JPH02208241A - Production resin-coated optical fiber - Google Patents

Production resin-coated optical fiber

Info

Publication number
JPH02208241A
JPH02208241A JP1027877A JP2787789A JPH02208241A JP H02208241 A JPH02208241 A JP H02208241A JP 1027877 A JP1027877 A JP 1027877A JP 2787789 A JP2787789 A JP 2787789A JP H02208241 A JPH02208241 A JP H02208241A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
coated
coating
coated optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1027877A
Other languages
Japanese (ja)
Inventor
Kohei Kobayashi
宏平 小林
Hiroo Matsuda
松田 裕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1027877A priority Critical patent/JPH02208241A/en
Publication of JPH02208241A publication Critical patent/JPH02208241A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To make the surface of resin-coated optical fiber uniform and not to let elongated strain readily occur by forming unevenness on the surface of outer peripheral coated layer of resin-coated optical fiber prepared by coating optical fiber with a resin. CONSTITUTION:Glass 1 is coated with a coating resin such as ultraviolet-curing resin of urethane acrylate base to give optical fibers 2. The plural optical fibers (e.g. four optical fibers in one row) are commonly passed through a resin coating device of a die 40 for tape core wire equipped with unevenness on the inner surface of the die. Then the coating layer 3 having formed unevenness on the outer periphery of the optical fiber 2 is treated to produce resin-coated optical fiber of tape core wire 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂被覆光ファイバの製造方法に関し、と(に
曲げ特性に優れた被覆層を形成する樹脂被覆光ファイバ
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a resin-coated optical fiber, and more particularly, to a method for manufacturing a resin-coated optical fiber in which a coating layer having excellent bending properties is formed.

〔従来の技術〕[Conventional technology]

第3図に光ファイバを用いたテープ心線スペーサケーブ
ルの断面構造を示す。31は外周に溝32を設けた棒状
の溝付スペーサで、通常少くとも一箇所の溝32内に、
樹脂被覆光ファイバ(以下光ファイバと云う。)を−列
に配列し共通に一括被覆を施したテープ状光フアイバ心
線を積層した積層体を収納した構造(以下スペーサ構造
と云う。
FIG. 3 shows the cross-sectional structure of a ribbon spacer cable using optical fibers. 31 is a rod-shaped grooved spacer provided with a groove 32 on the outer periphery, and usually at least one groove 32 is provided with a groove 32.
A structure (hereinafter referred to as a spacer structure) in which a laminate of resin-coated optical fibers (hereinafter referred to as optical fibers) arranged in rows and laminated with tape-shaped optical fiber cores that are collectively coated in common is housed.

)の光フアイバユニット33は高密度化がはかれること
、接続が光フアイバ単位ごとに行えるので容易であるこ
となどの優れた特性を備えている。
The optical fiber unit 33 of ) has excellent characteristics such as high density and easy connection because it can be made for each optical fiber.

第3図で34は押え巻テープ、35はケーブルシース、
36は抗張力体である。
In Figure 3, 34 is the presser tape, 35 is the cable sheath,
36 is a tensile strength member.

スペーザ構造の光フアイバユニットは、曲げた場合、曲
げた外側部分に位置する光ファイバには伸び歪が生じ、
曲げた内側部分に位置する光ファイバには圧縮歪が生じ
る。
When an optical fiber unit with a spacer structure is bent, stretching strain occurs in the optical fiber located on the outside of the bend.
Compressive strain occurs in the optical fiber located in the bent inner portion.

伸び歪は光フアイバ表面のき裂の伸長を促進するため、
長期間にわたり大きな歪を加え続けることは、長期信頼
性の面から好ましくない。またスペーザ構造の光フアイ
バユニットは、光フアイバ心線積層体を巻きつけた構造
のため、伸び歪が生じると光ファイバに側圧がかかるこ
とになる。従って側圧による伝送損失増加の面からも伸
び歪を小さく抑えなげればならない。曲げ歪を抑えるに
は、たとえば特開昭62−89915号公報に開示され
ているように、光ファイバに静止摩擦係数0.9以下の
材料で最外被覆層を構成する例がある。また静止摩擦計
数0.9以下の材料で最外被覆層を施す方法として、た
とえば特公昭62−42247号公報Qこ光ファイバの
まわりに粉末を塗布する方法が開示されている。
Since elongation strain promotes the elongation of cracks on the optical fiber surface,
Continuing to apply large strain for a long period of time is not desirable from the viewpoint of long-term reliability. Furthermore, since the spacer-structured optical fiber unit has a structure in which the optical fiber core wire laminate is wound, lateral pressure is applied to the optical fiber when stretching strain occurs. Therefore, it is necessary to suppress the elongation strain to a small level in view of the increase in transmission loss due to lateral pressure. In order to suppress bending strain, there is an example in which the outermost coating layer of an optical fiber is made of a material having a coefficient of static friction of 0.9 or less, as disclosed in Japanese Patent Application Laid-Open No. 62-89915. Further, as a method for forming the outermost coating layer using a material having a static friction coefficient of 0.9 or less, for example, Japanese Patent Publication No. 42247/1984 (Q) discloses a method of applying powder around an optical fiber.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の提案されている光ファイバに静止摩擦係数が一定
値以下の材料の微粉末を塗布し7た最外被覆層を施す方
法は、光ファイバの製造工程が増え、生産性が低下し、
製造価格が高価格化するばかりでなく、次工程でも塗布
した微粉末を脱落さ・ヒないようにするため、取扱い上
制限を受けるという問題がある。
The conventionally proposed method of coating an optical fiber with fine powder of a material whose coefficient of static friction is below a certain value to form an outermost coating layer increases the number of manufacturing steps for the optical fiber, reduces productivity, and
There is a problem that not only does the manufacturing cost become high, but there are also restrictions on handling in order to prevent the applied fine powder from falling off or being damaged in the next process.

また光ファイバの被覆材表面に微粉末を均一に塗布する
ことは容易でなく、さらに粉塵が発生し易いという作業
環境条件上にも問題がある。
Further, it is not easy to uniformly apply fine powder to the surface of the optical fiber coating material, and there is also a problem in terms of working environment conditions in which dust is likely to be generated.

さらにまた、被覆材表面に処理を加えなくとも摩擦が十
分小さな材料としては適切なものがないのが現状である
Furthermore, the current situation is that there is no suitable material that has sufficiently low friction without applying any treatment to the surface of the coating material.

本発明は従来の問題点を解決し、光ファイバの被覆表面
に微粉末などを塗布することなく、被覆光ファイバの表
面を均一、かつ容易に伸び歪の生しない構造に作成する
樹脂被覆光ファイバの製造方法を提供することを目的と
するものである。
The present invention solves the conventional problems and provides a resin-coated optical fiber that makes the surface of the coated optical fiber uniform and easily creates a structure that does not cause elongation distortion without applying fine powder or the like to the coated surface of the optical fiber. The purpose of this invention is to provide a method for manufacturing.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は上記目的を達成するため、光ファイバに樹脂を
被覆して樹脂被覆光ファイバを製造する方法において、
前記光フアイバ樹脂を被覆する工程は、樹脂被覆光ファ
イバの外周被覆層の表面に凹凸を形成する工程を含むこ
とを特徴としている。
In order to achieve the above object, the present invention provides a method for manufacturing a resin-coated optical fiber by coating an optical fiber with a resin.
The step of coating the optical fiber with resin is characterized in that it includes the step of forming irregularities on the surface of the outer peripheral coating layer of the resin-coated optical fiber.

また樹脂被覆光ファイバの外周被覆層の表面に凹凸を形
成する工程は、樹脂被覆光ファイバを、ダイス内面に凹
凸を備えた樹脂塗布装置のダイスを挿通ずる工程を適用
して効果的である。
Further, the step of forming irregularities on the surface of the outer circumferential coating layer of the resin-coated optical fiber is effective by applying a step of inserting the resin-coated optical fiber through a die of a resin coating device having irregularities on the inner surface of the die.

さらに樹脂被覆光ファイバとして、複数の光ファイバに
共通の被覆を施したテープ心線を用いることが有効であ
る。
Further, as the resin-coated optical fiber, it is effective to use a tape core in which a plurality of optical fibers are coated with a common coating.

〔作 用〕[For production]

本発明の樹脂被覆光ファイバの製造方法は、裸の光ファ
イバまたは樹脂被覆光ファイバに被覆樹脂を塗布する際
、樹脂塗布装置のダイス内面が凹凸になっている樹脂塗
布装置を用いるなどの方法により、樹脂被覆光ファイバ
の外周被覆層の表面に凹凸を形成していることから、他
の材料を用いた外周被覆層の表面処理、たとえば微粉末
を塗布する方法において必要となる製造工程の増加、生
産性の低下、製造価格の上昇などの問題がなく、また取
扱い上の制限も受けない。さらに外周被覆層の表面を均
一に低摩擦化することができ、粉塵発生の作業環境条件
に及ぼす悪い影響もない。以下図面にもとづき実施例に
ついて説明する。
The method for manufacturing a resin-coated optical fiber of the present invention is such that when coating a bare optical fiber or a resin-coated optical fiber with a coating resin, a resin coating device having an uneven die inner surface is used. , since the surface of the outer coating layer of a resin-coated optical fiber is uneven, the number of manufacturing steps required for surface treatment of the outer coating layer using other materials, such as a method of applying fine powder, is increased; There are no problems such as decreased productivity or increased manufacturing prices, and there are no restrictions on handling. Furthermore, the surface of the outer peripheral coating layer can be uniformly made to have low friction, and there is no adverse effect of dust generation on the working environment conditions. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図a、bば本発明の製造方法により製造した被覆光
ファイバ実施例の断面構造図である。第1図aはガラス
1に被覆を施した光ファイバ2を複数本、本実施例では
4本−列に配列し、共通に被覆層3を施したテープ心線
4の例で、被覆層3の外周に凹凸が形成されている構造
である。第1図すは単一のガラス1に、外周に凹凸を形
成した被覆層3を施した光フアイバ素線5の例である。
FIGS. 1a and 1b are cross-sectional structural views of an embodiment of a coated optical fiber manufactured by the manufacturing method of the present invention. FIG. 1a shows an example of a tape core 4 in which a plurality of optical fibers 2 coated on a glass 1 are arranged in a row (four in this example), and a coated layer 3 is commonly coated. It has a structure in which unevenness is formed on the outer periphery. FIG. 1 shows an example of an optical fiber wire 5 in which a coating layer 3 having irregularities formed on the outer periphery is applied to a single glass 1.

第2図a、bは本発明の製造方法に適用する光ファイバ
被覆用クイスの実施例の構造を示す図で、第2図aは第
1図aに例示したテープ心線4を製造するテープ心線用
ダイス40の例で、第2図すは第1図すに例示した光フ
アイバ素線5を製造する光フアイバ素線用ダイス50の
例である。
FIGS. 2a and 2b are diagrams showing the structure of an embodiment of an optical fiber coating quis applied to the manufacturing method of the present invention, and FIG. 2a is a tape for manufacturing the ribbon core 4 illustrated in FIG. 1a. As an example of the core wire die 40, FIG. 2 is an example of the optical fiber wire die 50 for manufacturing the optical fiber wire 5 illustrated in FIG. 1.

以下に第1図aおよび第1図すに示した、本発明の製造
方法により試作したテープ心線および光フアイバ心線お
よび光フアイバ素線の実施例について説明する。
Below, examples of tape core wires, optical fiber core wires, and optical fiber strands that were experimentally manufactured by the manufacturing method of the present invention as shown in FIGS. 1A and 1S will be described.

実施例1: ウレタンアクリレート系の紫外線硬化型樹脂を、第2図
aに例示した構造のテープ心線用ダイスを用いて4本の
被覆光ファイバの外周に被覆し、第1図aに示した構造
の被覆樹脂粘度の異なるテープ心線の試料1.試料2を
試作した。
Example 1: A urethane acrylate-based ultraviolet curable resin was coated on the outer periphery of four coated optical fibers using a tape core die having the structure illustrated in FIG. Samples of tape core wires with different structures and coating resin viscosities 1. Sample 2 was prototyped.

比較例として、試料1.試料2と同じ構造で、最外層被
覆について従来の製造方法の一例の表面処理を施さない
従来例1、および他の例のタルク粉末を最外層被覆表面
に塗布した従来例2を作製した。
As a comparative example, sample 1. With the same structure as Sample 2, Conventional Example 1 in which the outermost layer coating was not subjected to surface treatment as an example of a conventional manufacturing method, and Conventional Example 2 in which talc powder of another example was applied to the outermost layer coating surface were prepared.

本発明による試料1.試料2および比較例の従来例〕、
従来例2のテープ心線の表面の静止摩擦係数と、試料1
.試料2.従来例1.従来例2をそれぞれを用いて第3
図に例示したスベーザケーブルを作製したケーブル化後
の伝送特性を測定した結果を第1表に示す。なお作製し
た試料1.試料2.従来例1.従来例2はいずれも15
00m長の製品で、ケーブル化後の伝送損失は、光の波
長λ=i55μmにおける測定値である。
Sample 1 according to the invention. Conventional example of sample 2 and comparative example],
Static friction coefficient of the surface of the tape core wire of Conventional Example 2 and Sample 1
.. Sample 2. Conventional example 1. Third example using conventional example 2
Table 1 shows the results of measuring the transmission characteristics of the Sveza cable shown in the figure after it was made into a cable. Note that the prepared sample 1. Sample 2. Conventional example 1. Conventional example 2 is both 15
The transmission loss of a product with a length of 00 m after being made into a cable is a measured value at an optical wavelength λ=i55 μm.

第   1   表 第1表に示した結果から分るように、本発明により製造
した試料1および試料2は、ともに全長にわたり被覆樹
脂表面に均一に凹凸が形成されており、静止摩擦係数は
小さく、ケーブル化後の伝送損失も少く良好であった。
Table 1 As can be seen from the results shown in Table 1, both Sample 1 and Sample 2 manufactured according to the present invention had unevenness uniformly formed on the coating resin surface over the entire length, and the coefficient of static friction was small. The transmission loss after making the cable was also low and good.

また取扱いにも特に問題はない。There are also no particular problems in handling.

これに対し、比較例としての表面処理を施さない従来例
1は摩擦係数が大きく、ケーブル化後、若干の伝送損失
増が認められた。また被覆表面にタルク粉末を塗布した
従来例2は、摩擦係数は小さく、ケーブル化後の伝送損
失増も特に認められず良好であったが、タルク塗布時、
表面に均一に塗布する工程が困難で、加えて粉塵が発生
し作業環境上の問題が認められた。
On the other hand, Conventional Example 1 which was not subjected to surface treatment as a comparative example had a large friction coefficient, and a slight increase in transmission loss was observed after being made into a cable. Conventional Example 2, in which talc powder was applied to the coating surface, had a small coefficient of friction and no increase in transmission loss was observed after being made into a cable, which was good; however, when applying talc,
The process of applying it uniformly to the surface was difficult, and in addition, dust was generated, creating problems in the working environment.

本発明の製造方法による光フアイバ素線の4種の実施例
として、被覆樹脂粘度の異なる試料1乃至試料4を、第
2図すに示した光フアイバ素線用ダイスを適用して試作
した。
As four examples of optical fiber strands produced by the manufacturing method of the present invention, Samples 1 to 4 having different coating resin viscosities were experimentally manufactured using the optical fiber strand die shown in FIG. 2.

比較例として、試料1乃至試料4と同じ構造で、外周被
覆表面に処理を施さない従来法の一例で従来例の単心の
光フアイバ素線とともに、本発明による試料1乃至試料
4について静止摩擦係数および伝送特性を調整した。そ
の結果を第2表に示す。
As a comparative example, static friction was measured for Samples 1 to 4 according to the present invention, which have the same structure as Samples 1 to 4, but are an example of a conventional method in which no treatment is applied to the outer peripheral coating surface, and in addition to the conventional single-core optical fiber strand. The coefficients and transmission characteristics were adjusted. The results are shown in Table 2.

なお作製した試料1乃至試料4および従来例はいずれも
2000m長の製品で、伝送特性は光の波長λ−1,5
5μmにおける測定値であり、伝送特性は温度23℃お
よび一40℃において測定し実施例2: 光フアイバ被覆樹脂にウレタンアクリレート系の紫外線
硬化型樹脂を用い、径125μmψの裸ガラスファイバ
の外周に樹脂を径が約240〜25071 mφに形成
した、第1図すに示した構造の第 表 第2表の結果から分るように、本発明により製造した試
料1乃至試料4は、いずれも全長にわたり被覆樹脂表面
に均一に凹凸が形成されており、樹脂粘度の植種異なる
樹脂を用いても静止摩擦係数は小さく、また常温から低
温にわたって伝送特性も良好であり、従来例と同等の伝
送特性を、植種の樹脂粘度の樹脂を適用して得られ、製
造上好適である。なお第2表の結果から、とくに高粘度
樹脂を使用する方が低粘度樹脂を使用するのに比べ、樹
脂被覆層表面に形成される凹凸が均一で、第3表から分
るように、従来例では張力変動が生じると、光ファイバ
に局部的な歪が残り、伝送特性が悪くなる。これに対し
本発明により製造した試料1は、張力変動が生じても光
ファイバに歪が残らず、伝送特性上に問題のないことが
確認された。
The manufactured samples 1 to 4 and the conventional example are all products with a length of 2000 m, and the transmission characteristics are based on the wavelength of light λ-1, 5.
The transmission characteristics were measured at temperatures of 23°C and -40°C. Example 2: An urethane acrylate-based ultraviolet curable resin was used as the optical fiber coating resin, and the resin was applied to the outer periphery of a bare glass fiber with a diameter of 125 μmψ. As can be seen from the results in Table 2 for the structure shown in Figure 1, in which the diameter is approximately 240 to 25071 mφ, all of Samples 1 to 4 manufactured according to the present invention have Uniform unevenness is formed on the coating resin surface, and the coefficient of static friction is small even when using resins with different viscosity, and the transmission characteristics are good from room temperature to low temperatures, and the transmission characteristics are equivalent to those of conventional examples. It is obtained by applying a resin with a resin viscosity of a seed, and is suitable for manufacturing. Furthermore, from the results in Table 2, the unevenness formed on the surface of the resin coating layer is more uniform when using a high viscosity resin than when using a low viscosity resin. For example, when tension fluctuation occurs, local distortion remains in the optical fiber, degrading transmission characteristics. On the other hand, in Sample 1 manufactured according to the present invention, no strain remained in the optical fiber even when tension fluctuation occurred, and it was confirmed that there was no problem in terms of transmission characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の樹脂被覆光ファイバの製造
方法は、光ファイバに樹脂を被覆する工程において、被
覆樹脂を塗布する際、被覆層外周に凹凸を形成すること
により、静止摩擦係数が小さく、ケーブル化後の伝送損
失の少ない光フアイバユニット構造を実現でき、製造工
程の増加もなく、生産性、また伝送特性にも優れた樹脂
被覆層光ファイバの製造方法として効果が顕著である。
As explained above, in the method for manufacturing a resin-coated optical fiber of the present invention, in the step of coating an optical fiber with a resin, the coefficient of static friction is reduced by forming irregularities on the outer periphery of the coating layer when applying the coating resin. , it is possible to realize an optical fiber unit structure with low transmission loss after being made into a cable, there is no increase in the number of manufacturing steps, and the method is extremely effective as a method for manufacturing a resin-coated optical fiber with excellent productivity and transmission characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bは本発明の製造方法により製造した被覆光
ファイバの実施例のテープ心線および光静止摩擦係数が
小さく、曲げ特性に優れていることが分る。 さらに本実施例において、本発明により試作した試料1
と、従来例について、光フアイバ素線の巻取り時の張力
変動による伝送特性を調べた。その結果を第3表に示す
。 第   3   表 ファイバ素線の断面構造図、第2図a、bは本発明の製
造方法に適用する光フアイバ被覆用ダイスの実施例のテ
ープ心線用ダイスおよび光フアイバ素線用ダイスの構造
説明図、第3図は光ファイバを用いたテープ心線スペー
サケーブルの断面構造図である。 1・・・ガラス、2・・・光ファイバ、3・・・被覆層
、4・・・テープ心線、5・・・光フアイバ素線、40
・・・テープ心線用ダイス、50・・・光フアイバ素線
用ダイス、31・・・溝付スペーサ、32・・・溝、3
3・・・光フアイバユニット、34・・・押え巻テープ
、35・・・ケーブルシース、36・・・抗張力体 特許出願人  住友電気工業株式会社 代理人 弁理士 玉 蟲 久五部 4テ プ心線 5、光フアイバ素線 本発明の製造方法によシ製造した被覆光ファイバ実施例
の断面構造図部 図 40、テープ心線用ダイス
It can be seen from FIGS. 1a and 1b that the coated optical fiber manufactured by the manufacturing method of the present invention has a small optical static friction coefficient and a small tape fiber, and is excellent in bending properties. Furthermore, in this example, sample 1 prototyped according to the present invention
For the conventional example, we investigated the transmission characteristics due to tension fluctuations during winding of the optical fiber wire. The results are shown in Table 3. Table 3 is a cross-sectional structural diagram of a fiber strand, and Figures 2a and 2b are structural explanations of a tape core die and an optical fiber strand die, which are examples of the optical fiber coating die applied to the manufacturing method of the present invention. 3 are cross-sectional structural diagrams of a tape core spacer cable using optical fibers. DESCRIPTION OF SYMBOLS 1...Glass, 2...Optical fiber, 3...Coating layer, 4...Tape core wire, 5...Optical fiber wire, 40
...Dice for tape core wire, 50...Dice for optical fiber bare wire, 31...Grooved spacer, 32...Groove, 3
3... Optical fiber unit, 34... Pressure wrapping tape, 35... Cable sheath, 36... Tensile body patent applicant Sumitomo Electric Industries Co., Ltd. agent Patent attorney Tama Mushi Kugobe 4-tape core wire 5. Optical fiber strand Figure 40: Cross-sectional structure of coated optical fiber manufactured by the manufacturing method of the present invention; Figure 40; Die for tape core wire

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバに樹脂を被覆して樹脂被覆光ファイバ
を製造する方法において、 前記光ファイバに樹脂を被覆する工程は、 樹脂被覆光ファイバの外周被覆層の表面に凹凸を形成す
る工程を含んでなる ことを特徴とする樹脂被覆光ファイバの製造方法。
(1) In a method of manufacturing a resin-coated optical fiber by coating an optical fiber with a resin, the step of coating the optical fiber with a resin includes a step of forming irregularities on the surface of the outer peripheral coating layer of the resin-coated optical fiber. A method for manufacturing a resin-coated optical fiber, characterized by:
(2)前記樹脂被覆光ファイバの外周被覆層の表面に凹
凸を形成する工程は、樹脂被覆光ファイバを、ダイス内
面に凹凸を備えた樹脂塗布装置のダイスを挿通する工程
からなることを特徴とする請求項1記載の樹脂被覆光フ
ァイバの製造方法。
(2) The step of forming irregularities on the surface of the outer peripheral coating layer of the resin-coated optical fiber comprises a step of inserting the resin-coated optical fiber through a die of a resin coating device having irregularities on the inner surface of the die. The method for manufacturing a resin-coated optical fiber according to claim 1.
(3)前記樹脂被覆光ファイバは、複数の光ファイバに
共通の被覆を施したテープ心線からなることを特徴とす
る請求項1または2記載の樹脂被覆光ファイバの製造方
法。
(3) The method for manufacturing a resin-coated optical fiber according to claim 1 or 2, wherein the resin-coated optical fiber is made of a tape core in which a plurality of optical fibers are coated with a common coating.
JP1027877A 1989-02-07 1989-02-07 Production resin-coated optical fiber Pending JPH02208241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1027877A JPH02208241A (en) 1989-02-07 1989-02-07 Production resin-coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027877A JPH02208241A (en) 1989-02-07 1989-02-07 Production resin-coated optical fiber

Publications (1)

Publication Number Publication Date
JPH02208241A true JPH02208241A (en) 1990-08-17

Family

ID=12233123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027877A Pending JPH02208241A (en) 1989-02-07 1989-02-07 Production resin-coated optical fiber

Country Status (1)

Country Link
JP (1) JPH02208241A (en)

Similar Documents

Publication Publication Date Title
CN100371754C (en) Optical fiber tape core
US4600268A (en) Cable for telecommunications purposes and a method of manufacturing the same
WO2022009798A1 (en) Optical fiber tape core wire and optical fiber cable
JP2007293257A (en) Optical fiber coil and production method therefor
JPH09113773A (en) Coated optical fiber ribbon
JPH02208241A (en) Production resin-coated optical fiber
JPH02208242A (en) Production resin-coated optical fiber
JP3346254B2 (en) Optical fiber
JPH0519144A (en) Optical fiber
KR0180757B1 (en) Method and apparatus for stranding tape-shaped optical fibers
JP2820693B2 (en) Split type optical fiber tape
JP2782022B2 (en) Optical fiber ribbon manufacturing method and optical fiber ribbon manufacturing apparatus
JPS6298314A (en) Optical fiber unit
JP2867939B2 (en) Optical fiber cable core fixing method
JP3425091B2 (en) Optical cable and method of manufacturing the same
JP2002048955A (en) Coated optical fiber ribbon and method for manufacturing the same
JP2003021764A (en) Coated optical fiber ribbon
JPH085444Y2 (en) Spacer type optical fiber cable
JPH11174291A (en) Cord type optical cable and its production
JP2888968B2 (en) Split type optical fiber ribbon
JP2520883B2 (en) Optical fiber tape core manufacturing method
CN114690354A (en) Special spring flexible optical cable and manufacturing method thereof
JPH08313770A (en) Optical unit and production of optical unit
JP2004045937A (en) Coated optical fiber ribbon
JPH02272509A (en) Optical fiber unit