JPS59159931A - Production of steel material - Google Patents

Production of steel material

Info

Publication number
JPS59159931A
JPS59159931A JP3372583A JP3372583A JPS59159931A JP S59159931 A JPS59159931 A JP S59159931A JP 3372583 A JP3372583 A JP 3372583A JP 3372583 A JP3372583 A JP 3372583A JP S59159931 A JPS59159931 A JP S59159931A
Authority
JP
Japan
Prior art keywords
steel
temp
annealing
patenting
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3372583A
Other languages
Japanese (ja)
Other versions
JPS626727B2 (en
Inventor
Masayoshi Takano
高野 正吉
Noriyuki Kono
河野 宣之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP3372583A priority Critical patent/JPS59159931A/en
Publication of JPS59159931A publication Critical patent/JPS59159931A/en
Publication of JPS626727B2 publication Critical patent/JPS626727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain a steel material having extremely fine and uniform carbide structure with less variance in components and structure with high productivity by hot rolling a carbon steel or alloy steel contg. C in a specified amt. then subjecting the steel to patenting followed by low temp. annealing. CONSTITUTION:A carbon steel or alloy steel contg. >=0.4wt% and more preferably <=1.3wt% C is hot rolled at a temp. of preferably the Ar3 transformation point or above and under such condition under which the rolling end temp. attains particularly 750-850 deg.C. The carbon steel or alloy steel after the hot rolling is once cooled and is reheated or the steel is subjected to patenting at a constant holding temp. of preferably 400-650 deg.C at a prescribed plate thickness, width or wire diameter in succession to the above-mentioned hot rolling. The carbon steel or the like is thereafter subjected to low temp. annealing at a temp. of preferably the heating austenite transformation point (Ac1 transformation point) or below and the intended steel material having the fine and uniform structure of carbide is obtd.

Description

【発明の詳細な説明】 この発明は、微細でかつ均一な炭化物組織を有する鋼材
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a steel material having a fine and uniform carbide structure.

従来、この種の鋼材の製造方法としては、所定成分の鋼
を熱間圧延した後球状化焼鈍を施し、次いで冷間圧延し
た後低温焼鈍を施す方法があった。
Conventionally, as a method for producing this type of steel material, there has been a method in which steel of a predetermined composition is hot-rolled, then subjected to spheroidizing annealing, then cold-rolled, and then low-temperature annealed.

しかしながら、このような従来の方法では、球状化焼鈍
として、例えば昇温8時間+均熱4時間+徐冷10時間
(770℃峠650°C)の条件による長時間の熱処理
を施していたため、連続式のあり、必然的にパンチ炉等
の不連続炉を用いてコイル毎に熱処理せざるを得ないと
いう問題を有し、生産性が劣ると同時に、コイルの内外
部分で球状化処理のばらつきが生じやすく、そのため製
品の特性にもばらつきをきたしやすいという欠点を有し
ていた。
However, in such conventional methods, as spheroidizing annealing, a long time heat treatment was performed under the conditions of, for example, 8 hours of heating + 4 hours of soaking + 10 hours of slow cooling (770°C pass 650°C), Although it is a continuous type, it has the problem of having to heat-treat each coil using a discontinuous furnace such as a punch furnace, resulting in poor productivity and variations in the spheroidization process between the inner and outer parts of the coil. This has the drawback of easily causing variations in product characteristics.

が小さく、きわめて微細でかつ均一な炭化物組織を有す
る銅帯、鋼線、棒鋼等の鋼材を高い生産性をもって得る
ことができる製造方法を提供することを目的としている
The object of the present invention is to provide a manufacturing method that can produce steel materials such as copper strips, steel wires, and steel bars with high productivity that have small, extremely fine, and uniform carbide structures.

この発明は、C含有量が0.4重量%以上の炭素鋼もし
くは合金鋼を熱間圧延した後、所定の板厚・板幅あるい
は線径でパテンティングを施し、次いで低温焼鈍を行う
ようにして、均一でかつ微細な炭化物組織を有する銅帯
、棒鋼、鋼線等の鋼材を得ることを特徴としている。そ
して、この発明による鋼材の製造方法にあっては、C含
有量が圧延した後、必要に応して焼鈍および冷間圧延を
行い、さらに必要に応じてこの冷間圧延を低温焼鈍とと
もに繰り返し、その後パテンティングを施し、次いで低
温焼鈍を行い、必要に応じてその後冷間圧延を行う工程
をも含むものである。
This invention involves hot rolling carbon steel or alloy steel with a C content of 0.4% by weight or more, applying patenting to a predetermined plate thickness, plate width, or wire diameter, and then low-temperature annealing. This method is characterized in that steel materials such as copper strips, steel bars, and steel wires having a uniform and fine carbide structure are obtained. In the method for manufacturing a steel material according to the present invention, after the C content is rolled, annealing and cold rolling are performed as necessary, and this cold rolling is further repeated with low temperature annealing as necessary, It also includes the steps of applying patenting after that, then low-temperature annealing, and then cold rolling if necessary.

この発明が適用される鋼は、C含有量が0.4重量%以
上の炭素鋼もしくは合金鋼であり、具体的には、例えば
、C:0.4〜1.3重量%、Si : 1.0重量%
以下、Mn:1.5重量%以下の炭素鋼、もしくは前記
基本成分に、Cr:2.0重量%以下、Mo+1.0重
量%以下、W:1.0重量%以下、V:0.5重量%以
下、Ti:0.5重量%以下、その他Si、Mn。
The steel to which this invention is applied is carbon steel or alloy steel with a C content of 0.4% by weight or more, specifically, for example, C: 0.4 to 1.3% by weight, Si: 1 .0% by weight
Hereinafter, carbon steel with Mn: 1.5% by weight or less, or the above basic components, Cr: 2.0% by weight or less, Mo + 1.0% by weight or less, W: 1.0% by weight or less, V: 0.5 % by weight or less, Ti: 0.5% by weight or less, others Si, Mn.

Ni 、Zr、Nb、Ta、Cu、P、S、Pb。Ni, Zr, Nb, Ta, Cu, P, S, Pb.

Ca、REM等々の1種または2種以上を適宜含15有
させた合金鋼や、○、S、P等の上限を規制した鋼など
に対して適用することができる。
It can be applied to alloy steels containing one or more of Ca, REM, etc., as appropriate, and steels with restricted upper limits of O, S, P, etc.

この場合、鋼中のC含有量が0.4重量%よりも少ない
と、フェライト生成量が多くなるので好ましくなく、多
すぎると網目状の炭化物が生ずるので、より好ましくは
1.3重量%以下とする。
In this case, if the C content in the steel is less than 0.4% by weight, the amount of ferrite produced will increase, which is undesirable, and if it is too large, network-like carbides will be formed, so it is more preferably 1.3% by weight or less. shall be.

このような鋼を熱間圧延するに際しては、圧延終止温度
がオーステナイト変態点(Ar3変態点)以上の温度で
あるようにすることがより望ましい。この場合、圧延終
止温度が高すぎるとフェライトの生成量が多くなるので
好ましくなく、反対に圧延終止温度が低すぎるとベイナ
イトが多量に析出するようになるので好ましくない。し
たがって、熱間圧延の際の終止温度は、フェライトやベ
イナイトの生成を考慮して定めるのがよく。
When hot rolling such steel, it is more desirable that the rolling end temperature is equal to or higher than the austenite transformation point (Ar3 transformation point). In this case, if the end-of-rolling temperature is too high, the amount of ferrite produced will increase, which is undesirable.On the other hand, if the end-of-rolling temperature is too low, a large amount of bainite will precipitate, which is undesirable. Therefore, the end temperature during hot rolling is preferably determined in consideration of the formation of ferrite and bainite.

より望ましくは750〜850°Cとするのが良い。More preferably, the temperature is 750 to 850°C.

この熱間圧延後には、第1図(a)に示すように、当該
圧延材をいったん冷却した後再加熱して、または上記熱
間圧延に続いて、所定の板厚。
After this hot rolling, as shown in FIG. 1(a), the rolled material is once cooled and then reheated, or following the above hot rolling, it is rolled to a predetermined thickness.

板幅もしくは線径でパテンティングを施す。あるいは、
第1図(b)に示すように、上記熱間圧延後、焼鈍およ
び冷間圧延を行ったのち、所定の板厚、板幅もしくは線
径でパテンティングを施す。
Patenting is applied by plate width or wire diameter. or,
As shown in FIG. 1(b), after the hot rolling, annealing and cold rolling are performed, and then patenting is applied to a predetermined plate thickness, plate width, or wire diameter.

あるいは、第1図(c)に示すように、上記熱間圧延後
、焼鈍・冷間圧延中低温焼鈍・冷間圧延の工程を1回も
しくは2回以上くり返したのち、所定の板厚、板幅もし
くは線径でパテンティングを施す。
Alternatively, as shown in FIG. 1(c), after the above-mentioned hot rolling, the steps of annealing, cold rolling, low temperature annealing, and cold rolling are repeated once or twice or more, and then a predetermined plate thickness is obtained. Patenting is done by width or wire diameter.

なお、上記パテンティング前工程における焼鈍は、必ず
しも球状化焼鈍でなくとも良く、焼鈍後の冷間圧延が良
好に行えさえすれば良いものである。したがって、冷間
圧延を考慮した焼鈍・低温焼鈍条件を選定すればよく、
あえて散音な条件は要求されない。もちろん、球状化焼
鈍をすればより好ましいが、焼鈍能率やコスト等を考慮
して次の冷間圧延に支障のない条件を選定すれば十分で
ある。
Incidentally, the annealing in the pre-patenting step does not necessarily have to be spheroidizing annealing, and it is sufficient as long as cold rolling after annealing can be performed well. Therefore, it is only necessary to select annealing and low-temperature annealing conditions that take cold rolling into consideration.
No harsh conditions are required. Of course, it is more preferable to perform spheroidizing annealing, but it is sufficient to select conditions that do not interfere with the subsequent cold rolling, taking into account annealing efficiency, cost, etc.

このような工程の後におこなわれるパテンティングは、
上記圧延材を恒温保持することによって、一定した微細
なラメラ−パーライトを得るためになされる。この場合
の恒温保持に際してぼ、鉛浴、塩浴などの従来既知の手
段を用いることができ、場合によってはエアパテンティ
ングなどによることもできる。
Patenting, which is carried out after this process,
By keeping the rolled material at a constant temperature, a constant fine lamellar pearlite can be obtained. In this case, for maintaining the constant temperature, conventionally known means such as boiling water, lead bath, salt bath, etc. can be used, and in some cases, air patenting etc. can also be used.

このパテンティングの際の恒温保持温度は、その上限は
フェライトが析出する温度を考慮し、下限はベイナイト
が析出する温度を考慮して定めるのが良く、より望まし
くは400〜650°Cとするのが良い。この恒温処理
後に得られる組織の粒度は、前記した処理温度を選定す
ることによって適宜調整することができ、これによって
所望の炭化物粒度が得られる。
The upper limit of the constant temperature during patenting should be determined by taking into account the temperature at which ferrite precipitates, and the lower limit by taking into account the temperature at which bainite precipitates, and more preferably 400 to 650°C. is good. The grain size of the structure obtained after this constant temperature treatment can be appropriately adjusted by selecting the treatment temperature described above, thereby obtaining the desired carbide grain size.

上記パテンティング後には、81図に示すように、低温
焼鈍を施すが、この場合、加熱オーステナイト変態点(
Ac、変態点)以下の温度で行うことがより望ましい。
After the above patenting, as shown in Fig. 81, low temperature annealing is performed, but in this case, the heated austenite transformation point (
It is more desirable to carry out the process at a temperature below (Ac, transformation point).

この際、低温焼鈍温度および時間を調整することによっ
て組織の粒度を変えることができるので、銅帯、棒鋼あ
るいは鋼線等の鋼材の用途などに応じて低温焼鈍条件を
定めるのが良い。
At this time, the grain size of the structure can be changed by adjusting the low-temperature annealing temperature and time, so it is preferable to determine the low-temperature annealing conditions depending on the use of the steel material, such as a copper strip, steel bar, or steel wire.

この低温焼鈍後には、軽微な冷間圧延すなわちスキンパ
スを行うことも良い。このスキンパスを行う場合には、
5〜20%程度の圧延率とするのが良い。その理由は、
圧延率が小さすぎるとスキンパスの効果が小さく、大き
すぎると加工硬化して次工程での加工性(打抜きや曲げ
等)が悲くなるためである。
After this low-temperature annealing, a slight cold rolling, that is, a skin pass may be performed. When performing this skin pass,
It is preferable to set the rolling ratio to about 5 to 20%. The reason is,
This is because if the rolling rate is too small, the effect of the skin pass will be small, and if it is too large, work hardening will occur and the workability (punching, bending, etc.) in the next process will be poor.

このような一連の処理後に得られた鋼材の炭化物組織は
微細でかつ均一なものとなっており、この鋼材を用いた
製品そのものの組織を改善することができると共に、こ
の鋼材を剪断加工するのに使用する工具の寿命を増大さ
せることができ、かつまた剪断面を良好なものとするこ
とができるというすぐれた特長を有し、例えばぜんまい
や刃物等に加工する際の加工性が良好であると共に、焼
入れ硬さのほらつきを小さなものとすることができるな
どの利点を有している。
The carbide structure of the steel material obtained after such a series of treatments is fine and uniform, and it is possible to improve the structure of the product itself using this steel material, as well as to improve the shearing process of this steel material. It has the excellent feature of being able to increase the life of tools used in the process, as well as creating a good shearing surface.For example, it has good workability when processing into springs, cutlery, etc. At the same time, it has the advantage that fluctuations in quenching hardness can be minimized.

以下、この発明の実施例を比較例と共に説明する。Examples of the present invention will be described below along with comparative examples.

衷旌彰 第1表に示す化学成分の合計4種類の炭素鋼(No、 
 1 、2)および合金鋼(No、 3 、4)を溶製
したのち造塊し、次いで各鋼塊を熱間圧延して板厚4+
nmの圧延材を得た。このとき、圧延終了温度は表に示
すように、aoo’cとなるようにした。次に、第1図
(a)に示す工程に従って、前記圧延材のうち一部は冷
却した後再加熱して、また、他の一部は熱間圧延後の温
度を調整して、それぞれ連続式加熱炉内で850°Cで
2〜3分保持した後、450℃、550°c、s;5o
°Cの温度に保持した連続式鉛浴炉中に2分間通過させ
るパテンティング処理を施した。
A total of four types of carbon steel (No.
1, 2) and alloy steels (No. 3, 4) are melted and ingot-formed, and then each steel ingot is hot-rolled to a plate thickness of 4+.
A rolled material with a diameter of 1 nm was obtained. At this time, the rolling end temperature was set to aoo'c as shown in the table. Next, according to the process shown in FIG. 1(a), part of the rolled material is cooled and then reheated, and the other part is continuously rolled by adjusting the temperature after hot rolling. After holding at 850°C for 2-3 minutes in a type heating furnace, 450°C, 550°C, 5o
A patenting treatment was carried out by passing for 2 minutes in a continuous lead bath furnace maintained at a temperature of .degree.

また、前記熱間圧延材の残りの一部は、第1図(b)に
示す工程に従って、同表に示す720°CX2hrの条
件で焼鈍を施し、次いで同表に示す圧延率で冷間圧延を
行った後、それぞれ連続式加熱炉内で850°Cで2〜
3分間保持した後、450’C! 、 550℃、65
0°Cの温度に保持した連続式鉛浴炉中に2分間通過さ
せるパテンティング処理を施した。
In addition, the remaining part of the hot rolled material was annealed at 720°C for 2 hours as shown in the table according to the process shown in FIG. 1(b), and then cold rolled at the rolling rate shown in the table. After that, each was heated at 850°C in a continuous heating furnace for 2 to 30 minutes.
After holding for 3 minutes, 450'C! , 550℃, 65
A patenting treatment was carried out by passing for 2 minutes in a continuous lead bath furnace maintained at a temperature of 0°C.

続いて、パテンティング後の銅帯に対して、同表に示す
ように、一部は720°CX2hrの条件で低温焼鈍を
施し、他部は720°CXl0hrの条件で低温焼鈍を
施した。
Subsequently, as shown in the same table, the copper strip after patenting was partially annealed at a low temperature of 720°C for 2 hours, and the other part was annealed at a low temperature of 720°C for 10 hours.

そして、このようにして得られた各鋼材の炭化物組織の
粒度の平均値およびそのばらつきを調べたところ、同じ
く第1表に示す結果であった。また、各鋼材の組織を調
べたところ、第3図および第4図に例示する結果が得ら
れた。
The average grain size of the carbide structure of each of the steel materials thus obtained and its dispersion were investigated, and the results were also shown in Table 1. Further, when the structure of each steel material was investigated, the results illustrated in FIGS. 3 and 4 were obtained.

虫艶璽 前記実施例で得た板厚4rnmの熱間圧延材の残りに対
して、第2図に示す工程に従って、第2表に示す条件で
球状化焼鈍を施した後、同じく第2表に示す圧延率で冷
間圧延を行って板厚2mmの冷間圧延材を得、続いて同
じく第2表に示す条件で低温焼鈍を施した。
The remainder of the hot-rolled material with a thickness of 4 nm obtained in the above example was subjected to spheroidizing annealing under the conditions shown in Table 2 according to the process shown in FIG. Cold rolling was performed at the rolling rate shown in Table 2 to obtain a cold rolled material with a plate thickness of 2 mm, followed by low temperature annealing under the conditions shown in Table 2.

そして、このようにして得られた各鋼材の炭化物組織の
粒度の平均値およびそのばらつきを調べたところ、同じ
く第2表に示す結果であった。
Then, when the average value of the grain size of the carbide structure of each of the steel materials obtained in this manner and its dispersion were investigated, the results were also shown in Table 2.

第1表、S2表および83図、第4図に示す結果から明
らかなように、この発明により得られた鋼材の炭化物組
織は、従来の球状化焼鈍したものに比べてかなり微細な
ものとなっており、しかも粒度のばらつきが小さい均一
なものであるということが認められた。
As is clear from the results shown in Table 1, Table S2, and Figures 83 and 4, the carbide structure of the steel obtained by this invention is considerably finer than that of conventional spheroidizing annealing. Moreover, it was recognized that the particle size was uniform with little variation.

なお、上記実施例および比較例においては銅帯を例めと
って説明したが、S鋼や鋼線について行った場合におい
てもこの発明による鋼材の炭化物組織は従来のものに比
べてかなり微細でかつ均一なものであることが認められ
た。
Although the above Examples and Comparative Examples have been explained using copper strips as an example, even when S steel or steel wires are used, the carbide structure of the steel material according to the present invention is considerably finer and more uniform than that of conventional ones. It was recognized that it was a thing.

以上説明してきたように、この発明によれば、成分や組
織のばらつきが小さく、きわめて微細でかつ均一な炭化
物組織を有する鋼帯、棒鋼、鋼線等の鋼材を得ることが
でき、連続設備による鋼材の製造が容易に可能であるた
め生産性にもすぐれ、従来のように球状化焼鈍のために
コイル材とした場合における銅帯、棒鋼、&r4線等の
曲がりもなく、したがって矯正を行う必要もなく、寸法
等によっては必ずしも冷間圧延を行う必要がなく、品質
のすぐれた鋼材を得ることができるという著大なる効果
をもたらしうる。
As explained above, according to the present invention, it is possible to obtain steel materials such as steel strips, steel bars, steel wires, etc., which have small variations in composition and structure and have an extremely fine and uniform carbide structure. It is easy to manufacture steel materials, so it has excellent productivity, and there is no bending of copper strips, steel bars, &r4 wires, etc. when used as coil materials for spheroidizing annealing as in the past, so there is no need to straighten them. Depending on the dimensions, etc., it is not always necessary to perform cold rolling, and this can bring about a significant effect in that steel products of excellent quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施態様における鋼材の製造工程を
示す説明図、第2図は比較例における鋼材の製造工程を
示す説明図、第3図および第4図はこの発明の実施例に
おいて製造した鋼材の顕微鏡組織写真図(400倍)で
ある。 特許出願人  大同特殊鋼株式会社 代理人弁理士 小  塩   豊 第1図 (a)     (b)    (C)第2図
FIG. 1 is an explanatory diagram showing the manufacturing process of steel materials in an embodiment of this invention, FIG. 2 is an explanatory diagram showing the manufacturing process of steel materials in a comparative example, and FIGS. 3 and 4 are explanatory diagrams showing the manufacturing process of steel materials in an embodiment of this invention. It is a micrograph (400 times) of the microstructure of the steel material. Patent applicant: Daido Steel Co., Ltd. Patent attorney Yutaka Oshio Figure 1 (a) (b) (C) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)C含有量が0.4重量%以上の炭素鋼もしくは合
金鋼を熱間圧延した後、パテンティングを施し、次いで
低温焼鈍を行うことを特徴とする炭化物の微細均一組織
を有する鋼材の製造方法。
(1) Carbon steel or alloy steel with a C content of 0.4% by weight or more is hot-rolled, patented, and then low-temperature annealed to produce a steel material with a fine uniform carbide structure. Production method.
JP3372583A 1983-03-03 1983-03-03 Production of steel material Granted JPS59159931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3372583A JPS59159931A (en) 1983-03-03 1983-03-03 Production of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3372583A JPS59159931A (en) 1983-03-03 1983-03-03 Production of steel material

Publications (2)

Publication Number Publication Date
JPS59159931A true JPS59159931A (en) 1984-09-10
JPS626727B2 JPS626727B2 (en) 1987-02-13

Family

ID=12394369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3372583A Granted JPS59159931A (en) 1983-03-03 1983-03-03 Production of steel material

Country Status (1)

Country Link
JP (1) JPS59159931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185920A (en) * 1989-01-13 1990-07-20 Kawasaki Steel Corp Manufacture of directly softened wire rod or rod stock
JP2010030036A (en) * 2008-02-28 2010-02-12 Sintokogio Ltd Material of projecting material for shot-peening, and method of manufacturing projecting material for shot-peening

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185920A (en) * 1989-01-13 1990-07-20 Kawasaki Steel Corp Manufacture of directly softened wire rod or rod stock
JP2010030036A (en) * 2008-02-28 2010-02-12 Sintokogio Ltd Material of projecting material for shot-peening, and method of manufacturing projecting material for shot-peening

Also Published As

Publication number Publication date
JPS626727B2 (en) 1987-02-13

Similar Documents

Publication Publication Date Title
JPH0112816B2 (en)
JP2006506534A (en) Cold-worked steel with pocket-laser martensite / austenite microstructure
JPS5818970B2 (en) Method for manufacturing high-strength thin steel sheets with excellent cold workability
JPH08302428A (en) Production of high strength steel strip for spring
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JP2833004B2 (en) Fine grain pearlite steel
JPS59159931A (en) Production of steel material
JPH059588A (en) Production of high carbon steel sheet excellent in formability
US3502514A (en) Method of processing steel
JP3103268B2 (en) Method for producing steel sheet for containers with excellent fluting resistance
JPH08199309A (en) Stainless steel excellent in workability and its production
KR100268852B1 (en) The manufacturing method for cold workability wire rod with excellent spheroidizing heat treatment property
JP2808675B2 (en) Fine grain bainite steel
JPH02213416A (en) Production of steel bar with high ductility
JPH0213004B2 (en)
JPH07115062B2 (en) Method for manufacturing brass-plated ultrafine steel wire
JPH0116887B2 (en)
JPH0576525B2 (en)
JPS6220820A (en) Cold working method
JPS591631A (en) Manufacture of steel material
JP3613015B2 (en) Method for producing high carbon steel sheet having high ductility and hardenability
JPH02267219A (en) Production of steel plate excellent in carburizability
JPS5942055B2 (en) Manufacturing method for high-tensile steel wires and steel bars
KR100946046B1 (en) Manufacturing of fine-grained low-carbon ferritic steels
JP2792896B2 (en) Method for producing carbon steel or alloy steel sheet having fine spheroidized carbide