JPH02208242A - Production resin-coated optical fiber - Google Patents

Production resin-coated optical fiber

Info

Publication number
JPH02208242A
JPH02208242A JP1027878A JP2787889A JPH02208242A JP H02208242 A JPH02208242 A JP H02208242A JP 1027878 A JP1027878 A JP 1027878A JP 2787889 A JP2787889 A JP 2787889A JP H02208242 A JPH02208242 A JP H02208242A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
coated
coating
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1027878A
Other languages
Japanese (ja)
Inventor
Kohei Kobayashi
宏平 小林
Hiroo Matsuda
松田 裕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1027878A priority Critical patent/JPH02208242A/en
Publication of JPH02208242A publication Critical patent/JPH02208242A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor

Abstract

PURPOSE:To make the surface of resin-coated optical fiber uniform and not to let elongated strain readily occur by vibrating the surface of coated layer while coating optical fiber with a resin and forming uneven states on the surface of coated layer. CONSTITUTION:Plural element wires 1 of optical fiber are sent from a feeder 2 of element wire of optical fiber, arranged in a row and introduced to a tape material coating device 3. Then the element wires 1 are passed through a vibrating device 4 while being coated with a coating resin such as ultraviolet- curing resin of urethane acrylate base by a device 3 and the coating resin applied to the outer periphery of the element wires 1 is vibrated to form uneven states on the surface. Then the coating resin is cured by a tape material curing device 5 to give a tape-like core wire 6 of optical fiber. Then the core wire 6 is wound through accumulator 7, a capstan 8 and a dancer 9 around a winder 10 to produce resin-coated optical fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂被覆光ファイバの製造方法に関し、とくに
曲げ特性に優れた被覆層を形成する樹脂被覆光ファイバ
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a resin-coated optical fiber, and more particularly to a method for manufacturing a resin-coated optical fiber that forms a coating layer with excellent bending properties.

〔従来の技術〕[Conventional technology]

第4図に光ファイバを用いたテープ心線スペーサケーブ
ルの断面構造を示す。41は外周に溝42を設けた棒状
の溝付スペーサで、通常少くとも一箇所の溝42内に、
樹脂被覆光ファイバ(以下光ファイバと云う。)を−列
に配列し共通に一括被覆を施したテープ状光ファイバ心
線を積層した積層体を収納した構造(以下スペーサ構造
と云う。)の光ファイバユニット46は高密度化がはか
れること、接続が光ファイバ単位ごとに行えるので容易
であることなどの優れた特性を備えている。第4図で4
4は押^−プ、45はケーブル7−ス、46は抗張力体
である。
FIG. 4 shows a cross-sectional structure of a ribbon spacer cable using optical fibers. 41 is a rod-shaped grooved spacer provided with a groove 42 on the outer periphery, and usually at least one groove 42 is provided with a groove 42.
A light beam having a structure (hereinafter referred to as a spacer structure) containing a laminate in which resin-coated optical fibers (hereinafter referred to as optical fibers) are arranged in rows and are laminated with tape-shaped optical fiber cores that are collectively coated. The fiber unit 46 has excellent characteristics such as being able to achieve high density and being easy to connect because it can be connected optical fiber by optical fiber. 4 in Figure 4
4 is a press, 45 is a cable 7-base, and 46 is a tensile strength member.

スペーサ構造の光ファイバユニットは、曲げた場合、曲
げた外側部分に位置する光ファイバには伸び歪が生じ、
曲げた内側部分に位置する光ファイバには圧縮歪が生じ
る。
When an optical fiber unit with a spacer structure is bent, elongation strain occurs in the optical fiber located on the outside of the bend.
Compressive strain occurs in the optical fiber located in the bent inner portion.

伸び歪は光ファイバ表面のき裂の伸長を促進するため、
長期間にわたり大きな歪を加え続けることは、長期信頼
性の面から好ましくない。またスペーサ構造の光ファイ
バユニットは、光ファイバ心線積層体を巻きつけた構造
のため、伸び歪が生じると光ファイバに側圧がかかるこ
とになる。従って側圧による伝送損失増加の面がらも伸
び歪を小さく抑えなければならない。曲げ歪を抑えるK
は、たとえば特開昭62−89915号公報に開示され
ているように、光ファイバに静止摩擦係数0.9以下の
材料で最外被覆層を構成する例がある。また静止摩擦係
数0.9以下の材料で最外被覆層を施す方法として、た
とえば特公昭62−42247号公報に光ファイバのま
わりに粉末を塗布する方法が開示されている。
Since elongation strain promotes the elongation of cracks on the optical fiber surface,
Continuing to apply large strain for a long period of time is not desirable from the viewpoint of long-term reliability. Furthermore, since the spacer-structured optical fiber unit has a structure in which the optical fiber core wire laminate is wound, lateral pressure is applied to the optical fiber when elongation strain occurs. Therefore, even though the transmission loss increases due to lateral pressure, it is necessary to suppress the elongation strain to a small level. K suppresses bending distortion
For example, as disclosed in Japanese Unexamined Patent Publication No. 62-89915, there is an example in which the outermost coating layer of an optical fiber is made of a material having a coefficient of static friction of 0.9 or less. Further, as a method for forming the outermost coating layer using a material having a coefficient of static friction of 0.9 or less, for example, Japanese Patent Publication No. 62-42247 discloses a method of applying powder around an optical fiber.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の提案されている光ファイバに静止摩擦係数が一定
値以下の材料の微粉末を塗布した最外被覆層を施す方法
は、光ファイバの製造工程が増え、生産性が低下し、製
造価格が高価格化するばかりでなく、次工程でも塗布し
た微粉末を脱落させないようにするため、取扱い上に制
限を受けるという問題がある。
The conventionally proposed method of coating an optical fiber with an outermost coating layer made of fine powder of a material with a coefficient of static friction below a certain value increases the number of manufacturing steps for the optical fiber, lowers productivity, and increases manufacturing costs. There is a problem that not only is the price high, but there are restrictions on handling in order to prevent the coated fine powder from falling off in the next process.

また光ファイバの被覆材表面に微粉末を均一に塗布する
ことは容易でなく、さらに粉塵が発生し易いという作業
環境条件上にも問題がある。
Further, it is not easy to uniformly apply fine powder to the surface of the optical fiber coating material, and there is also a problem in terms of working environment conditions in which dust is likely to be generated.

さらにまた、被覆材表面に処理を加えなくとも摩擦が十
分に小さな材料としては適当なものがないのが現状であ
る。
Furthermore, the present situation is that there is no suitable material that exhibits sufficiently low friction without any treatment on the surface of the coating material.

本発明は従来の問題点を解決し、光ファイバの被覆表面
に微粉末などを塗布することなく、被覆光ファイバの表
面を均一、かつ容易に伸び歪の生じない構造に作成する
樹脂被覆光ファイバの製造方法を提供することを目的と
するものである。
The present invention solves the conventional problems and creates a resin-coated optical fiber in which the surface of the coated optical fiber is made uniform and has a structure that does not easily suffer from elongation strain without applying fine powder or the like to the coated surface of the optical fiber. The purpose of this invention is to provide a method for manufacturing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するため、光ファイバに樹脂を
被覆して樹脂被覆光ファイバを製造する方法において、
光ファイバに樹脂を被覆する工程は、光ファイバに樹脂
を塗布しながら、または光ファイバに樹脂を被覆した直
後、前記光ファイバに施した外周被積層の表面を振動さ
せ、外周被覆層の表面を凹凸状に形成する工程を含むこ
とを特徴としている。
In order to achieve the above object, the present invention provides a method for manufacturing a resin-coated optical fiber by coating an optical fiber with a resin.
The step of coating the optical fiber with resin is performed by vibrating the surface of the outer coating layer applied to the optical fiber while applying the resin to the optical fiber, or immediately after coating the optical fiber with the resin, to vibrate the surface of the outer coating layer. It is characterized by including a step of forming an uneven shape.

また、光ファイバに施した外周被覆層の表面を振動させ
、外周被覆層の表面を凹凸状に形成する工程として、光
ファイバに樹脂を塗布しながら光ファイバに施した外周
被覆層を振動させる工程は、光ファイバが通過する樹脂
塗布装置を振動させる工程を適用して有効であり、また
光ファイバに樹脂を被覆した直後に光ファイバに施した
外周被覆層の表面を振動させる工程は、光ファイバが樹
脂塗布装置を通過し、光ファイバに樹脂を被覆した直後
に光ファイバに施した外周被覆層の表面に気流を吹き付
ける工程を適用すると効果的である。
Also, as a step of vibrating the surface of the outer peripheral coating layer applied to the optical fiber and forming the surface of the outer peripheral coating layer into an uneven shape, a step of vibrating the outer peripheral coating layer applied to the optical fiber while applying resin to the optical fiber. is effective by applying a process of vibrating the resin coating device through which the optical fiber passes, and a process of vibrating the surface of the outer coating layer applied to the optical fiber immediately after coating the optical fiber with resin is effective. It is effective to apply a step of blowing an air stream onto the surface of the outer peripheral coating layer applied to the optical fiber immediately after the optical fiber passes through a resin coating device and the optical fiber is coated with resin.

さらに本発明の製造方法の対象となる光ファイバには、
複数の光ファイバに共通の被覆を施した多心樹脂被覆光
ファイバを適用して効果がある。
Furthermore, the optical fiber to which the manufacturing method of the present invention is applied includes:
It is effective to apply a multicore resin-coated optical fiber in which a plurality of optical fibers are coated with a common coating.

〔作用〕[Effect]

本発明の樹脂被覆光ファイバの製造方法は、裸の光ファ
イバまたは樹脂被覆光ファイバに被覆樹脂を塗布する際
、樹脂を塗布しながら、または樹脂被覆を被覆した直後
に、光ファイバに施した外周被覆層の表面を振動させる
工程を含む製造方法により、樹脂被覆光ファイバの外周
被覆層の表面に凹凸を形成していることから、他の材料
を用いた外周被覆層の表面処理、たとえば微粉末を塗布
する方法において必要となる製造工程の増加、生産性の
低下、製造価格の上昇などの問題がなく、また取扱い上
の制限も受けない。さらに外周被覆層の表面を均一に低
摩擦化することができ、粉塵発生の作業環境条件に及ぼ
す悪い影響もない。
In the method for manufacturing a resin-coated optical fiber of the present invention, when applying a coating resin to a bare optical fiber or a resin-coated optical fiber, the outer periphery of the optical fiber is applied while the resin is being applied or immediately after the resin coating is applied. Since unevenness is formed on the surface of the outer coating layer of a resin-coated optical fiber by a manufacturing method that includes a step of vibrating the surface of the coating layer, surface treatment of the outer coating layer using other materials, such as fine powder, is required. There are no problems such as an increase in the number of manufacturing steps, a decrease in productivity, or an increase in manufacturing costs, which are required in the method of coating the product, and there are no restrictions on handling. Furthermore, the surface of the outer peripheral coating layer can be uniformly made to have low friction, and there is no adverse effect of dust generation on the working environment conditions.

また、外周被覆層表面を凹凸形状に形成する類似の方法
として、樹脂塗布ダイスの穴の形状を凹凸状にした樹脂
塗布ダイスを使用する方法が考えられるが、ダイスに細
かな凹凸をつける加工は容易でなく、実際に作製すると
長手方向に縦のすじの入るのが避けられない。
In addition, a similar method for forming the surface of the outer peripheral coating layer into an uneven shape is to use a resin coating die with an uneven hole shape. It is not easy to do so, and when actually manufactured, it is inevitable that vertical streaks will appear in the longitudinal direction.

本発明の振動方法は、振動の振幅と周期を調整すること
ができるので、長手方向、周方向ともに微細な凹凸を樹
脂被覆表面に形成することができる。以下図面にもとづ
き実施例について説明する。
Since the vibration method of the present invention allows the amplitude and period of vibration to be adjusted, fine irregularities can be formed on the resin-coated surface in both the longitudinal direction and the circumferential direction. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図a、bは本発明の樹脂被覆光ファイバ製造方法の
実施例工程図である。
FIGS. 1a and 1b are process diagrams of an embodiment of the resin-coated optical fiber manufacturing method of the present invention.

第1図aは、光ファイバ素線供給機2から供給される複
数の光ファイバ素線1を、たとえば−列に配列し一括し
てテープ材塗布装置3を通過させ、テープ材、たとえば
被覆樹脂を塗布しながら振動装置4によシ外周に塗布し
た被覆樹脂に振動を与えて表面を凹凸状に形成し、本実
施例では二工程のテープ材硬化装置5によシ被覆樹脂を
硬化させてグーブ状光ファイバ心線6を作製し、アキュ
ムレータ7、キャプスタン8.ダンサ9を介して巻取機
10に巻取る各工程から構成されるテープ心線の製造方
法の実施例である。
FIG. 1a shows a plurality of optical fiber strands 1 supplied from an optical fiber strand feeder 2 arranged in, for example, a row, and passed through a tape material coating device 3 all at once, and coated with tape material, for example, coated resin. While coating, the coating resin applied to the outer periphery is vibrated by a vibration device 4 to form an uneven surface, and in this embodiment, the coating resin is cured by a two-step tape material curing device 5. A goobed optical fiber core 6 is produced, and an accumulator 7, a capstan 8. This is an embodiment of a method for manufacturing a tape core, which is comprised of each process of winding up a tape cable through a dancer 9 and onto a winding machine 10.

第1図すは、母材11を加熱炉12によシ線引きし、外
径測定器13によシ光ファイバ外径を測定、制御しなが
ら樹脂被覆装置14を通して光ファイバに樹脂を被覆し
た直後、振動装置15により外周被覆層を振動させ、外
周被覆層表面を凹凸状に形成して、硬化装置16により
表面が凹凸状に形成された状態で被覆樹脂を硬化させ、
樹脂被覆光ファイバ素線を作製し、ガイドローラ17を
介して巻取機18に巻取る各工程から構成される光ファ
イバ素線の製造方法の実施例である。
In Figure 1, a base material 11 is drawn in a heating furnace 12, and the outer diameter of the optical fiber is measured by an outer diameter measuring device 13.The optical fiber is coated with resin through a resin coating device 14 while being controlled. , vibrating the outer peripheral coating layer with a vibration device 15 to form an uneven surface on the outer peripheral coating layer, and curing the coating resin with the surface formed in an uneven shape with a curing device 16;
This is an example of a method for manufacturing an optical fiber strand, which is comprised of steps of producing a resin-coated optical fiber strand and winding it onto a winder 18 via a guide roller 17.

第2図aに、第1図aの実施例の製造方法の樹脂塗布工
程における振動工程に適用する振動装置の実施例の要部
構成を示す。−列に配列した複数本の光ファイバ素線2
2に、樹脂塗布装置20によシテープ材の樹脂を一括塗
布しながら樹脂塗布装置20tl−矢印の方向に振動さ
せるダイス振動式によシ、外層樹脂被覆表面に凹凸を形
成した樹脂被覆光ファイバテープ心線211を作製する
FIG. 2a shows a main part configuration of an embodiment of a vibrating device applied to the vibration step in the resin coating step of the manufacturing method of the embodiment shown in FIG. 1a. -Multiple optical fiber strands 2 arranged in a row
2, the resin coating device 20 is a die vibrating type that vibrates in the direction of the arrow while applying the resin of the tape material all at once, and the resin coated optical fiber tape has irregularities formed on the outer layer resin coating surface. A core wire 211 is produced.

また第2図すに、第1図すの実施例の製造方法の樹脂被
覆工程における振動工程に適用する振動装置の実施例の
要部構成を示す。樹脂被覆装置によシ樹脂被覆を施した
樹脂被覆光ファイバ21の外層樹脂被覆表面に、樹脂を
被覆した直後、ジェットノズル26からジェット気流の
ガス24を吹付けるジェット気流式により、外層樹脂被
覆表面に凹凸を形成した光ファイバ素線を作製する。
Further, FIG. 2 shows the main part configuration of an embodiment of a vibrating device applied to the vibration step in the resin coating step of the manufacturing method of the embodiment of FIG. 1. Immediately after coating the outer layer resin coated surface of the resin coated optical fiber 21 which has been resin coated by the resin coating device, the outer layer resin coated surface is coated by a jet air flow method in which a jet stream gas 24 is sprayed from a jet nozzle 26. An optical fiber having irregularities formed thereon is produced.

第3図aは、第1図aの製造方法で、第2図aのダイス
振動式の樹脂被覆工程によシ製造したテープ心線30の
実施例を示し、ガラス31に被覆を施した光ファイバ3
2を4心−列に配列し、外周に、表面を凹凸状に形成し
た被覆層66により一括被覆を施した構造を有している
FIG. 3a shows an example of a tape core wire 30 manufactured by the manufacturing method shown in FIG. 1a and the die-vibrating resin coating process shown in FIG. fiber 3
2 are arranged in four-core rows, and the outer periphery is collectively covered with a coating layer 66 having an uneven surface.

第3図すは、第1図すの製造方法で、第2図すのジェッ
ト気流式の樹脂被覆工程によシ製造した光ファイバ素線
34の実施例を示し、表面を凹凸状に形成した被覆層3
3によりガラス31を被覆した構造を有している。
FIG. 3 shows an example of an optical fiber 34 manufactured by the manufacturing method shown in FIG. 1 using the jet stream type resin coating process shown in FIG. Covering layer 3
It has a structure in which a glass 31 is covered with glass 31.

以下に′a41図aおよび第1図すに示した、本発明の
製造方法により試作したテープ心線および光ファイバ素
線の具体的実施例について説明する。
Hereinafter, specific examples of tape core wires and optical fiber strands experimentally produced by the manufacturing method of the present invention, shown in Figure 41a and Figure 1, will be described.

実施例1: ウレタンアクリレート系の紫外線硬化型樹脂を、第2図
aK例示したダイス振動式の振動装置を用いて、4本の
光ファイバ素線を一列に配列した外周に一括被覆を施し
、第6図aに示した構造のテープ心線の試料を試作した
Example 1: A urethane acrylate-based ultraviolet curable resin was applied to the outer periphery of four optical fibers arranged in a row using a die vibration type vibration device illustrated in FIG. A sample of the tape core wire having the structure shown in Figure 6a was fabricated.

比較例として、本発明による試料と同じ寸法および構造
の、第5図aに示すガラス51に被覆を施した光ファイ
バ52を4本−列に配列し、被覆層56面にタルク粉末
を塗布した従来例2とを作製した。
As a comparative example, four optical fibers 52 having the same dimensions and structure as the sample according to the present invention and coated on glass 51 shown in FIG. Conventional Example 2 was prepared.

本発明による試料と、比較例の従来例1および従来例2
のテープ心線それぞれの表面の静止摩擦係数と、試料お
よび従来例1と従来例2をそれぞれ用いて$4図に例示
したスペーサケーブルを作製したケーブル化後の伝送特
性を測定した結果を第゛1表に示す。なお作製した試料
、従来例1.従来例2はいずれも1500 m長の製品
で、ケーブル化後の伝送特性は、光の波長λ= 1.5
5μmにおける測定値である。
Samples according to the present invention and conventional examples 1 and 2 as comparative examples
Figure 4 shows the results of measuring the coefficient of static friction on the surface of each of the tape cores and the transmission characteristics after making the spacer cable shown in Figure 4 using the sample and Conventional Example 1 and Conventional Example 2, respectively. It is shown in Table 1. The prepared sample, conventional example 1. Conventional Example 2 is a product with a length of 1500 m, and the transmission characteristics after being made into a cable are as follows: Light wavelength λ = 1.5
This is a measured value at 5 μm.

第1表 第1表に示した結果から分るように、本発明により製造
した試料は、全長にわたり被覆樹脂表面に均一に凹凸が
形成されており、静止摩擦係数は小さく、ケーブル化後
の伝送損失も少く良好であった。また取扱いにも特に問
題はない。
Table 1 As can be seen from the results shown in Table 1, the samples manufactured according to the present invention have uniform unevenness formed on the coating resin surface over the entire length, have a small coefficient of static friction, and have a high transmission rate after being made into cables. The results were good with little loss. There are also no particular problems in handling.

これに対し、比較例としての表面処理を施さない従来例
1は摩擦係数が大きく、ケーブル化後、若干の伝送損失
増が認められた。また被覆表面にメルク粉末を塗布した
従来例2は、摩擦係数は小さく、ケーブル化後の伝送損
失増も特に認められず良好であったが、タルク塗布時、
表面に均一に塗布する工程が困難で、加えて粉塵が発生
し作業環境上の問題が認められた。
On the other hand, Conventional Example 1 which was not subjected to surface treatment as a comparative example had a large friction coefficient, and a slight increase in transmission loss was observed after being made into a cable. In addition, Conventional Example 2, in which Merck powder was applied to the coating surface, had a small friction coefficient and no increase in transmission loss was observed after being made into a cable, which was good. However, when applying talc,
The process of applying it uniformly to the surface was difficult, and in addition, dust was generated, creating problems in the working environment.

実施例2: 光ファイバの被覆樹脂にウレタンアクリレート系の紫外
線硬化型樹脂を用い、径125μmφの裸ガラスファイ
バの外周に樹脂を径が約240〜250μmφに形成し
、第2図すに例示したジェット気流式の振動装置を用い
て、第3図すに示した構造の光ファイバ素線の試料を試
作した。
Example 2: A urethane acrylate-based ultraviolet curable resin was used as the coating resin for the optical fiber, and the resin was formed around the outer periphery of a bare glass fiber with a diameter of 125 μmφ to a diameter of about 240 to 250 μmφ, and the jet shown in FIG. Using an airflow vibrator, a sample of an optical fiber having the structure shown in Figure 3 was fabricated.

比較例として、本発明による試料と同じ寸法および構造
の第5図すに示すガラス51に被覆層56を施した光フ
ァイバ素線54で、従来法による被覆表面に処理を行わ
ない従来例1と、他の従来法による被覆表面にタルク粉
末を塗布した従来例2とを作製した。
As a comparative example, an optical fiber strand 54 having a coating layer 56 applied to a glass 51 shown in FIG. , Conventional Example 2 in which talc powder was applied to the coated surface by another conventional method were prepared.

本発明による試料と、従来例1および従来例2について
静止摩擦係数および伝送特性を調査した。
The static friction coefficient and transmission characteristics of the sample according to the present invention, Conventional Example 1, and Conventional Example 2 were investigated.

その結果を第2表に示す。なお作製した試料および従来
例1.従来例2はいずれも2000 m長の製品で、伝
送特性は光の波長λ=1.55μmにおける測定値であ
シ、伝送特性は温度26℃および−40℃において測定
した。
The results are shown in Table 2. The prepared sample and conventional example 1. Conventional Example 2 was a product with a length of 2000 m, and the transmission characteristics were measured at a light wavelength λ = 1.55 μm, and the transmission characteristics were measured at temperatures of 26°C and -40°C.

第2表 第2表の結果から分るように、本発明により製造した試
料は、全長にわたシ被覆樹脂表面に均一に凹凸が形成さ
れており、静止摩擦係数は小さく、曲げ特性に優れてい
る。また常温から低温にわたって伝送特性も良好であシ
、従来例と同等の伝送特性が得られている。なお従来例
1は静止摩擦係数が大きく、曲げ特性が劣り、従来例2
は実施例1と同じようにタルク粉末の塗布の困難性や、
粉塵発生による作業環境上の問題が認められた。
As can be seen from the results in Table 2, the samples produced according to the present invention have uniform irregularities on the surface of the wadding-coated resin over the entire length, have a small coefficient of static friction, and have excellent bending properties. There is. Furthermore, the transmission characteristics are good from room temperature to low temperatures, and transmission characteristics equivalent to those of the conventional example are obtained. Conventional example 1 had a large coefficient of static friction and poor bending properties, and conventional example 2
As in Example 1, the difficulty in applying talc powder,
Work environment problems were observed due to dust generation.

さらに本実施例において、本発明により試作した試料と
、従来例1について、光ファイバ素線の巻取り時の張力
変動による伝送特性を調べた。その結果を第6表に示す
Furthermore, in this example, the transmission characteristics due to tension fluctuations during winding of the optical fiber strands were investigated for a sample prototyped according to the present invention and Conventional Example 1. The results are shown in Table 6.

第  3 表 バの製造方法は、光ファイバに樹脂を被覆する工程にお
いて、被覆樹脂を塗布する際、被覆層外周に凹凸を形成
することKより、静止摩擦係数が小さく、ケーフル化後
の伝送損失の少ない光ファイバユニット構造を実現でき
、製造工程の増加もなく、生産性、また伝送特性にも優
れた樹脂被覆光ファイバの製造方法として効果が顕著で
ある。
The manufacturing method for the third table is that in the process of coating the optical fiber with resin, when applying the coating resin, unevenness is formed on the outer periphery of the coating layer, so that the coefficient of static friction is small and the transmission loss after being made into a cable is reduced. This method is highly effective as a method for manufacturing resin-coated optical fibers that can realize an optical fiber unit structure with less noise, no increase in manufacturing steps, and has excellent productivity and transmission characteristics.

第6表から分るように、従来例1では張力変動が生じる
と、光ファイバに局部的な歪が残り、伝送特性が悪くな
る。これに対し本発明により製造した試料は、張力変動
が生じても光ファイバに歪が残らず、伝送特性上に問題
のないことが確認された。
As can be seen from Table 6, in Conventional Example 1, when tension fluctuation occurs, local distortion remains in the optical fiber, resulting in poor transmission characteristics. On the other hand, it was confirmed that in the sample manufactured according to the present invention, no strain remained in the optical fiber even when tension fluctuation occurred, and there was no problem in terms of transmission characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の樹脂被覆光ファイ As explained above, the resin-coated optical fiber of the present invention

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bは本発明の樹脂被覆光ファイバ製造方法の
実施例工程図、第2図a、bは本発明における振動工程
に適用する振動装置の実施例要部構成図、第6図a、b
は本発明の製造方法によシ梨造した樹脂被覆光ファイバ
実施例構成図、第4図は光ファイバを用いたテープ心線
スペーサケーブルの断面構造図、@5図a、bは従来の
製造方法により製造した樹脂被覆光ファイバ例の構造図
である。 1、22.34.54・・・光ファイバ素線、2・・・
光ファイバ素線供給機、6・・・テープ材塗布装置、4
.15光ファイバ心線、7・・・アキュムレータ、8・
・・キャプスタン、9・・・ダンサ、10,18・・・
巻取機、11・・・母材、12・・・加熱炉、16・・
・外径測定器、14 、20・・・樹脂被覆装置、16
・・・硬化装置、17・・・ガイドローラ、21・・・
樹脂被覆光ファイバ、211・・・樹脂被覆光ファイバ
テープ心線、26・・・シェドノズル、24・・・ガス
、30.50・・・テープ心線、31.51・・・ガラ
ス、52.52・・・光ファイバ、 33 、53・・・被覆層、41・・・溝付スペーサ、
42・・・溝、46・・・光ファイバユニット、44・
・・押え巻テープ、45・・・ケーブルノース、46・
・・抗張力体特許出願人 住友電気工業株式会社 代 理 人 弁理士 玉蟲久五部
FIGS. 1a and 1b are process diagrams of an embodiment of the resin-coated optical fiber manufacturing method of the present invention, FIGS. 2a and 2b are main part configuration diagrams of an embodiment of a vibrating device applied to the vibration process of the present invention, and FIG. 6 a, b
Fig. 4 is a cross-sectional structural diagram of a tape core spacer cable using an optical fiber, and Fig. 5 a and b are conventional manufacturing methods. FIG. 2 is a structural diagram of an example of a resin-coated optical fiber manufactured by the method. 1, 22.34.54...Optical fiber wire, 2...
Optical fiber wire feeder, 6... tape material coating device, 4
.. 15 optical fiber core wire, 7... accumulator, 8...
...Capstan, 9...Dancer, 10,18...
Winding machine, 11...Base material, 12...Heating furnace, 16...
・Outer diameter measuring device, 14, 20...Resin coating device, 16
...Curing device, 17...Guide roller, 21...
Resin-coated optical fiber, 211... Resin-coated optical fiber tape core, 26... Shed nozzle, 24... Gas, 30.50... Tape core, 31.51... Glass, 52.52 ...Optical fiber, 33, 53... Covering layer, 41... Grooved spacer,
42...Groove, 46...Optical fiber unit, 44...
... Presser winding tape, 45 ... Cable north, 46.
... Tensile body patent applicant Sumitomo Electric Industries Co., Ltd. Representative Patent attorney Gobe Tamamushi

Claims (5)

【特許請求の範囲】[Claims] (1)光ファイバに樹脂を被覆して樹脂被覆光ファイバ
を製造する方法において、 前記光ファイバに樹脂を被覆する工程は、 光ファイバに樹脂を塗布しながら前記光ファイバに施し
た外周被覆層の表面を振動させ、前記外周被覆層の表面
を凹凸状に形成する工程を含んでなる ことを特徴とする樹脂被覆光ファイバの製造方法。
(1) In a method of manufacturing a resin-coated optical fiber by coating an optical fiber with a resin, the step of coating the optical fiber with a resin includes forming an outer peripheral coating layer on the optical fiber while applying a resin to the optical fiber. A method for manufacturing a resin-coated optical fiber, comprising the step of vibrating the surface to form an uneven surface of the outer peripheral coating layer.
(2)前記光ファイバに施した外周被覆層の表面を振動
させ前記外周被覆層の表面を凹凸状に形成する工程は、
光ファイバが通過する樹脂塗布装置を振動させる工程か
らなることを特徴とする請求項1記載の樹脂被覆光ファ
イバの製造方法。
(2) The step of vibrating the surface of the outer peripheral coating layer applied to the optical fiber to form an uneven surface of the outer peripheral coating layer,
2. The method of manufacturing a resin-coated optical fiber according to claim 1, further comprising the step of vibrating a resin coating device through which the optical fiber passes.
(3)光ファイバに樹脂を被覆して樹脂被覆光ファイバ
を製造する方法において、 前記光ファイバ樹脂を被覆する工程は、 光ファイバに樹脂を被覆した直後に前記光ファイバに施
した外周被覆層の表面を振動させ、前記外周被覆層の表
面を凹凸状に形成する工程を含んでなる ことを特徴とする樹脂被覆光ファイバの製造方法。
(3) In the method of manufacturing a resin-coated optical fiber by coating an optical fiber with a resin, the step of coating the optical fiber with resin includes adding a peripheral coating layer to the optical fiber immediately after coating the optical fiber with the resin. A method for manufacturing a resin-coated optical fiber, comprising the step of vibrating the surface to form an uneven surface of the outer peripheral coating layer.
(4)前記光ファイバに施した外周被覆層の表面を振動
させ、前記外周被覆層の表面を凹凸状に形成する工程は
、光ファイバが樹脂被覆装置を通過し、光ファイバに樹
脂を被覆した直後に光ファイバに施した外周被覆層の表
面に気流を吹き付ける工程からなることを特徴とする請
求項3記載の樹脂被覆光ファイバの製造方法。
(4) The step of vibrating the surface of the outer peripheral coating layer applied to the optical fiber and forming the surface of the outer peripheral coating layer into an uneven shape is performed by passing the optical fiber through a resin coating device and coating the optical fiber with resin. 4. The method of manufacturing a resin-coated optical fiber according to claim 3, further comprising the step of immediately thereafter blowing an air stream onto the surface of the outer peripheral coating layer applied to the optical fiber.
(5)前記樹脂被覆光ファイバは、複数の光ファイバに
共通の被覆を施した多心樹脂被覆光ファイバからなるこ
とを特徴とする請求項1または6記載の樹脂被覆光ファ
イバの製造方法。
(5) The method for manufacturing a resin-coated optical fiber according to claim 1 or 6, wherein the resin-coated optical fiber is a multicore resin-coated optical fiber in which a plurality of optical fibers are coated in a common manner.
JP1027878A 1989-02-07 1989-02-07 Production resin-coated optical fiber Pending JPH02208242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1027878A JPH02208242A (en) 1989-02-07 1989-02-07 Production resin-coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027878A JPH02208242A (en) 1989-02-07 1989-02-07 Production resin-coated optical fiber

Publications (1)

Publication Number Publication Date
JPH02208242A true JPH02208242A (en) 1990-08-17

Family

ID=12233152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027878A Pending JPH02208242A (en) 1989-02-07 1989-02-07 Production resin-coated optical fiber

Country Status (1)

Country Link
JP (1) JPH02208242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145656A (en) * 2006-12-08 2008-06-26 Fujitsu Access Ltd Optical fiber cable
WO2012097271A1 (en) * 2011-01-14 2012-07-19 3Sae Technologies, Inc. Thermal mechanical diffusion system and method
US9028158B2 (en) 2007-02-07 2015-05-12 3Sae Technologies, Inc. Multi-stage fiber processing system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145656A (en) * 2006-12-08 2008-06-26 Fujitsu Access Ltd Optical fiber cable
JP4541348B2 (en) * 2006-12-08 2010-09-08 富士通テレコムネットワークス株式会社 Fiber optic cable
US9028158B2 (en) 2007-02-07 2015-05-12 3Sae Technologies, Inc. Multi-stage fiber processing system and method
WO2012097271A1 (en) * 2011-01-14 2012-07-19 3Sae Technologies, Inc. Thermal mechanical diffusion system and method
US8911161B2 (en) 2011-01-14 2014-12-16 3Sae Technologies, Inc. Thermal mechanical diffusion system and method
US9526129B2 (en) 2011-01-14 2016-12-20 3Sae Technologies, Inc. Thermal mechanical diffusion system and method

Similar Documents

Publication Publication Date Title
JP2775966B2 (en) Optical fiber unit
JP7084449B2 (en) Optical fiber tape core wire, optical fiber cable
JPH02208242A (en) Production resin-coated optical fiber
JP2002090589A (en) Ribbon optical fiber cable and die for optical fiber coating
JPH09113773A (en) Coated optical fiber ribbon
JPH0519144A (en) Optical fiber
JPH02208241A (en) Production resin-coated optical fiber
JP2002048955A (en) Coated optical fiber ribbon and method for manufacturing the same
JP3346254B2 (en) Optical fiber
JP3025045B2 (en) Manufacturing method of optical fiber ribbon
JP2782022B2 (en) Optical fiber ribbon manufacturing method and optical fiber ribbon manufacturing apparatus
JPS60263109A (en) Manufacture of optical tape type unit
JP3425091B2 (en) Optical cable and method of manufacturing the same
JPH07330383A (en) Production of optical fiber tape core wire
JPH11174291A (en) Cord type optical cable and its production
JP3014137B2 (en) Thin optical fiber ribbon
JPH04163404A (en) Manufacture of thin type optical fiber tape core wire
JPH08313770A (en) Optical unit and production of optical unit
JP2004029087A (en) Manufacture device and method for coated optical fibers of optical fiber tape and coated optical fibers of optical fiber tape
JP2520883B2 (en) Optical fiber tape core manufacturing method
JPH05221694A (en) Production of optical fiber tape core line
JPH11281860A (en) Manufacture of coated optical fiber ribbon
JPH08320426A (en) Self-supporting type optical cable and its production
JP2000292664A (en) Manufacture of coated optical fiber tape, and apparatus therefor
JPS59213647A (en) Preparation of cable core of optical fiber