general, input U (
8) and the output X(S) expressed by equation (1) is called a first-order lag system.

ここで、Kは一次遅れ系のゲイン、Tは一次遅れ系の時
定数、Sif>プラス演算子。
Here, K is the gain of the first-order lag system, T is the time constant of the first-order lag system, and Sif>plus operator.

この様な一次遅れ系の制御対象に対して制御量を目標値
に一致させるためにフィードバック制御を行なう場合、
その制御装置としては制御量と測定値の偏差及びその微
分に対してある定数を乗じ、その和をもって操作量の出
力とする、いわゆる比例・積分(PI)制御装置が使用
されることが多い。
When performing feedback control to match the controlled variable to the target value for such a first-order lag system controlled object,
As the control device, a so-called proportional-integral (PI) control device is often used, which multiplies the deviation between the controlled variable and the measured value and its derivative by a certain constant, and uses the sum as the output of the manipulated variable.

第1図は上記の場合における制御装置の構成例である。FIG. 1 shows an example of the configuration of a control device in the above case.

なお、説明のための例として、制御系は下水処理プロセ
スにおける曝気槽内溶存酸素濃度制御系を考える1一般
に下水処理プロセスでは、汚濁水を曝気槽内に導き、曝
気槽内の好気性微生物により汚濁水中の有機物を分解し
、汚水と汚泥を分離させる活性汚泥法によv1処理が行
なわれる。その際、曝気槽内の溶存酸素濃摩(以降I)
0と呼ぶ)の制御が必要不可決となる。第1図において
送風機lにより供給された空気は、管路2、風量制御弁
3を通り、曝気槽4に送られ散気管5により曝気槽内の
汚濁水中に放出される,、6はDo検出器で曝気槽4内
に設置され、曝気槽中のDoを測定する1、7は風量検
出器で、風量制御弁3の入口側に設置され、曝気槽4へ
流入する風!Ikを測定−jる。これらにより、測定さ
れたプロセス量は制御装置8へ入力される。制御装置8
では予め内蔵されている機能により演算が実施され、そ
の結果制御装置8から風1制御弁3に対し開度制御指令
が出力される。
As an example for explanation, the control system is a dissolved oxygen concentration control system in an aeration tank in a sewage treatment process.In general, in a sewage treatment process, polluted water is introduced into an aeration tank, and the aerobic microorganisms in the aeration tank V1 treatment is performed using the activated sludge method, which decomposes organic matter in polluted water and separates wastewater and sludge. At that time, dissolved oxygen concentration in the aeration tank (hereinafter referred to as I)
(referred to as 0) is not necessary or necessary. In Fig. 1, the air supplied by the blower 1 passes through the pipe 2 and the air volume control valve 3, is sent to the aeration tank 4, and is released into the polluted water in the aeration tank by the aeration pipe 5. 1 and 7 are air volume detectors, which are installed on the inlet side of the air volume control valve 3, and are installed in the aeration tank 4 to measure Do in the aeration tank. Measure Ik. As a result, the measured process quantities are input to the control device 8. Control device 8
Then, calculation is performed using a built-in function in advance, and as a result, an opening degree control command is output from the control device 8 to the wind 1 control valve 3.

制御装置80機能は犬別して入出力インターフェース部
9、DO制御部10,風量制御部11から成る。入出力
インターフェース部9はDo検出器6、及び風量検出器
7により測定された信号を入力し、かつ風量制御弁3に
対する開度制御指令を田力する機能を持つ。DO制御部
loはDo検出器6によυ測足されたDo測定値Xが、
予め設定され7’cI)o目標値Xrに一致する様に送
風量目標値u,k演算する機能を持つ。風量制御部11
は、風量検出器7により測定された風量測定値Uが、D
o制御部10にて演算された送風量目標値urに一致す
る様に風量制御弁3に対する゛開度制御信号2を演算す
る機能を持つ,, DO制御部10では、送風量に対するDoの応答がほぼ
一次遅れ系に近い応答を示すので、Do測定値XとDO
目標値xrから下記の様なPI演算式金用いて、送風量
目標値U,を演算する。
The functions of the control device 80 consist of an input/output interface section 9, a DO control section 10, and an air volume control section 11 for each dog. The input/output interface unit 9 has a function of inputting signals measured by the Do detector 6 and the air volume detector 7, and issuing an opening degree control command to the air volume control valve 3. The DO control unit lo determines that the Do measurement value X added by the Do detector 6 is
It has a function of calculating the air flow rate target values u, k so that they match the preset 7'cI) o target value Xr. Air volume control section 11
is, the air volume measurement value U measured by the air volume detector 7 is D
The DO control unit 10 has a function of calculating the opening degree control signal 2 for the air volume control valve 3 so as to match the air volume target value ur calculated by the control unit 10.The DO control unit 10 calculates the response of Do to the air volume. shows a response almost like that of a first-order lag system, so Do measurement value X and DO
From the target value xr, the air flow target value U is calculated using the following PI calculation formula.

ur(n):今回送風量目標値 ur(n−1)’前回送風量目標値 Δu,:送風量目標値変分 k:比例ゲイン p TI:積分時間 eI,:今回偏差 en−1’前回偏差 一制御周期 この様な構成の制御装置において、従来、DO制御部1
0におけるPI制御式のパラメータである比例ゲインl
cp及び積分時間T1は固定値であり、その値け望まE
〜い制御応答になる様、操作員が試行錯誤にて調整[7
だ値であった。一般に、制1 御対象の特性が常に変わらない場合には、PI制御定数
は一度調整すれば常に望1しい制御応答が得らねるが、
制御対象の特性が時々刻々変化している場合には、PI
制御冗数を固定値にしておいたのでは常に望1し〜い制
御応答を得ることは不可能である。前配DO制御におい
ても、送風量に対するDOの応答は、一次遅れ系に近い
応答を示すが、その応答性は、運転条件の変化により変
動する、一般にその時定数は5分〜30分の間で変化し
ていると言われている。従って、従来Do制御部10に
おけるPI制御定数k,,T1を固定値にしておくと、
常に望ましい制御応答を得ることは不可能であるため、
操作員が定期的に制御応答を観察し、P■制御定数を再
調整しなければならなかった。
ur(n): Current air volume target value ur(n-1)' Previous air volume target value Δu,: Air volume target value variation k: Proportional gain p TI: Integral time eI,: Current deviation en-1' Previous time Deviation - control period In a control device having such a configuration, conventionally, the DO control section 1
Proportional gain l, which is a parameter of the PI control equation at 0
cp and integration time T1 are fixed values, and the desired value E
The operator made adjustments through trial and error to obtain a good control response [7
It was a good value. Generally, if the characteristics of the controlled object do not always change, the desired control response cannot always be obtained by adjusting the PI control constant once.
If the characteristics of the controlled object are changing from time to time, the PI
If the control redundancy is set to a fixed value, it is impossible to always obtain a desired control response. Even in front DO control, the response of DO to air flow rate is close to that of a first-order lag system, but the responsiveness varies depending on changes in operating conditions, and the time constant is generally between 5 and 30 minutes. It is said that things are changing. Therefore, if the PI control constant k,,T1 in the conventional Do control unit 10 is set to a fixed value,
Since it is not possible to always obtain the desired control response,
The operator had to periodically observe the control response and readjust the P■ control constant.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、一次遅れ系で近似される制御対象の特
性変化に追従して、常に望ましい制御応答となる様にP
I制御定数を自動的に調整して制御を行うPI制御方法
を提供することにある。
An object of the present invention is to follow changes in the characteristics of a controlled object approximated by a first-order lag system, so that P
An object of the present invention is to provide a PI control method that performs control by automatically adjusting an I control constant.

〔発明の概要〕[Summary of the invention]

本発明は、一次遅れ系で近似される制御対象に対してP
I制御装置にて制御を行うに当り、制御対象の特性を表
わす非線形関数を線形近似した演算式を用いて、前記一
次遅れ系のパラメータであるゲインKおよび時定数Tの
値を、一次遅れ系の入力および出力に相当するプロセス
諸量UおよびXから演算し、その結果と、別に定めた減
衰係数ξおよび制御応答の行き過ぎ制御時間tとを用p いて望ましい制御応答となるようにPI制御式のパラメ
ータである比例ゲインKpと積分時間T1の値を求め、
この値によりPI制御を行うことを特徴とするPI制御
方法にある。
The present invention provides P for a controlled object approximated by a first-order lag system.
When performing control with the I control device, the values of the gain K and time constant T, which are the parameters of the first-order lag system, are determined by using an equation that linearly approximates a nonlinear function representing the characteristics of the controlled object. The PI control formula is calculated from the process quantities U and X corresponding to the input and output of p, and the PI control formula is calculated using the results, a separately determined damping coefficient ξ, and an overshoot control time t for the control response. Find the values of proportional gain Kp and integration time T1, which are the parameters of
A PI control method is characterized in that PI control is performed using this value.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面に示す一実施例を参照して詳細に説明
する。第2図は本発明による制御方法を応用したDo制
御装置の構成である。なお、第1図と同じ記号は同じ機
能を示す。本発明の制御装置の特徴は、制御対象同定部
12、PI制御定数調整部13を有している点である。
The present invention will be described in detail below with reference to an embodiment shown in the drawings. FIG. 2 shows the configuration of a Do control device to which the control method according to the present invention is applied. Note that the same symbols as in FIG. 1 indicate the same functions. A feature of the control device of the present invention is that it includes a controlled object identification section 12 and a PI control constant adjustment section 13.

制御対象同定部12は、現在の風量測足値U及びDO測
定値Xから、一次遅れ系のゲインK及び時定数Tを演算
する機能を持つ。PI制御定数調整部13は、制御対象
同定部l2により演算された一次遅れ系のゲインK及び
時定数Tから望ましい制御応答となる様なPI制御定数
の比例ゲインKpおよび積分時間T.を演舞し、DO制
御部10のPI制御定数を変更する機能を持つ 次に制御対象同足部l2とPI制御定数調整部13の具
体的な機能について説明する。
The controlled object identification unit 12 has a function of calculating the gain K and time constant T of the first-order lag system from the current air volume measurement value U and DO measurement value X. The PI control constant adjustment unit 13 determines a proportional gain Kp and an integral time T. of the PI control constant that will provide a desirable control response from the gain K and time constant T of the first-order lag system calculated by the controlled object identification unit l2. Next, the specific functions of the same leg part l2 to be controlled and the PI control constant adjusting part 13, which have the function of changing the PI control constant of the DO control part 10, will be explained.

(1)制御対象同定部I2の機能1、 制御対象の特性が運転条件の変化等により、時々刻々変
化するのは制御対象の人カと出方の関係が非線形である
事に起因している。そして一般の制御対象においては、
この入方と出方の関係が何らの非線形関数で表わされる
事が多い。制御対象同定部l2では、制御対象の非線形
関数を平衡点の近傍の微小変化内で線形化し、一次遅れ
系として足式化した演算式を用い、プロセス諸量から一
次遅れ系のゲインK及び時定数Tを演算する機能を持つ
,、 以下、L)0制御系を例に詳細な方法を説明する。
(1) Function 1 of the controlled object identification unit I2: The characteristics of the controlled object change from time to time due to changes in operating conditions, etc. This is due to the non-linear relationship between the number of people to be controlled and the way they appear. . And for general control objects,
This relationship between the direction of entry and the direction of exit is often expressed by some kind of nonlinear function. In the controlled object identification unit l2, the nonlinear function of the controlled object is linearized within minute changes in the vicinity of the equilibrium point, and the gain K and time of the first-order lag system are calculated from various process quantities using an arithmetic expression that is expressed as a first-order lag system. A detailed method will be explained below using the L)0 control system as an example, which has the function of calculating the constant T.

一般に送風緻uとDO値Xには(5)式の関係があるこ
とはわかっている ここで、X:DO値(PPM) d. ■.時間微分 U:送風量(一/時) X:飽和Do値(PPM) Rr:酸素消費速度(PPM/時) a,n:プラント固有の定数 上式においてDo値x1送風fuは検出可能、飽和DO
値Xは既知の値、Rrは検出不可能なプロセス量、a,
nはプラント固有の定数である。(5)式において制御
対象の特性である送風量UとDO値Xとの非線形な関係
によってDo値の時間変化が決定することがわかる。こ
の非線形関数を平衡点の近傍の微小変化内で線形化を行
なう。
It is generally known that there is a relationship between the air flow density u and the DO value X as shown in equation (5).Here, X: DO value (PPM) d. ■. Time differential U: Air flow rate (1/hour) D.O.
The value X is a known value, Rr is an undetectable process quantity, a,
n is a plant-specific constant. In equation (5), it can be seen that the time change in the Do value is determined by the nonlinear relationship between the air flow rate U, which is a characteristic of the controlled object, and the DO value X. This nonlinear function is linearized within minute changes in the vicinity of the equilibrium point.

今、制御の対象範囲が平衡点の近傍にあるとすると次式
が成り立つ。
Now, assuming that the control target range is near the equilibrium point, the following equation holds true.

ここで、xo=プロセスがるる平衡点にあった時のDo
値(PPM) ΔX:プロセスがある平衡点にあった時の1)O値から
の偏差(PPM) u0.プロセスがある平衡点にあった時の送風絹(n?
/時) △U:プロセスがある平衡点にあっ九時の送風量からの
偏差CnlZ時) Rr0:プロセスがある平衡点にあった時の酸素消費速
度(PPM/時) ΔRr;プロセスがある平衡点にあった時の酸素消費速
度からの偏差(PPM/時) (力式においてΔU.ΔXの項を無視し、(6)式を代
入すると(8)式が得られる。
Here, xo = Do when the process is at the equilibrium point
Value (PPM) ΔX: Deviation from 1) O value (PPM) when the process is at a certain equilibrium point u0. Blast silk (n?) when the process is at a certain equilibrium point
/hour) △U: Deviation CnlZ from the air flow rate when the process is at a certain equilibrium point) Rr0: Oxygen consumption rate (PPM/hour) when the process is at a certain equilibrium point ΔRr: Equilibrium where the process is Deviation from the oxygen consumption rate at the point (PPM/hour) (ignoring the term ΔU.ΔX in the force equation and substituting equation (6), equation (8) is obtained.

(8)式はムU,ムXに関(一で線形でこれをブロック
線図で表現すると、第3図の如くなる。但しK1,1 K2,百は次の通りである。
Equation (8) relates to U and X (1 and linear), and if this is expressed in a block diagram, it will be as shown in FIG. 3. However, K1, 1 K2, 100 are as follows.

従ってこのモデルは一次遅れ系と外乱として表現され次
ことになジ、一次遅れ系のゲインK及び時定数Tは次式
で表わされる。
Therefore, this model is expressed as a first-order lag system and a disturbance, and the gain K and time constant T of the first-order lag system are expressed by the following equation.

(lυ式.(12式において、a,n,xは定数である
ので、制御対象同定部l2はDo検出器6よ9測定され
たDO測定値X及び風量検出器7により測足された。風
歓測定値Uを01),(13式に代入することにより一
次遅れ系のゲインK及び時定数Tを制御周期毎に演算す
る。
(lυ Equation. (In Equation 12, a, n, and x are constants, so the controlled object identification unit 12 was measured by the DO measurement value X measured by the Do detectors 6 to 9 and the air volume detector 7. The gain K and time constant T of the first-order lag system are calculated for each control cycle by substituting the measured value U of the wind wave into Equation 13.

f2)PI制御定数調整部l3の機能 PI制御定数調整部13では、制御対象同定部12によ
り演算された一次遅れ系のゲインK1及び時定数Tより
、下配の設計目標を満たす様なPI制御器の比例ゲイン
Kp及び積分時間TIを演算する機能を持つ。
f2) Function of PI control constant adjustment unit l3 The PI control constant adjustment unit 13 performs PI control that satisfies the lower design goals based on the gain K1 and time constant T of the first-order lag system calculated by the controlled object identification unit 12. It has a function to calculate the proportional gain Kp and integration time TI of the device.

設計目標1:減衰係数ξが一定(例えば0.8)と9な
る様にする。
Design goal 1: Make the damping coefficient ξ constant (for example, 0.8) and 9.

設計目標2:目標値のステップ状変化に対する制御量の
応答の行き過ぎ時間tp(timetopeak)が一
定となるようにする,設計目標3:一巡伝達関数の周波
数応答におけるゲイン特性が望ましい特性となるよ うにする。即ち、ゲイン特性の傾斜 を交さ周波数wc伺近では−20dB/decとし、低
周波ゲインを上げるた めに低周波域では−40dB/decとする。
Design goal 2: Make the overshoot time tp (timetopeek) of the response of the controlled variable to a step change in the target value constant. Design goal 3: Make the gain characteristics in the frequency response of the open-loop transfer function desirable. do. That is, the slope of the gain characteristic is set to -20 dB/dec near the intersecting frequency wc, and set to -40 dB/dec in the low frequency range to increase the low frequency gain.

ここで減衰係数ξ及び行き過ぎ時間t,は予め設定され
た値である。PI制御定数調整部l3の機能を示すアル
ゴリズムを第4図に示す。第4図において、まず、減衰
係数ξ及び行き過ぎ時間1pの設定値を入カ(ステップ
l4)し、制御対象同定部12にて演算された一次遅れ
系のゲインK1時定数Tを入方する(ステップ15)。
Here, the damping coefficient ξ and the overshoot time t are preset values. FIG. 4 shows an algorithm showing the function of the PI control constant adjustment section l3. In FIG. 4, first, the set values of the damping coefficient ξ and the overshoot time 1p are input (step l4), and the gain K1 time constant T of the first-order lag system calculated by the controlled object identification unit 12 is input ( Step 15).

一巡伝達関数の周波数応答におけるゲイン特性を望まし
い特性とするため、行過ぎ時間1pと一次遅れ系の時定
数Tの関係に制限を設ける(ステップ16.17)。
In order to make the gain characteristic in the frequency response of the open loop transfer function desirable, a limit is placed on the relationship between the overshoot time 1p and the time constant T of the first-order lag system (steps 16 and 17).

α階式の演′Nを行なう(ステップ18)。An operation 'N of the α-order formula is performed (step 18).

そして、Pl制御器の比例ゲインKp%積分時間Tzt
各々(14),ti!19式にて演算する(ステップ1
9)。
Then, the proportional gain Kp% integration time Tzt of the Pl controller
Each (14), ti! Calculate using Equation 19 (Step 1
9).

このアルゴリズムにおいて、Co,C,,C,は減衰係
数ξに依存する定数で、例えばξ−0.8ではC。−1
.IC+−2.14C2=0.52となる。PI制御定
数調整部13は土記のアリゴリズムを制御周期毎に演算
することにより望ましい制御応答を保つPI制御器の比
例ゲインKp1積分時間TIk決定し、DO制御部10
のPI制御定数を今回演算した値に変更する。
In this algorithm, Co,C,,C, is a constant that depends on the damping coefficient ξ, for example, C at ξ-0.8. -1
.. IC+-2.14C2=0.52. The PI control constant adjustment unit 13 determines the proportional gain Kp1 integral time TIk of the PI controller that maintains a desired control response by calculating Doki's algorithm for each control cycle, and determines the proportional gain Kp1 integral time TIk of the PI controller to maintain a desired control response
Change the PI control constant to the value calculated this time.

次に本発明の動作について説明する。一次遅れ系で近似
される制御対象の特性、すなわち一次遅れ系のゲインK
及び時定数Tが運転条件の変化等により時々刻々変動し
ていくのに対して、制御対象同定部12は(II+,a
2式を制御周期毎に演算してその時点における一次遅れ
系のゲインK及び時定数Tを演算する。PI制御定数調
整部l3は演pされた一次遅れ系のゲインK及び時定数
Tに対して、設定された減衰係数ξ及び行過ぎ時間tP
が一定となる様なPI制御器の比例ゲインKp1積分時
間TIを第4図のアルゴリズムに従って演算し、DO制
御部10のPI制御定数を変更する。
Next, the operation of the present invention will be explained. The characteristics of the controlled object approximated by a first-order lag system, that is, the gain K of the first-order lag system
and time constant T fluctuate from moment to moment due to changes in operating conditions, etc., whereas the controlled object identification unit 12
The two equations are calculated for each control period to calculate the gain K and time constant T of the first-order lag system at that point in time. The PI control constant adjustment unit l3 adjusts the set damping coefficient ξ and overtravel time tP for the calculated gain K and time constant T of the first-order lag system.
The proportional gain Kp1 integral time TI of the PI controller such that is constant is calculated according to the algorithm shown in FIG. 4, and the PI control constant of the DO control section 10 is changed.

Do制御部10は演算されたPI制御定数を(3)式に
使用し、(2>,f3),f41式により、送風量目標
値U:を演算する。
The Do control unit 10 uses the calculated PI control constant in equation (3), and calculates the air flow target value U: using equations (2>, f3) and f41.

その結果、制御対象の特性が変化しても、行過ぎ時間1
,が一定となるため速応性が満足され、又、減衰係数ξ
が一足で、がっ、一巡伝達関数の周波数応答におけるゲ
イン特性が絶えず望ましい特性となる。このため安定性
についても満足され、常に望ましい制御応答が得られる
As a result, even if the characteristics of the controlled object change, the overtravel time 1
, is constant, so the quick response is satisfied, and the damping coefficient ξ
In one step, the gain characteristic in the frequency response of the open-loop transfer function becomes a constantly desirable characteristic. Therefore, stability is also satisfied, and a desirable control response can always be obtained.

上述の実施例においては、下水処理プロセスにおける曝
気槽内溶存酸素濃度制御系について説明1したが、本発
明はこれに限定されることなく一般のプロセス制御系に
おいて制御対象が一次遅れ系で近似され、一次遅れ系の
パラメータを制御対象の非線形関数を線形近似した関数
式にて演算できるプロセスについては全て適用すること
が可能である。
In the above-mentioned embodiment, the dissolved oxygen concentration control system in the aeration tank in the sewage treatment process was explained. However, the present invention is not limited to this, and the controlled object is approximated by a first-order lag system in a general process control system. , it is possible to apply all processes in which parameters of a first-order lag system can be calculated using a functional formula that linearly approximates a nonlinear function to be controlled.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、一次遅れ系で近似される制御寸象の特
性変動に対して、簡単なアルゴリズムにtり自動的にP
I制御定数を調整し、常時望まし^制御応答を得ること
ができる。アルゴリズムが隋単であることは実用性が高
いことを意味し、制卸定数を自動的に調節できるという
ことは製品の拭験調整時間を短縮し、さらに常時望まし
い制御芯答が得られるということは制御精度の向上を意
床し製品品質を向上させることができる。
According to the present invention, a simple algorithm is used to automatically adjust the P
The I control constant can be adjusted to always obtain the desired control response. The fact that the algorithm is simple means that it is highly practical, and the ability to automatically adjust the control constant reduces the time required for testing and adjusting the product, and furthermore, it means that the desired control answer can always be obtained. It is possible to improve product quality by improving control accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶存酸素濃度制御系と従来のPI制御装置との
関係金示すブロック図、第2図は本発明によるPI制御
方法を実行する装置構成を示すブロック図、第3図は線
形化された溶存酸素濃度モデルを示すブロック線図、第
4図は本発明におけるPI制御定数調整部の機能を示す
アルゴリズムの概略流れ図である。 ■・・・送風機2・・・管路 3・・・風量制御弁4・・・曝気槽 5・・・散気管6・・・DO検出器 7・・・風量検出器8・・・制御装置 9・・・入出力インタフェース部 10・・・Do制御部(PI制御部) 11・・・風量制御部12・・・制御対象同定部l3・
・・PI制御定数調整部 X・・・DO測定値/x,・・・DO目標値ur・・・
風量目標値U・・・風゛獣測定値Z・・・開度制御信号 Kp・・・PI制御式の比例ゲイン II・・・PI制御式の積分時間 K・・・一次遅れ系のゲイン T・・・一次遅れ系の時定数 ξ・・・減衰係数1p・・行過ぎ時間 −12−
Fig. 1 is a block diagram showing the relationship between the dissolved oxygen concentration control system and a conventional PI control device, Fig. 2 is a block diagram showing the configuration of a device that executes the PI control method according to the present invention, and Fig. 3 is a linearized FIG. 4 is a block diagram showing a dissolved oxygen concentration model, and FIG. 4 is a schematic flowchart of an algorithm showing the function of the PI control constant adjustment section in the present invention. ■...Blower 2...Pipe line 3...Air volume control valve 4...Aeration tank 5...Diffuser pipe 6...DO detector 7...Air volume detector 8...Control device 9... Input/output interface section 10... Do control section (PI control section) 11... Air volume control section 12... Controlled object identification section l3.
...PI control constant adjustment section X...DO measurement value/x,...DO target value ur...
Air volume target value U... Wind velocity measurement value Z... Opening control signal Kp... Proportional gain II of PI control type... Integral time K of PI control type... Gain T of first-order lag system ... Time constant ξ of first-order lag system ... Damping coefficient 1p ... Overtravel time -12-

Claims (1)

【特許請求の範囲】 一次遅れ系で近似される制御対象に対してPI制御装置
にて制御を行うに当り、制御対象の特性金表わす非線形
関数を線形近似した演算式を用いて、前記一次遅れ系の
パラメータであるゲインKおよび時定数Tの値を、一次
遅れ系の入力および出力に相当するプロセス諸量Uおよ
びXから演算し、その結果と、別に定めた減衰係数ξお
よび制゛御応答の行き過ぎ制御時間tpとを用いてPI
制御式のパラメータである比例ゲインKpと積分時間T
1の値を下式にて求め、この値によりPI制御を行なう
ことを特徴とするPI制御方法。 またC,,C.は減衰係数ξに依存する定数。
[Claims] When controlling a controlled object approximated by a first-order lag system using a PI control device, the first-order lag The values of the gain K and time constant T, which are system parameters, are calculated from the process quantities U and X corresponding to the input and output of the first-order lag system, and the results are calculated using the separately determined damping coefficient ξ and control response. PI using the overshoot control time tp of
Proportional gain Kp and integral time T, which are parameters of the control equation
A PI control method characterized in that the value of 1 is determined by the following formula, and PI control is performed using this value. Also C,,C. is a constant that depends on the damping coefficient ξ.
JP12438282A 1982-07-19 1982-07-19 Pi controlling method Granted JPS5916002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12438282A JPS5916002A (en) 1982-07-19 1982-07-19 Pi controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12438282A JPS5916002A (en) 1982-07-19 1982-07-19 Pi controlling method

Publications (2)

Publication Number Publication Date
JPS5916002A true JPS5916002A (en) 1984-01-27
JPH0578041B2 JPH0578041B2 (en) 1993-10-28

Family

ID=14884018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12438282A Granted JPS5916002A (en) 1982-07-19 1982-07-19 Pi controlling method

Country Status (1)

Country Link
JP (1) JPS5916002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156403A (en) * 1984-12-28 1986-07-16 Toshiba Corp Automatic control method of control parameter
DE4007574A1 (en) * 1989-03-09 1990-09-13 Mazda Motor AIR AND FUEL SUPPLY CONTROL SYSTEMS FOR COMBUSTION ENGINES
DE4007584A1 (en) * 1989-03-09 1990-09-13 Mazda Motor AIR AND FUEL SUPPLY CONTROL SYSTEMS FOR COMBUSTION ENGINES

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156403A (en) * 1984-12-28 1986-07-16 Toshiba Corp Automatic control method of control parameter
DE4007574A1 (en) * 1989-03-09 1990-09-13 Mazda Motor AIR AND FUEL SUPPLY CONTROL SYSTEMS FOR COMBUSTION ENGINES
DE4007584A1 (en) * 1989-03-09 1990-09-13 Mazda Motor AIR AND FUEL SUPPLY CONTROL SYSTEMS FOR COMBUSTION ENGINES

Also Published As

Publication number Publication date
JPH0578041B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
KR100621830B1 (en) System and method for a variable gain proportional-integral pi controller
US5162987A (en) Controller which uses pulse width and pulse frequency modulated signals to control a variable
CN108678986B (en) The control method and device of the automatic adjustment of sewage treatment plant's air blower and marshalling operation
Persechini et al. Control strategy for a column flotation process
JP2002520685A (en) Method of operating a control device and device for implementing the method
JPS5916002A (en) Pi controlling method
JPH0132525B2 (en)
JPS5879594A (en) Controlling method for concentration of dissolved oxygen in aerating tank in activated sludge treating process
JPS6014302A (en) Automatic control method of pi control parameter
JPS61156403A (en) Automatic control method of control parameter
JPS60251993A (en) Method for controlling concentration of dissolved oxygen of aeration tank
JPH0563803B2 (en)
JPH09146610A (en) Multivariable nonlinear process controller
JPH0280511A (en) Method for controlling dew point of atmospheric gas in furnace
JPS60125297A (en) Method for controlling concentration of dissolved oxygen of aeration tank
JPS61274795A (en) Apparatus for controlling concentration of dissolved oxygen of aeration tank
JPH07275882A (en) Sewage treatment control apparatus
JP7170949B1 (en) Aeration amount control device and aeration amount control method
JP2973754B2 (en) Pulp bleaching control device
JPS6327721B2 (en)
SU1019408A1 (en) Periodic process of fermentation automatic control system
JPS63162820A (en) Atmosphere control method for heat treatment furnace
RU1795424C (en) Gas flow rate control device
JPS6117445Y2 (en)
SU1179287A1 (en) Device for controlling process for neutralizing sewage