JPS5915907A - Production of plural-cored optical fiber bundle - Google Patents

Production of plural-cored optical fiber bundle

Info

Publication number
JPS5915907A
JPS5915907A JP57125380A JP12538082A JPS5915907A JP S5915907 A JPS5915907 A JP S5915907A JP 57125380 A JP57125380 A JP 57125380A JP 12538082 A JP12538082 A JP 12538082A JP S5915907 A JPS5915907 A JP S5915907A
Authority
JP
Japan
Prior art keywords
fiber
fibers
optical fiber
resin
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57125380A
Other languages
Japanese (ja)
Inventor
Hisashi Murata
久 村田
Makoto Sumita
真 住田
「淵」上 建也
Kenya Fuchigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57125380A priority Critical patent/JPS5915907A/en
Publication of JPS5915907A publication Critical patent/JPS5915907A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To form economically a titled bundle having a collective covering contg. plural optical fibers at a high density by applying a primary coating on the optical fibers spun from plural pieces of base material rods then bundling the fibers and applying a secondary covering thereon. CONSTITUTION:Respective optical fibers 1 obtd. by melting and spinning simultaneously plural pieces of base material rods 10 disposed in parallel in a holder 11 in a heating furnace 12 are conducted into a coating die 13, and a primary covering resin (e.g.; silicone resin) 14 is coated thereon, whereafter the fibers are introduced into a curing furnace 15, where the fibers are heated or UV rays are irradiated thereto to cure the resin, thereby obtaining respectively discrete strands 3. Such strands 3 are then conducted into a die 16, and while the strands are densely bundled, a secondary coating resin 17 is coated thereon. The coated fibers are introduced into a curing furnace 18 where the fibers are heated or UV rays are irradiated to cure the resin, thereby forming a plural-cored optical fiber bundle 8. The fiber bundled is taken up on a take-up device 20 via a pulley 19.

Description

【発明の詳細な説明】 本発明Gま複数σ)光ファイバを高密度に収容する一括
被侃の通信用光フアイバ集束体(ユニット)か経済的に
製造T6方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a T6 method for economically producing optical fiber bundles (units) for telecommunications in which multiple σ) optical fibers are housed in high density.

通イd用媒体として近年開発が進めらnてさた元ファイ
バは、従来の銅線対をはるかに越える伝送特性をイiし
、細径、軒数、無誘導であるという特長を備えている。
The original fiber, which has been developed in recent years as a communication medium, has transmission characteristics that far exceed those of conventional copper wire pairs, and has the features of a small diameter, number of wires, and non-induction. .

こり特長を活かT光ケーブルの構造としては、光7アイ
パ心線を多数、高密度に集什し、ケーブル白木を細径、
@鼠化するとともに、経済化に図る口とが重要である。
The structure of the T-optical cable, which takes advantage of the stiffness characteristics, consists of a large number of optical 7-iper fibers gathered together at high density, and the cable plain wood is made of small diameter fibers.
In addition to becoming a @ rat, it is important to have an outlet for economicization.

元ファイバは上記利点に対し、脆性材料であるガラス特
有の問題、丁なわち欠陥部がある場合に極端に強度が低
ドし、破断し易くなるという爪大な欠点に有Tる0この
ため光ファイバは銅線のように裸線で取扱うことができ
ず、母材から紡糸した直後に補強被覆を施し、表面欠陥
の発生を防ぐ必要がある。
Despite the above-mentioned advantages, the original fiber has a serious disadvantage, which is a problem peculiar to glass, which is a brittle material, that is, if there is a defect, the strength is extremely low and it becomes easy to break. Unlike copper wire, optical fiber cannot be handled as a bare wire, and it is necessary to apply a reinforcing coating immediately after spinning from a base material to prevent surface defects from occurring.

この被覆は1次被覆と称’2rrt、 s従来の元ファ
イバ番ゴこの1次数桓付(素線)の状態でドラムに巻取
らn1次の製造工程のためにfpS備ざnる。しかるに
このような単心素線には、僅かな(面率ながら各工程中
に生じる平均強度のi程度(/J脆弱部分が仔在し、1
g騙製造の歩留りが悪いうえ、ドラムでの巻取りや、そ
の保管、取扱いにおいて、脆弱M−分カ増大してしまう
という大さな問題がある。
This coating is referred to as a primary coating, and is wound on a drum in the state of a conventional original fiber number (strand) and prepared for the n1-th manufacturing process. However, in such a single-core wire, there is a weak part (about i (/J) of the average strength that occurs during each process despite the area ratio,
There is a big problem in that the yield rate of g-frame manufacturing is low, and the fragility increases during winding on a drum, storage, and handling.

Trd記のケーブル高密度化、細径化のためには、炸数
の光ファイバを高密度に集束した集束体(ユニット)を
形成Tることが必然の方向である。従来の高密度ユニッ
トは、予め製造さnT−素線ドラムを複数個、製造ライ
ンに設諭し、新ためて押出法等によって、一括して2次
被覆を施して各IP:、Wを集束するという方法で製造
さnる。しかるにこの場合に番ま、各素線が製造中の張
力に耐える必要があり、1本でも破断Tnば製造不能と
なるため、上記各素線の脆弱部分を考慮し、張力を極力
小さくしなければならず、銅線の場合に比べて、製造中
の張力制御が複雑で、製造速度が遅く、コストが高くな
るという問題がある。また、素線の1次被覆を十分にJ
ソ、くしなければならないため、累線径が太くなり、高
密度化が制限されるという問題り−ある。
In order to increase the density and reduce the cable diameter as described in Trd, it is necessary to form a bundle (unit) in which a large number of optical fibers are concentrated at high density. In the conventional high-density unit, multiple pre-manufactured nT-strand drums are installed on the production line, and then a secondary coating is applied all at once using an extrusion method or the like to condense each IP:, W. It is manufactured by the method. However, in this case, it is necessary for each strand to withstand the tension during manufacturing, and if even one strand breaks, manufacturing becomes impossible, so the tension must be kept as low as possible, taking into account the fragile parts of each strand. However, compared to the case of copper wire, there are problems in that tension control during manufacturing is complicated, manufacturing speed is slow, and costs are high. Also, make sure that the primary coating of the wire is
Since the wire must be combed, there is a problem in that the diameter of the wire becomes thicker, which limits the ability to increase the density.

一万・複数の光ファイバを集束して・1次被覆の段階で
一括被覆する製法も考案2nでいる(特開昭55−88
180)が、コT1. G:t I/ N b kl)
 6 t< ンドルファイバに関するものである。バン
ドルファイバは偏1々の光ファイバを独立に通信伝送路
として取扱えるものでなく、本発明と番ま分野ヤ異にす
るだけでなく、製造工程も異なるものである。
A manufacturing method in which 10,000 optical fibers are bundled and coated all at once in the primary coating stage was also devised (Japanese Patent Laid-Open No. 55-88
180), but KoT1. G:tI/Nbkl)
6 t< Concerning a bundled fiber. Bundled fibers cannot be used as individual optical fibers as communication transmission lines, and are different from the present invention not only in the field but also in the manufacturing process.

また従来、複数の光フアイバコアをまとめてクラッド中
に埋設、一体化しT−複心光ファイバとその紡糸方法も
考案己nているが、細心元ファイノくの脆弱性は単心素
線と全く同様で、大きな問題ケ壱するとともに、その製
法は紡糸工程そσJもV〕シカ−発明とJAなる。
In addition, conventionally, multiple optical fiber cores are embedded in the cladding and integrated into a T-compound optical fiber and its spinning method has been devised, but the fragility of the fine fiber core is exactly the same as that of a single fiber. However, there was a big problem, and the manufacturing method involved the spinning process, and the σJ was also invented by JA.

X発明G:t nii記の問題を解決するため一蝮数(
/J光ファイバを個別に紡糸した直後に、それぞn/次
次数を施して素線をtdI!成し、各素線σ)強度ケ劣
化させ7jいように、連続工程において一各索1131
1を集束し、2次被覆を施して一括してしまうようにし
たもので、各素線の脆弱性が問題にならなし1うえ、工
程の大幅な短縮により、経済化が図nることケ目的とし
たものである。
X invention G: In order to solve the problem described in t nii
/J Immediately after spinning the optical fibers individually, each n/th order is applied to the strands to tdI! In a continuous process, each strand 1131 is
1 is bundled together and then coated with a secondary coating, so the fragility of each strand is not a problem.1 Moreover, the process can be significantly shortened, making it more economical. This is the purpose.

l/図は本発明の製造対象である信心光ファイバユニッ
トの構造例であって、(a)、(b)G1平形(1ノボ
ンフアイバ) 、(c) 、 (d田星形(’J I!
I11でa;+6゜1G−1光フアイバ、2は1次被覆
、4は2に密着した2次被覆、イは接着樹脂、5は熱可
塑陶脂によ62次被覆、6はフィルム、7は中心材であ
る。第2図、第3図、第44図は本発明σ〕実施例であ
って、8&i素纏、8,9は複心ユニット、lOG:を
母材jlロッド11は母材ホルダ、12は加熱炉、18
&ま塗布ダイ、14G:を樹)j11液、15は硬化炉
、16は集束兼塗布ダイ、17は樹脂液、l 7’は接
M樹脂液・18は硬化炉、19番まプーリ、201ま巻
取器、21G:t7’−IJ、22G1樹脂押出装置m
、284:を樹脂、24はトラウ、25はフィルムドラ
ム、26はフィルム、27番ま包縛ダイ、28は硬化炉
である。
Figure 1 shows an example of the structure of the Shinshin optical fiber unit that is the manufacturing target of the present invention, and includes (a), (b) G1 flat type (one fiber), (c), (d).
I11 a; +6° 1G-1 optical fiber, 2 is the primary coating, 4 is the secondary coating in close contact with 2, A is the adhesive resin, 5 is the 62nd coating with thermoplastic ceramic resin, 6 is the film, 7 is the core material. Figures 2, 3, and 44 show embodiments of the present invention σ], in which 8&i is a plain jacket, 8 and 9 are multi-core units, lOG: is a base material, jl is a base material, rod 11 is a base material holder, and 12 is a heating element. furnace, 18
11 liquid, 15 hardening furnace, 16 focusing/coating die, 17 resin liquid, 7' welding resin liquid, 18 hardening furnace, 19 pulley, 201 Ma winder, 21G:t7'-IJ, 22G1 resin extrusion device m
, 284 is a resin, 24 is a trough, 25 is a film drum, 26 is a film, 27 is a wrapping die, and 28 is a curing furnace.

まず、第2図により本発明の構成、作用を説明する。所
要の心数分の母材ロッドをホルダ11により平行に配置
し、IJO熱炉12にて各母材ロッドlOを同時に溶融
し、紡糸する。母材ロッドの数が多く、同じ加熱炉で一
括できない場合は、複数個の加熱炉をt、14い、母拐
ロッドをいくつかの束に分けてもよい。紡糸された光フ
ァイバIGま同時に1次被覆用樹脂塗布ダイ18に導か
’rL、、/次被覆樹脂14TI−塗布された後、硬化
炉15を通って、1次被覆樹脂が硬化ざnlそれぞれ個
別の素線8となる。f法被M樹脂14としては、従来の
単心ファイバ用樹脂と同じものを用いることができ、シ
リコン樹脂、ウレタン樹脂、エポキシ樹脂等の熱硬化性
樹脂ありいは紫外線照射によって硬化Tるエポキシアク
リレート樹脂等カs8当である□14が熱硬化性の場合
、15は加熱炉、とし、14が紫外傾硬化性の場合、1
5は紫外線照射炉とするO 1次被覆を施しである素i 8 Gmi光ファイバlの
状部に比べて、ガラス表面欠陥の発生が抑えら1゜るか
ら、軽微な接触によって強度が大幅に劣化TることG−
1ないが、僅かな確率ながら脆弱品分を有している。そ
こで、各素線8t−ダイ16に導いて密接に集束しつつ
、コ′次被覆樹脂17を塗布し、硬化炉18を通して2
次被覆樹脂を硬化させ、各翼根を一括Tるのである。2
次被覆を施さ1また親心ユニット8は、そり−「面が第
1図(a)や(C)のようになり、集束ざnた素線数を
NとTると、機械的引張強度は必然的に素線強度のN倍
以上となる。
First, the structure and operation of the present invention will be explained with reference to FIG. A required number of base material rods are arranged in parallel by a holder 11, and each base material rod IO is simultaneously melted and spun in an IJO thermal furnace 12. If there are a large number of base material rods and they cannot be heated all at once in the same heating furnace, a plurality of heating furnaces may be used and the mother rods may be divided into several bundles. The spun optical fibers IG are simultaneously guided to a primary coating resin coating die 18, and after being coated with a secondary coating resin 14TI, they are passed through a curing furnace 15 where the primary coating resin is cured individually. becomes the strand 8. The same resin as the conventional resin for single-core fibers can be used as the f-coat M resin 14, such as thermosetting resin such as silicone resin, urethane resin, epoxy resin, or epoxy acrylate that hardens by ultraviolet irradiation. If □ 14, which is equivalent to s8 resin, is thermosetting, 15 is a heating furnace, and if 14 is ultraviolet curable, 1
5 is used as an ultraviolet irradiation furnace. Compared to the primary coated O 8 Gmi optical fiber, the occurrence of glass surface defects is suppressed by 1°, so the strength is significantly increased by slight contact. Deterioration T also known as G-
1, but there is a small probability that it has some vulnerable items. Therefore, each 8t wire is guided to a die 16 and tightly focused, coated with a co-coating resin 17, and passed through a curing furnace 18 to a second
Next, the coating resin is cured, and each blade root is coated all at once. 2
Next, the coated core unit 8 has a warped surface as shown in Fig. 1 (a) and (C), and the mechanical tensile strength is Inevitably, the strength is N times or more the strength of the strand.

こ第1.をざらに詳しく述べれば、平均強度がN倍以上
となるばかりでなく、ある素線に脆弱な欠陥部分があっ
ても、他の素線が強度シ保つため、単心素線のような低
強度す分はほぼ完全に無くなるのである。従って、嬢心
ユニット8については、J柱心:J!、#Aに加えるよ
うなプルーフテスト(スクリーニング・・・・・・通常
数百グラムの荷重で行わ1する)は全く不用であるから
、ブーIJ 19を介した後、直接巻取器20に巻取う
てしまうことができる。この11心ユニツトは次のケー
ブル化工程でざらに集hpt1でいくのであるが、強度
が極めて高いため、簡易な張力制御で高速度の集会がで
きるのである。
This first thing. To explain this in detail, not only is the average strength N times higher, but even if there is a weak defect in a certain wire, the other wires maintain their strength, so even if a single wire has a low strength The strength difference is almost completely eliminated. Therefore, regarding Jushin unit 8, J pillar center: J! , No proof test (screening...usually carried out with a load of several hundred grams) as in #A is completely unnecessary. You can take it away. This 11-fiber unit will be assembled roughly at hpt1 in the next cable production process, but because it has extremely high strength, high-speed assembly can be achieved with simple tension control.

以上の工程で、1次被覆の厚gift樹脂の物性との関
連において選定2nるのであるが、数ミクロン〜数十ミ
クロンとするのが適当である。この1次被覆を省略して
しまうと、光ファイバ1が裸で接触し会うこと&:なり
、互いに表面に傷をつけて、著しく強度が劣化するばか
りですく、ケーブル端末部分で各党ファイバを独立に取
扱うことが困難になる。1法被積付の素線であれば、端
末で2次被覆を除去しても、各素線か単心素線としての
強度を維持しているので、独立に取扱うことも容易であ
る。
In the above steps, the thickness of the primary coating is selected in relation to the physical properties of the gift resin, but it is appropriate to set it to several microns to several tens of microns. If this primary coating is omitted, the optical fibers 1 will come into contact with each other bare, damaging each other's surfaces and significantly deteriorating the strength, and each fiber will be separated at the end of the cable. becomes difficult to handle. In the case of single-method loaded strands, even if the secondary coating is removed at the terminals, each strand maintains its strength as a single-core strand, so it is easy to handle them independently.

第3図けM続した2次被覆工程に熱可塑樹脂を用いる本
発明製法の要施例倉示Tが・素線8の段階までは第2図
の実施例と同一である。1次被覆処理し7こ素線8を2
法被覆用熱町塑樹脂押出装置22に導く−なおこの直前
で各素線炉所定の形状に密接に集束Tるダイを辿丁のは
勿論である。2Bは加熱ざnて溶融状態になっている熱
可!!11樹脂であり、22のスクリューによって押出
キn、る0このような押出被Npれたユニットは温水、
冷水のトラウz4を通せば、数置が硬化し、四心ユニッ
ト8が完[15ETるので、巻取器20で巻取nばよい
FIG. 3 shows an essential embodiment of the manufacturing method of the present invention using a thermoplastic resin in the subsequent secondary coating process. The steps up to the stage of strand 8 are the same as the embodiment shown in FIG. 7 strands 8 after primary coating treatment
It goes without saying that just before this, a die T is closely focused into a predetermined shape for each wire furnace. 2B is a thermoplastic that becomes molten when heated! ! 11 resin, extruded by 22 screws, and such an extruded unit is heated with hot water,
When cold water is passed through the trough z4, several parts are hardened and the four-core unit 8 is completed, so it is only necessary to wind it up with the winder 20.

この第3図では素線以後の工程2横置型で示しているが
、素線8はプーリ21に対する軽微な接触によっては破
断することはないため、中間にプーリ等を配して、各装
置の収容性を高めることが可能である。特に、熱可塑樹
脂で高速被覆を行う場合に番ま、トラウ等による冷却部
分を枝くとらねばならないため、全て縦形ラインでやろ
うとすると、装置n全体の篩ぎが極端に高くなってしT
うのである。このため、本実施例のようなライン構Et
c、&i車要な意味を持つ。
In FIG. 3, the process 2 after the strands is shown as a horizontal type, but since the strands 8 will not break even if they come into slight contact with the pulley 21, a pulley or the like is placed in the middle, and each device is It is possible to increase the capacity. In particular, when performing high-speed coating with thermoplastic resin, it is necessary to remove the cooling part using a trough, etc., so if you try to do it all on a vertical line, the sieve of the entire device will become extremely high.
It is uno. For this reason, the line structure Et as in this embodiment is
c, &i have important meanings.

次に第ダ図は連続したフィルム被置土株をイ」する本籟
明製法の実施例であり、素線8の段階までGet第2図
の実施例と同一である。本実施例番ま第1図(b)のよ
うに、フィルム6で素線列をサンドインチ状にしたユニ
ットの製造に適している。各素線8をダイ16で集束す
ると同時に接着僧服17を塗布した後、フィルム26を
包縛ダイ27に供給しつつ、フィルムで素線列を挟み込
み、フィルムと素線列を接MIN脂で一体化するのであ
る。口のフィルムとしては全く別工程で製作キTした、
希望の物性ヶ有’T6拐料を用いる口とができる。例え
は弾性率が晶く、熱膨張率の小ざいプラスチックや金属
を用いれば、傍械的信頼性および伝送特性安定性に勝n
た複心ユニットを得ることができるのであ4)。
Next, Fig. 2 shows an example of the present method of making a film in which a continuous film is deposited, and is the same as the example shown in Fig. 2 up to the stage of strand 8. This embodiment is suitable for manufacturing a unit in which the strands are formed into a sandwich-like shape using a film 6, as shown in FIG. 1(b). After converging each strand 8 with the die 16 and applying the adhesive robe 17 at the same time, supplying the film 26 to the wrapping die 27, sandwich the strand array between the films, and connect the film and the strand array with MIN resin. It becomes one. The film for the mouth was produced in a completely different process.
It is possible to use T6 particles with the desired physical properties. For example, if you use a plastic or metal with a crystalline elastic modulus and a small coefficient of thermal expansion, you can improve the indirect reliability and transmission characteristic stability.
4).

なお、第1図(C1、(dlの例では中央に中心材7を
用いているが・こnGま素線に置換えてもよい。特に中
心材を用いてい<、0月ま)311 述のフィルムの効
果と同じ効果を持たせるためである。この中心材を挿入
するのは、例えは第2図の素線8の段階で、ダイ16に
入る時に索線と同時に抑大T1.はよいのであol ところで制心ユニット中の各党ファイバの寸法稍1u 
k fliiJ御する必要があるが、紡糸の腺引速反は
各ファイバで同一であるから一母材ロッドの送り速度を
個別に:制御する方法が有効である。このため、必賢に
応じて、母材ホルダ11の部分で各母材ロッドの送り迷
度制御を行う。これ曇ま母Mロンドの清廉が同上し、均
一化すnば不iiであ00以上説明したように、本発明
Gま素騙製造工櫟に連続して、集束ユニット化工桿を設
けているため、各素線り脆弱性が無視でさる高強度のユ
ニットを紡糸直後に一貫工程で優らn1ケーブル化にお
けるファイバ強度の間&を解消するとともに、従来の製
造工程に比べて大幅に工程を短絹しているため、−造コ
ストを低減Tるという大さな効果を准Tる。このように
X発明は技術的、経済的効果が極めて大さく、将来の光
フアイバ通信の実用化に対する寄与は極めて大きいもの
がある。
In addition, in the example of FIG. This is to have the same effect as that of the film.The core material is inserted, for example, at the stage of the wire 8 in FIG. By the way, the dimensions of each fiber in the control unit are 1u.
Although it is necessary to control the spinning speed, since the spinning speed is the same for each fiber, it is effective to individually control the feeding speed of one base material rod. For this reason, the feed deviation control of each base material rod is performed at the base material holder 11 as necessary. This is because the integrity of the cloudy mother M rondo is the same as above, and as explained above in the above, the convergence unit conversion machine is provided in succession to the G masu fabrication process of the present invention. , a high-strength unit with negligible fragility in each strand is produced in an integrated process immediately after spinning, eliminating the problem of fiber strength when making N1 cables, and significantly shortening the process compared to conventional manufacturing processes. Because it is made of silk, it has the great effect of reducing manufacturing costs. In this way, Invention X has extremely large technical and economical effects, and will make an extremely large contribution to the practical application of optical fiber communications in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は穣心光ファイバユニットの何心
例を示す図、第2図、第3図、第ψ図はいずnも本発明
の実施例紮示T図である。 1・・・・・・光ファイバ、2・・・・・・1次被覆、
8・・・・・・索線、4・・・・・・2次被覆、4′・
・・・・・接着樹脂、5・・・・・・2次被覆、6・・
・・・フィルム、7・・・・・・中心u、8.9・・・
・・・複心ユニット、10・・・・・・母材ロッド、l
l・・・・・・母材ホルダ、12・・・・・・加熱炉、
18・・・・・・塗布ダイ、14・・・・・・樹脂液、
15・・・・・・硬化炉、16・・・・・・集束兼塗布
ダイ、17・・・・・・樹脂液、17・・・・・・接着
樹脂液、18・・・・・・硬化炉、19・・・・・・プ
ーリ、20・・・・・・巻取器、21・・・・・・プー
リ、2z・・・・・・押出装置、28・・・・・・樹脂
、24・・・・・・トラウ、25・・・・・・フィルム
ドラム、26・・・・・・フィルム、27・・・・・・
包縛ダイ。 28・・・・・・硬化炉。 出願人日本電信電話公社 第1図 (a)       (b) (。、         (CI) 第2図 第3図 第4図
Figures 1 (a) to (d) are diagrams showing examples of the number of fibers in a pure-core optical fiber unit, and Figures 2, 3, and ψ are all T diagrams showing embodiments of the present invention. . 1... Optical fiber, 2... Primary coating,
8...Cable wire, 4...Secondary covering, 4'.
...Adhesive resin, 5...Secondary coating, 6...
...film, 7...center u, 8.9...
...Multi-core unit, 10...Base material rod, l
l... Base material holder, 12... Heating furnace,
18... Coating die, 14... Resin liquid,
15... Curing furnace, 16... Focusing and coating die, 17... Resin liquid, 17... Adhesive resin liquid, 18... Curing furnace, 19... Pulley, 20... Winder, 21... Pulley, 2z... Extrusion device, 28... Resin , 24...Trow, 25...Film drum, 26...Film, 27...
Bound die. 28...Curing furnace. Applicant Nippon Telegraph and Telephone Public Corporation Figure 1 (a) (b) (., (CI) Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)複数本の母材ロッドを同時に加熱−線引さして・
そn、それ個別の光ファイバに紡糸し、各党ファイバに
t次数覆材を塗布し硬化させることにより1次被覆を形
成Tる工程に連続して、各1次数fyt付光ファイバを
苦接に集束すると共に、2次被覆材を塗布し、加熱また
は紫外線照射で硬化させることにより2次数傑を形成し
て各党ファイバ+mする工程をMすることを特徴とする
複心光ファイバ集束体の製造方法。
(1) Simultaneously heat and draw multiple base material rods.
Then, following the step of spinning into individual optical fibers and forming a primary coating by applying and curing a t-order coating material to each fiber, each optical fiber with a 1-order fyt is carefully attached. A method for manufacturing a multi-core optical fiber bundle, comprising the step of converging, applying a secondary coating material, and curing by heating or ultraviolet irradiation to form a secondary fiber to form each fiber. .
(2)複数本の母材ロッドを同時に加熱、線引さして、
そnぞれ個別の光ファイバに紡糸し・各光ファイバにf
次数覆材を塗布し硬化させることにより1次数伽腎形成
する工程に連続して、各f次数覆句元ファイバを密接に
集束するとともに、熱可塑樹脂による2次被覆を形成し
て各党ファイバを一括Tる工程kMTること配特徴とT
6絢6元ファイバ集14に体の製造方法。
(2) Simultaneously heat and draw multiple base material rods,
Each fiber is spun into individual optical fibers.
Continuing with the step of forming the first-order fibers by applying and curing the order covering material, each f-order fiber is tightly focused, and a secondary coating of thermoplastic resin is formed to separate each party fiber. Batch T process kMT, distribution characteristics and T
14. Method of manufacturing 6-strand 6-element fiber collection.
(3)組数本の母材ロッドを同時(加熱、梅引きして、
そ1′l、ぞn個別の′XJ7アイバに紡糸し、各光フ
ァイバに1次wl植拐を塗布し硬化させること〔より1
法被4を形成Tる工程に連続して、各を次数覆付光ファ
イバを密接に集束するとともに、接m*脂を塗布し、か
つ、フィルムで包み込むことによって、各党ファイバを
一括する工程をMすることを特徴とTる複心光フアイバ
集束体のl1tll造方法。
(3) Several sets of base material rods are heated and plumped at the same time,
Step 1: Spinning into individual 'XJ7 fibers, applying primary wl grafting to each optical fiber and curing.
Continuing with the process of forming the optical fiber 4, a process of closely focusing each order-covered optical fiber, applying adhesive and wrapping it with a film is carried out to bundle each optical fiber together. A method for manufacturing a multi-core optical fiber bundle characterized by M.
JP57125380A 1982-07-19 1982-07-19 Production of plural-cored optical fiber bundle Pending JPS5915907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57125380A JPS5915907A (en) 1982-07-19 1982-07-19 Production of plural-cored optical fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57125380A JPS5915907A (en) 1982-07-19 1982-07-19 Production of plural-cored optical fiber bundle

Publications (1)

Publication Number Publication Date
JPS5915907A true JPS5915907A (en) 1984-01-27

Family

ID=14908696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57125380A Pending JPS5915907A (en) 1982-07-19 1982-07-19 Production of plural-cored optical fiber bundle

Country Status (1)

Country Link
JP (1) JPS5915907A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228204A (en) * 1983-06-09 1984-12-21 Nippon Telegr & Teleph Corp <Ntt> Tapelike optical fiber and its manufacture
JPS60154204A (en) * 1984-01-24 1985-08-13 Sumitomo Electric Ind Ltd Multicore optical fiber and its manufacture
JPS60163412U (en) * 1984-02-28 1985-10-30 住友電気工業株式会社 optical fiber assembly
JPS6173112A (en) * 1984-09-18 1986-04-15 Furukawa Electric Co Ltd:The Tape-shaped optical fiber unit
JPS6173114A (en) * 1984-09-18 1986-04-15 Furukawa Electric Co Ltd:The Tape-shaped optical fiber unit
JPS6165413U (en) * 1984-09-28 1986-05-06
JPS61246709A (en) * 1985-03-29 1986-11-04 Furukawa Electric Co Ltd:The Tape type optical fiber unit
JPS6287919A (en) * 1985-10-14 1987-04-22 Furukawa Electric Co Ltd:The Production of core wire for optical fiber tape
JPS6319611A (en) * 1986-07-14 1988-01-27 Furukawa Electric Co Ltd:The Optical fiber tape core
JPH0453615Y2 (en) * 1987-11-02 1992-12-16
JPH0453616Y2 (en) * 1987-11-02 1992-12-16
EP1516861A3 (en) * 2003-09-22 2005-05-18 Schott AG Apparatus and method for manufacturing optical fibres

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228204A (en) * 1983-06-09 1984-12-21 Nippon Telegr & Teleph Corp <Ntt> Tapelike optical fiber and its manufacture
JPH047483B2 (en) * 1983-06-09 1992-02-12 Nippon Denshin Denwa Kk
JPS60154204A (en) * 1984-01-24 1985-08-13 Sumitomo Electric Ind Ltd Multicore optical fiber and its manufacture
JPS60163412U (en) * 1984-02-28 1985-10-30 住友電気工業株式会社 optical fiber assembly
JPS6173112A (en) * 1984-09-18 1986-04-15 Furukawa Electric Co Ltd:The Tape-shaped optical fiber unit
JPS6173114A (en) * 1984-09-18 1986-04-15 Furukawa Electric Co Ltd:The Tape-shaped optical fiber unit
JPS6165413U (en) * 1984-09-28 1986-05-06
JPH0554083B2 (en) * 1985-03-29 1993-08-11 Furukawa Electric Co Ltd
JPS61246709A (en) * 1985-03-29 1986-11-04 Furukawa Electric Co Ltd:The Tape type optical fiber unit
JPS6287919A (en) * 1985-10-14 1987-04-22 Furukawa Electric Co Ltd:The Production of core wire for optical fiber tape
JPH0473923B2 (en) * 1985-10-14 1992-11-25
JPS6319611A (en) * 1986-07-14 1988-01-27 Furukawa Electric Co Ltd:The Optical fiber tape core
JPH0453616Y2 (en) * 1987-11-02 1992-12-16
JPH0453615Y2 (en) * 1987-11-02 1992-12-16
EP1516861A3 (en) * 2003-09-22 2005-05-18 Schott AG Apparatus and method for manufacturing optical fibres
CN1306296C (en) * 2003-09-22 2007-03-21 肖特股份有限公司 Apparatus and method for manufacturing optical fibres

Similar Documents

Publication Publication Date Title
JPS5915907A (en) Production of plural-cored optical fiber bundle
JP2950264B2 (en) Manufacturing method of optical fiber ribbon
JP2928723B2 (en) Optical fiber manufacturing method
JP3174537B2 (en) Method for manufacturing flame-retardant optical fiber core
JPH1152184A (en) Method for connecting coated optical fiber
JPS6163810A (en) Production of tape-like fiber core
JP2782022B2 (en) Optical fiber ribbon manufacturing method and optical fiber ribbon manufacturing apparatus
JPS59213647A (en) Preparation of cable core of optical fiber
JP3462634B2 (en) Optical fiber core and method of removing coating
JP2005221839A (en) Optical fiber and optical fiber ribbon
JPS6120011A (en) Manufacture of optical tape type unit
JPS60263109A (en) Manufacture of optical tape type unit
JPH1123924A (en) Coated optical fiber and its manufacture
JP2004029087A (en) Manufacture device and method for coated optical fibers of optical fiber tape and coated optical fibers of optical fiber tape
JP3014137B2 (en) Thin optical fiber ribbon
JPH02208242A (en) Production resin-coated optical fiber
JPH04350812A (en) Production of coated tape optical fiber
JPH07330383A (en) Production of optical fiber tape core wire
JPS60214306A (en) Manufacture of flexible image guide
JPH05221694A (en) Production of optical fiber tape core line
JP2520883B2 (en) Optical fiber tape core manufacturing method
JPH10338550A (en) Silicone resin coated optical fiber
JPH07168068A (en) Optical fiber unit and manufacture thereof
JPS6287919A (en) Production of core wire for optical fiber tape
JPH02208241A (en) Production resin-coated optical fiber