JPS60125297A - Method for controlling concentration of dissolved oxygen of aeration tank - Google Patents

Method for controlling concentration of dissolved oxygen of aeration tank

Info

Publication number
JPS60125297A
JPS60125297A JP58232785A JP23278583A JPS60125297A JP S60125297 A JPS60125297 A JP S60125297A JP 58232785 A JP58232785 A JP 58232785A JP 23278583 A JP23278583 A JP 23278583A JP S60125297 A JPS60125297 A JP S60125297A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
aeration tank
control
oxygen concentration
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58232785A
Other languages
Japanese (ja)
Inventor
Yasuyuki Miyajima
康行 宮島
Shuichiro Kobayashi
小林 主一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58232785A priority Critical patent/JPS60125297A/en
Publication of JPS60125297A publication Critical patent/JPS60125297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To rationalize the concn. of dissolved oxygen of an aeration tank, by mounting a parameter determinging operator for determining the parameter of a control system to a linear dissolved oxygen concn. model corresponding to a preset control response characteristic. CONSTITUTION:A dissolved oxygen concn. detector 4 and a thermometer 5 are provided in an aeration tank 1 and an airflow meter 6 is provided to the air blowing pipe in an emitting side. Process amounts x, theta, u detected by these meters are inputted to an electronic calculator 8 through an input apparatus 7 and operation is performed according to a preliminarily mounted program and an air blowing objective value u* is calculated to be outputted as the operation input signal of a blower through an output apparatus 9. The number control order N* of the blower 2 is outputted to a control apparatus and the opening degree order alphaA* of a suction valve 13 to an opening degree control apparatus 11 while the opening degree order alphaB* of an aeration air amount valve 14 to an opening degree control apparatus 12 to control an air blowing amount (u).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は活性汚泥を用いた汚水地理プロセスシニおける
曝気槽の溶存酸素濃度を電子計J!L機を用いて目標値
に制1I4Ifる方法4;関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention uses an electronic meter to measure dissolved oxygen concentration in an aeration tank in a wastewater geological process using activated sludge. This relates to method 4 of controlling the target value using the L machine.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

活性汚泥処理プロセスでは、沈殿などの処理プロセスを
経て曝気槽内に流入した汚濁水中の汚濁物は曝気槽内で
好気性微生物を庁む活性汚泥C=よりて分解され、沈殿
しやすいフロックを形成する。
In the activated sludge treatment process, the pollutants in the polluted water that flow into the aeration tank after undergoing treatment processes such as sedimentation are decomposed by activated sludge C = which contains aerobic microorganisms in the aeration tank, forming flocs that are easy to settle. do.

′4気槽内のプロセスを経た汚濁水はさらC二沈殿プロ
セス(二人り、沈殿物の一部は回収されて汚性汚泥とし
て曝気槽の入口(=返送されると共(二、残りの汚泥は
余剰汚泥として排出される。
The polluted water that has gone through the process in the aeration tank is further processed through the C2 precipitation process (2). A part of the sediment is collected and returned to the aeration tank as dirty sludge (2). sludge is discharged as surplus sludge.

このような活性汚泥処理プロセスでは、曝気槽内の溶存
酸素濃度の制御が必要不可欠であるが、一般(二溶存酸
素濃度が過度(二高くなるとフロックの形成が不十分と
なって、その後の沈殿プロセスの効率低下を招き、逆鴫
二溶存戚素濃度が過度(二低下すると処理効率の低下や
汚泥自体への悪影響を招く。
In such an activated sludge treatment process, it is essential to control the dissolved oxygen concentration in the aeration tank. This will lead to a decrease in the efficiency of the process, and if the concentration of dissolved elements in the sludge decreases excessively, it will lead to a decrease in treatment efficiency and an adverse effect on the sludge itself.

このため各処理場ではそれぞれの経験C:基づいて溶存
酸素濃度の許容範囲を定め、これ(=従って運転がなさ
れている。
For this reason, each treatment plant determines the allowable range of dissolved oxygen concentration based on its own experience, and operates accordingly.

すなわちあらかじめ設定された溶存酸素濃度の目標値と
溶存酸素濃度検出器(二よp検出された検出値とを比較
し、その比較結果から曝気槽へ供給する空気量すなわち
送風蓋を1bu御して曝気槽内の溶存酸素濃度を制御す
る方法が用いられている。
In other words, the target value of the dissolved oxygen concentration set in advance is compared with the detected value detected by the dissolved oxygen concentration detector, and based on the comparison result, the amount of air supplied to the aeration tank, that is, the blower lid is controlled by 1bu. A method is used to control the dissolved oxygen concentration in the aeration tank.

一般(−送風量Uと溶存酸素濃度Xとの間(二は下記(
1)式の関係がめる。
General (- between air flow rate U and dissolved oxygen concentration
1) Find out the relationship between the equations.

一’−= f (u、 x(θハJCI Rr + a
 + n) (1)t ここ4二X:曝気槽内の溶存酸素濃度(ppm)U:送
風量〔mンh、) i(す:水温θ(C1における飽和溶存酸素濃度(pp
m)Rr:酸素消費速度(ppm/h) a、nニブラント固有の定数 である。
1'-=f (u, x(θhaJCI Rr + a
+ n) (1) t Here 42X: Dissolved oxygen concentration in the aeration tank (ppm) U: Air flow rate [mh,)
m) Rr: Oxygen consumption rate (ppm/h) a, n It is a constant specific to the nibrant.

“上記溶存酸素濃度X、送風址U、水温θは検出可能な
値、飽和溶存酸素濃度i(りは水温θ(=よって決まる
櫃、R2自体は検出不可能なプロセス量である。
“The above dissolved oxygen concentration

すなわち操作量でおる送風muと被制御量である溶存酸
素濃度Xとの間にあるzl)式(二示す線形的な関係に
よって、溶存酸素濃度Xの時間変化が決定される。
That is, the time change in the dissolved oxygen concentration X is determined by the linear relationship shown in the equation (zl) (2) between the ventilation mu, which is the manipulated variable, and the dissolved oxygen concentration X, which is the controlled variable.

このような溶存tR素濃度!(二対して従来は目標値と
検出値の偏差、積分および微分にある定#Xを乗じ、そ
の和をもって操作量の出方とする線形の比例積分微分(
PID)制御を用い、dlIlli11定数は固足とし
て取扱っている。
Such a dissolved tR concentration! (On the other hand, conventionally, the deviation, integral, and differential between the target value and the detected value are multiplied by a constant #X, and the sum is the linear proportional integral differential (
PID) control is used, and the dlIlli11 constant is treated as a fixed foot.

しかしながら実際は(1)式で表わされるようC二対象
が非線形となるので上記従来の線形制御で−は常媚二望
ましいtd11応答を得ることは不可能でおる。
However, in reality, as expressed by equation (1), the C object is nonlinear, so it is impossible to obtain a normal and desirable td11 response using the conventional linear control described above.

〔発明の目的〕[Purpose of the invention]

本発明は、送風量と溶存酸素濃度との非線形な関係を考
慮して制御パラメータを調整し、これ6二よって適正な
制御応答が得られる曝気槽の溶存酸素d!に度制御方法
を提供することを目的としている。
The present invention adjusts control parameters in consideration of the non-linear relationship between air flow rate and dissolved oxygen concentration, and thereby obtains an appropriate control response. The purpose is to provide a degree control method.

〔発明の概要〕[Summary of the invention]

本発明は、活性汚泥処理プロセス(二おける曝気槽内の
溶存酸素濃度を検出し、設定された温存酸素濃度の目標
値と比較し、その偏差に応じて曝気槽への送風蓋を制御
する曝気槽の溶存酸素濃度副一方法4二おいて、現在の
送風量と溶存酸素濃度の時間変化から線形の溶存酸素濃
度モデルを算出する線形モデル決定演算と、あらかじめ
設定した制御応釡特性(一応じて上記線形の溶存酸素濃
度モデル(二対する制御系のパラメータを決定するパラ
メータ決定演算を備え、上記パラメータ(−,11j整
されたi!ill Il系を用いて曝気槽への送風量を
制御し、これ(=よって送風量と溶存#素濃直と間の非
線形な特性(=かかわらず常(二適正な制御応答が得ら
れるよう1二したものでおる。
The present invention detects the dissolved oxygen concentration in the aeration tank in the activated sludge treatment process (two steps), compares it with the set target value for the conserved oxygen concentration, and controls the air blowing lid to the aeration tank according to the deviation. Dissolved oxygen concentration in the tank sub-method 42 includes a linear model determination calculation that calculates a linear dissolved oxygen concentration model from the current air flow rate and time changes in dissolved oxygen concentration, and a preset control response characteristic (depending on the The above linear dissolved oxygen concentration model (2) is equipped with a parameter determination calculation for determining the parameters of the control system, and the amount of air blown to the aeration tank is controlled using the i!ill Il system with the above parameters (-, 11j adjusted). Therefore, regardless of the nonlinear characteristics between the air flow rate and the dissolved #concentration rate, this is always done in order to obtain an appropriate control response.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例t−第1図(二示す。 One Embodiment of the Invention - Figure 1 (2).

第1図において、汚濁水は曝気槽14二流入し、ある滞
留時間後(二流出する。
In FIG. 1, polluted water flows into the aeration tank 14 and after a certain residence time (flows out).

この間送風+IA2(=より送風された空気は散気管3
を介して汚濁水(=供給される。
During this time, the air blown by +IA2 (= the air blown from the diffuser pipe 3
Polluted water (=supplied through

−気[1内(=は溶存T11t素濃度検出計4および温
度1tt5が設けられ、さら6:送風機の吐出側の送風
管には風量計6が設けられている。
- Air [1 (== is provided with a dissolved T11t elementary concentration detector 4 and a temperature 1tt5, and further 6: an air volume meter 6 is provided in the air pipe on the discharge side of the blower.

これらζ二よって検出されたプロセス量X、θ。The process quantities X and θ detected by these ζ2.

Uは入力装置7を介して4子It算礪8(二人力され、
あらかじめ内蔵されているプログラム嬬二従って演算が
行なわれ、送風量目標値U*が算出され、出力装置9t
−介して送A+1Aの操作入力信号として出力される。
U uses the input device 7 to input 4 children It calculation 8 (two people input,
Calculations are performed according to the pre-built-in program, and the air flow target value U* is calculated, and the output device 9t
- is outputted as an operation input signal for sending A+1A.

すなわち送風dA2の台数−−指令Nは台数制御装#L
lOへ、送風機の吸込弁13の一度制御宿令αムは吸込
弁開を割1I419It直11へ、送風管の曝気槽入口
に設置されている曝気]虱jllJ両弁14の開直指令
* αBは曝気風量−御弁一度制御装置12へそれぞれ出力
されこれによって送風蓋Uが制御される。
In other words, the number of air blowers dA2 -- the command N is the number control device #L
To 1O, once control command α of the suction valve 13 of the blower is to open the suction valve 1I419It Directly to 11, the aeration installed at the aeration tank entrance of the blow pipe] A command to open and close both valves 14 * αB are respectively outputted to the control device 12 as the aeration air volume and the control valve, and the blower lid U is thereby controlled.

以下#llE:P計Jl*8に内鵬されているプログラ
ム(:ついて述べる。
The following describes the program incorporated in #llE:P Jl*8.

プログラムは大きく2つ(2分れており、第1は前i引
す式で示される非線形モデルの微小変化内での線形化プ
ロゲラ、ムであり、WI2は得られたモデルの特性値か
ら制御パラメータを決定するグログラムである。
The program is broadly divided into two parts: the first is a program for linearization within the minute changes in the nonlinear model expressed by the equation (1), and WI2 is for controlling from the characteristic values of the model obtained. This is a grogram that determines the parameters.

先ず溶存!l累濃度モデルの線形化の手J@t−説明す
る。
Dissolve first! How to linearize the cumulative concentration model J@t-Explain.

前記(1)式べこ示した通や、送風fiuと溶存#lt
素譲度Xとは非線形な関係となっているので、古典制御
理@を適用するため(二は線形化が必要である。
As shown in the equation (1) above, the air flow fiu and dissolved #lt
Since it has a nonlinear relationship with the yield rate X, in order to apply the classical control theory (2), linearization is necessary.

今、+制御の対酸範囲が平衡点の近傍4二ろるとすると
、次の開式が成立rる。
Now, if the acid range of + control is 42 around the equilibrium point, then the following equation holds true.

x− 一−f(uo、x(す+ xo I Rro l a 
+ n ) ” 0 (2)t ΔX:プロセスがある平衡点にあった時の溶存酸素濃度
からの偏差(ppm) uo: プロセスがある平函点鴫;あった時の送風量−
7時〕ΔU:プロセスがある平衡点(二6りた時の送風
量からの偏差〔鉤〕 R,o: プロセスがある平衡点にあった時の酸素消費
速度(pI)m/時〕 ΔR2:プロセスがある平衡点1:ありた時の酸素消費
速度からの偏差(ppm/時〕 でら9、その他の記号は(1)式、と同じである。
x- 1-f(uo, x(su+ xo I Rro la
+ n ) ” 0 (2) t ΔX: Deviation from the dissolved oxygen concentration when the process was at a certain equilibrium point (ppm) uo: Air flow rate when the process was at a certain equilibrium point -
7 o'clock] ΔU: Deviation from the air flow rate when the process is at a certain equilibrium point (26) R, o: Oxygen consumption rate (pI) m/hour when the process is at a certain equilibrium point] ΔR2 : Equilibrium point 1 of the process: Deviation from the oxygen consumption rate (ppm/hour) 9, other symbols are the same as in equation (1).

(3)式(二おいてΔU、ΔXの項を無視し、(2)式
を代、入すると、(4J式が得られる。
By ignoring the terms ΔU and ΔX in Equation (3) (2) and substituting Equation (2), Equation (4J) is obtained.

亘合吐=−に1・ΔX + K2 ’ Δll−ΔRr
 t4)t 但し、 Ks = Ks (uow a + n) L5)Ks
 = Ks (uoe x(リーX。、a、n) (6
1従ってモデルは外乱をきむ一次遅れ系−腹一と・ 1
十T。
Watari discharge = -1・ΔX + K2' Δll−ΔRr
t4)t However, Ks = Ks (uow a + n) L5)Ks
= Ks (uoe x(Lee X., a, n) (6
1 Therefore, the model is a first-order lag system that experiences disturbances - 1
Ten T.

茨現され、−次遅れ系のゲインにおよび時定aTは下記
(7)式および(8)式であたえられる。
The gain and time constant aT of the -order lag system are given by the following equations (7) and (8).

K ” K5/′に1 = &+ (uo * x (
リ−x、)、a、n) (7)T= 1/Kt= l/
Kt(uo−a、 n) (8)結局、送風量uo (
mob )、浴存駿J[度XQ(ppm)および汚濁水
の水温θ〔C〕がプロセス量として得られれば、aとn
はプラントに固有で設定可能な定数なので線形な爵存酸
g績度モデルの特性値に、Tが得られる。
K ” K5/′ to 1 = &+ (uo * x (
Li-x, ), a, n) (7) T= 1/Kt= l/
Kt (uo-a, n) (8) In the end, the amount of air blown uo (
mob ), Yakuza Shun J [degrees
Since T is a constant that is unique to the plant and can be set, T can be obtained as a characteristic value of the linear acid concentration model.

次(二I −P jt+lhlハラメータの自動調整方
法について説明する。
Next, a method for automatically adjusting the two I-P jt+lhl harammeters will be explained.

第2図(二おいて、21はパラメータ決定機構、nは曝
気槽モデル、るはPI副御系であり、ΔXrは溶存#R
話一度偏差ΔXの目標値(ppm)、k、foは■−P
IlIu1卸パラメータ、Sは微分演算子である。
Figure 2 (in 2, 21 is the parameter determination mechanism, n is the aeration tank model, is the PI sub-control system, and ΔXr is the dissolved #R
The target value (ppm) of the deviation ΔX, k, fo is ■-P
IlIu1 wholesale parameter, S is a differential operator.

との系は、2個の共役複素憔を持ち、零点を持たない糸
であり、閉ループ伝達関数は、四穴となる。
The system with is a thread with two conjugate complex hexagons and no zero point, and the closed loop transfer function is a four-hole.

ここで、ωb(s) :第2図における閉ループ伝達関
数ωfl:固有周波数□ ζ :減衰係数 ζエ 1−Kfo 2J kKT “4 本対象係の場合、対象プロセスの特性値T、Kが時間(
二よシ変動するので、従来の交さ周波数を一定とするよ
うな方法(:よシ制御パラメータ、k。
Here, ωb(s): Closed-loop transfer function in Fig. 2 ωfl: Natural frequency ζ: Damping coefficient ζE 1-Kfo 2J kKT
Therefore, the conventional method of keeping the intersection frequency constant (: Yoshi control parameter, k.

foを得ること、は不可能で゛ある。そこで、本発明で
は、新たに次の指針を設け、望ましい応答を得ることを
可能(ニしている。
It is impossible to obtain fo. Therefore, in the present invention, the following guidelines are newly established to make it possible to obtain a desirable response.

方針1:減衰定数ζ′が一定となるようにする。Policy 1: Make the damping constant ζ′ constant.

方針2:目標値Δxrのステップ変化(二応答する、応
答の行き過ぎ時間tp (time to peak 
)が一定となるよう(二する。
Policy 2: Step change in target value Δxr (2 responses, response overshoot time tp (time to peak
) is constant.

これら、2つの方針を実現するための準備をする。Prepare to realize these two policies.

四穴(系の閉ループ伝達関数)のステップ応答を1.@
(t、ζ、ω。ンとする。
The step response of the four-hole (closed-loop transfer function of the system) is 1. @
(t, ζ, ω.

1pとは、 を満足す!4小のtp−(tp>0)である。What is 1p? Satisfy! 4 small tp-(tp>0).

この条件の下で、ul)、u々、一式を連立させて解け
ば、I−P制御パラメータに、foがまる。
Under this condition, if ul), u, etc. are solved simultaneously, fo will be found in the IP control parameter.

すなわち ω。=ωm(k、 K、T) −(11’)ζ=ζ(i
c、 fo 、 K、 T) (12’)(=おいて、
ζおよび1pの値は、方針1,2(二よって与えられて
お9、また、対象プロセスの特性T。
In other words, ω. =ωm(k, K, T) −(11')ζ=ζ(i
c, fo, K, T) (12') (= put,
The values of ζ and 1p are given by policies 1, 2 (2), and the characteristics T of the target process.

Kが・Qられているので、I−P制−のパラメータk。Since K is ・Q, the parameter k of the IP system.

foは、次式でまる。fo is calculated by the following formula.

k = k (K、 ’T、ζ、 tp) (141f
o’ = fo (K、T、ζ、tp) as結局、第
3図のフローチャート(=示すようなアルゴリズム(二
より、I−P制御パラメータを、前掲の方針1.2を実
現でさるよう(−1自動調整することが、可能となる。
k = k (K, 'T, ζ, tp) (141f
o' = fo (K, T, ζ, tp) as In the end, the flowchart in Figure 3 (= algorithm as shown) (from the second, the I-P control parameters can be realized by realizing the above policy 1.2) ( -1 Automatic adjustment becomes possible.

上記のアルゴリズムでは、I−P制御(積分−比例制御
ンを採用したが、これ(二フィルタを追加し、プロセス
信号の雑音を減少させるとさら(二効果を高めることが
できる。
In the above algorithm, I-P control (integral-proportional control) is adopted, but the effect can be further enhanced by adding two filters and reducing the noise of the process signal.

また、送風量の1tilj 1i11としては、送風機
の吸込弁を制御する方法と曝気槽前の風3を調節する方
法の他シーも、台数側at二よる方法や送風機の吐出弁
の制御(=よる方法も実施できる。なお、水温の変動が
大きくない場合には、飽和溶存酸素濃度を一定とするこ
ともアルゴリズムを簡単(ニする有効な方法である。
In addition to the method of controlling the suction valve of the blower and the method of adjusting the air flow in front of the aeration tank, there are also methods for controlling the blower's suction valve and controlling the blower's discharge valve. Furthermore, if the water temperature does not fluctuate greatly, keeping the saturated dissolved oxygen concentration constant is also an effective method for simplifying the algorithm.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明(二よれば、第3図域二示す
ような簡単なアルゴリズムによって系の変動に対して自
動的(二制御パラメータを調整し、常時望ましい溶存酸
素a度の制御応答を得られるよう(二することができる
As explained above, according to the present invention (2), a simple algorithm as shown in Figure 3 (Area 2) automatically adjusts the control parameters (2) in response to system fluctuations, and always maintains a desired control response of a degree of dissolved oxygen. As can be obtained (two can be obtained.

アルゴリズムが簡単でらることは、実用性が高いという
ことを意味し、制御パラメータを自動的(二調節できる
ということは、製品の試験調整時間を短縮し、さら(=
常時望ましい応答を得ることは、処理水質(二好ましい
影響を与えるばかシか無駄な送風を無くし、下水処理場
の大半の磁気式を占める送風機の運転を削減するのし有
効でおる。
The simplicity of the algorithm means that it is highly practical, and the ability to automatically adjust control parameters reduces product test and adjustment time and further improves efficiency.
Obtaining the desired response at all times is effective in eliminating unnecessary or wasteful air blowing, which has a negative impact on the quality of treated water, and in reducing the operation of blowers, which account for the majority of magnetic type blowers in sewage treatment plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、1iII2図
は第1図における電子計算機の副呻パ2メータ決定演算
の機能を示すブロック図、第3図は第2図の演算手順を
示すフローチャートである。 1 @気槽 2 送風機 4 溶存酸素製置検出計 s aL度計 6 風量計 7 人力装置 8 颯子計真磯 9 出力装置 10 台数IBu御装置 11 吸込弁開度制御装置 12 風量制御弁開度i′li制御装置13、1411
u@弁 21 バラメータ決定機構 22L4気槽モデル る I−P制−系 (8733)代理人 弁理士 猪 股 祥 晃(はが1
名)第 1 図
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. FIG. 1 @ Air tank 2 Air blower 4 Dissolved oxygen installed detection meter s aL meter 6 Air flow meter 7 Human power device 8 Shoji meter Maiso 9 Output device 10 Number of units IBu control device 11 Suction valve opening degree control device 12 Air volume control valve opening degree i 'li control device 13, 1411
u @ valve 21 Parameter determination mechanism 22L4 gas tank model I-P system (8733) Agent Patent attorney Yoshiaki Inomata (Haga 1
name) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 活性汚泥処理プロセス(二おiる曝気槽内の溶存酸素濃
度を検出し、設定された浴存tl素濃度の目標値と比較
し、その偏差C二応じそ曝気槽への送風波を制御する曝
気槽の溶存酸素濃度制御方法鑞二おいて、現任の送風量
と溶存酸素濃度の時間変化から線形の溶存酸素濃度モデ
ルを算出する線形モデル決定演算と、あらかじめ設定し
た制御応答特性4二応じて上i己線形の溶存酸素濃度モ
デル(二対する制御系のパラメータを決定するパラメー
タ決定演算を備え、上記パラメータ(:#8整された+
6制御系を用いて曝気槽への送風量を制御することを特
徴とする曝気槽の溶存酸素濃度制御方法。
Activated sludge treatment process (2) Detect the dissolved oxygen concentration in the aeration tank, compare it with the set target value for the concentration of dissolved oxygen in the bath, and control the air waves to the aeration tank according to the deviation C2 Dissolved oxygen concentration control method in an aeration tank Reinji uses a linear model determination calculation that calculates a linear dissolved oxygen concentration model from the current air flow rate and time changes in dissolved oxygen concentration, and a linear model determination operation that calculates a linear dissolved oxygen concentration model based on the preset control response characteristics 42. The self-linear dissolved oxygen concentration model (equipped with a parameter determination calculation that determines the control system parameters for
6. A method for controlling dissolved oxygen concentration in an aeration tank, comprising controlling the amount of air blown to the aeration tank using a control system.
JP58232785A 1983-12-12 1983-12-12 Method for controlling concentration of dissolved oxygen of aeration tank Pending JPS60125297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58232785A JPS60125297A (en) 1983-12-12 1983-12-12 Method for controlling concentration of dissolved oxygen of aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232785A JPS60125297A (en) 1983-12-12 1983-12-12 Method for controlling concentration of dissolved oxygen of aeration tank

Publications (1)

Publication Number Publication Date
JPS60125297A true JPS60125297A (en) 1985-07-04

Family

ID=16944700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232785A Pending JPS60125297A (en) 1983-12-12 1983-12-12 Method for controlling concentration of dissolved oxygen of aeration tank

Country Status (1)

Country Link
JP (1) JPS60125297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113677A (en) * 2015-12-22 2017-06-29 メタウォーター株式会社 Wastewater treatment system, air supply amount control device and air supply amount control method
WO2018179476A1 (en) * 2017-03-30 2018-10-04 メタウォーター株式会社 Waste water treatment system, device for controlling air supply volume, and method for controlling air supply volume

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343958A (en) * 1976-09-30 1978-04-20 Mitsubishi Electric Corp Measuring instrument for activated sludge treatment works
JPS5524518A (en) * 1978-08-10 1980-02-21 Kazukiyo Takahashi Analysis and estimate control method for activated sludge process waste water treatment
JPS5879594A (en) * 1981-11-07 1983-05-13 Toshiba Corp Controlling method for concentration of dissolved oxygen in aerating tank in activated sludge treating process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343958A (en) * 1976-09-30 1978-04-20 Mitsubishi Electric Corp Measuring instrument for activated sludge treatment works
JPS5524518A (en) * 1978-08-10 1980-02-21 Kazukiyo Takahashi Analysis and estimate control method for activated sludge process waste water treatment
JPS5879594A (en) * 1981-11-07 1983-05-13 Toshiba Corp Controlling method for concentration of dissolved oxygen in aerating tank in activated sludge treating process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113677A (en) * 2015-12-22 2017-06-29 メタウォーター株式会社 Wastewater treatment system, air supply amount control device and air supply amount control method
WO2017110394A1 (en) * 2015-12-22 2017-06-29 メタウォーター株式会社 Wastewater treating system, supplied-air-amount control device, and supplied-air-amount control method
WO2018179476A1 (en) * 2017-03-30 2018-10-04 メタウォーター株式会社 Waste water treatment system, device for controlling air supply volume, and method for controlling air supply volume
JP2018167249A (en) * 2017-03-30 2018-11-01 メタウォーター株式会社 Wastewater treatment system, air supply amount control equipment and air supply amount control method
JP2021176638A (en) * 2017-03-30 2021-11-11 メタウォーター株式会社 Wastewater treatment system, air supply amount control equipment and air supply amount control method
US11597667B2 (en) 2017-03-30 2023-03-07 Metawater Co., Ltd. Wastewater treatment system, air supply amount control device, and air supply amount control method

Similar Documents

Publication Publication Date Title
CN102621883B (en) PID (proportion integration differentiation) parameter turning method and PID parameter turning system
CN106082430A (en) A kind of aeration control system and aeration control method
RU2006142355A (en) METHOD FOR WATER TREATMENT USING A BIOLOGICAL REACTOR AND A DEVICE FOR ITS IMPLEMENTATION
CA2534796C (en) Method and device arrangement for automatic dose control of chemicals
JPS60125297A (en) Method for controlling concentration of dissolved oxygen of aeration tank
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JP2002177980A (en) Fuzzy controller for activated sludge treatment and method for the same
JPS5879594A (en) Controlling method for concentration of dissolved oxygen in aerating tank in activated sludge treating process
US20210001264A1 (en) Ozone generating apparatus and ozone generating method
JP2002219480A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JPS60251993A (en) Method for controlling concentration of dissolved oxygen of aeration tank
JPH04326992A (en) Control apparatus of water treatment plant
JPS5916002A (en) Pi controlling method
JPS61111193A (en) Method for controlling concentration of dissolved oxygen in aereation tank
JP2950661B2 (en) Control unit for water treatment plant
JPH0438474B2 (en)
JPS61156403A (en) Automatic control method of control parameter
JPH10286585A (en) Aeration air volume controlling apparatus
JPS61274795A (en) Apparatus for controlling concentration of dissolved oxygen of aeration tank
JPH0859207A (en) Device for forming ozone water
JPS5826073Y2 (en) water treatment equipment
JPH0563803B2 (en)
JPS63200807A (en) Injection controller for flocculant
JPS63812B2 (en)
JPH04958Y2 (en)