JPS59158988A - Heat transmitter - Google Patents

Heat transmitter

Info

Publication number
JPS59158988A
JPS59158988A JP58032725A JP3272583A JPS59158988A JP S59158988 A JPS59158988 A JP S59158988A JP 58032725 A JP58032725 A JP 58032725A JP 3272583 A JP3272583 A JP 3272583A JP S59158988 A JPS59158988 A JP S59158988A
Authority
JP
Japan
Prior art keywords
heat
liquid
heat transfer
transmitter
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58032725A
Other languages
Japanese (ja)
Other versions
JPS6315519B2 (en
Inventor
Michio Yanatori
梁取 美智雄
Seigo Miyamoto
宮本 誠吾
Jun Matsubayashi
純 松林
Kimiyoshi Ishizaki
石崎 公祥
Kunio Miyashita
邦夫 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58032725A priority Critical patent/JPS59158988A/en
Publication of JPS59158988A publication Critical patent/JPS59158988A/en
Publication of JPS6315519B2 publication Critical patent/JPS6315519B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0208Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes using moving tubes

Abstract

PURPOSE:To improve the cooling ability of a heat transmitter, by intermittently stopping the rotation of a rotary heat transmitter, consisting of a heat pipe. CONSTITUTION:A transmitter is used by pivoting a sealed container consisting of a straight pipe with an evaporating fluid 2 in it. When heat is applied to the heating or evaporating part 5, the heat is transmitted to the fluid 2 which adheres to the inside wall of a pipe by the centrifugal force. The steam generated by the heat moves through a steam chamber 3 by the difference of the steam pressure, radiates condensing heat and turns into liquid in a cooling or condensing part 4. When the rotation of the pipe is stopped, the condensed liquid drips along the surface of the inside wall, so that the upper part of the wall surface is always covered with thin film of condensed liquid, by which the heat resistance can be decreased to 1/5-1/10 of the rotating time. The stable performance can be maintained in the heat transmitter by braking and stopping the sealed container 1 regularly at the predetermined intervals in a rubbing part 13.

Description

【発明の詳細な説明】 〔発明の利用分野J 本発明は回転式の熱伝達装置に係シ、特に、回転電機の
冷却に用いるに適した熱伝達装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention J The present invention relates to a rotary heat transfer device, and particularly to a heat transfer device suitable for use in cooling a rotating electric machine.

〔発明の背景〕[Background of the invention]

第1図は従来の回転式熱伝達装置の構成図であり、第2
図は第1図のA−A’断面図である。直管で構成された
密閉容器1内に、蒸発性の液体2(水170ン、アルコ
ール)が入っていで、密閉容器1の軸を中心として回転
して用いられる。加熱部(蒸発部)IEに熱が加わると
、その熱は遠心力により内壁面にへばり付いている液体
2に伝わる。これにより発生した蒸気は、蒸気空間部3
を蒸気圧差によって移動し、冷却部(凝縮部)ICに達
L7、そこで凝縮熱を放出して液化する。、晶閉容器1
内壁面は、凝縮部ICから蒸発部IEに向ってテーバは
付いていないが、液面を同−水一平向に保とうとする力
によって、凝縮部ICに溜った液体2は蒸発部IEに戻
り、前と同じサイクルをくり返す。
Figure 1 is a configuration diagram of a conventional rotary heat transfer device, and the second
The figure is a sectional view taken along the line AA' in FIG. An evaporative liquid 2 (170 liters of water, alcohol) is contained in a closed container 1 made up of a straight pipe, and is used by rotating around the axis of the closed container 1. When heat is applied to the heating section (evaporation section) IE, the heat is transmitted to the liquid 2 clinging to the inner wall surface due to centrifugal force. The steam generated by this is transferred to the steam space 3
is moved by the vapor pressure difference and reaches the cooling section (condensing section) IC L7, where it releases heat of condensation and liquefies it. , crystal closed container 1
Although the inner wall surface is not tapered from the condensing part IC to the evaporating part IE, the liquid 2 accumulated in the condensing part IC returns to the evaporating part IE due to the force of trying to keep the liquid level in the same horizontal direction. , repeating the same cycle as before.

一力、凝縮部ICにて放出された凝縮熱は、密閉容器1
外画より空気の強制対流等によって熱除去される。この
よ′)万従来の回転式熱伝達装置においては、凝縮部に
多く液が溜るので、凝縮部内壁には液体2が厚い膜とな
って形成され、その熱抵抗が著し7〈大きいものとなる
。このため、冷却性能が悪いという欠点があった。
First, the condensation heat released in the condensing part IC is transferred to the closed container 1.
Heat is removed from the outside by forced convection of air. In conventional rotary heat transfer devices, a large amount of liquid accumulates in the condensing section, and a thick film of liquid 2 is formed on the inner wall of the condensing section, resulting in an extremely high thermal resistance. becomes. For this reason, there was a drawback that cooling performance was poor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、回転式熱伝達装置の冷却性能を向上す
ることにある。
An object of the present invention is to improve the cooling performance of a rotary heat transfer device.

〔発明の概要〕[Summary of the invention]

本発明は、回転式熱伝達装置にその回転を適宜停止させ
る間欠的停止装置を設けたことを特徴とする。
The present invention is characterized in that the rotary heat transfer device is provided with an intermittent stop device that stops the rotation as appropriate.

種々伝熱的検討を行った所、適宜回転式熱伝達装置の回
転を停止すると、凝縮部の熱抵抗は回転時の115〜1
/10に低減できうろことがわかった。−+、たこの回
転動作と停止動作は所定間隔で一定し7て行うと安定し
た性能が保たれるということも、実験的にわかった。
After conducting various heat transfer studies, we found that when the rotation of the rotary heat transfer device is appropriately stopped, the thermal resistance of the condensing section is 115 to 1 when rotating.
It was found that it could be reduced to /10. It has also been experimentally found that stable performance can be maintained if the rotating and stopping operations of the octopus are performed at predetermined intervals.

〔発明の実施例〕[Embodiments of the invention]

第3図は、本発明を具体的に実現するための一実施例で
ある。5は発熱体であり、摩擦熱やコイル等で熱を発生
する。4は放熱器であり、放射状フィンや円板状フィン
等が用いられる。10は間欠的に熱伝達装置を停止させ
るためのブレーキである。ブレーキ10は、密閉容器1
と連結されていす、それとは独立に固定されている本体
11、その中に収納されているtaミコイル1及び摩擦
部13.密閉容器1と一緒に回転する磁性体よりなる円
板】4及び、ボス15から構成されている。
FIG. 3 shows an example for concretely realizing the present invention. 5 is a heating element, which generates heat by frictional heat, a coil, etc. 4 is a heat radiator, and radial fins, disc-shaped fins, etc. are used. 10 is a brake for stopping the heat transfer device intermittently. The brake 10 is a sealed container 1
The main body 11 is fixed independently from the main body 11, the tami coil 1 and the friction part 13 are housed therein. It is composed of a disk [4] made of a magnetic material that rotates together with the closed container 1, and a boss 15.

円板14とボス15はセレーションまたはキーによって
一体結合されているが、密閉容器1の長手方向に同って
移動できうるようになっている。このため電磁コイル1
2に人力を入れた時には、円板14は摩擦部130表面
に吸引され、この摩擦部1;3にて密閉容器1が制動、
停止される。つまり電磁コイル]、2への入力を開閉す
れは、密閉容器1は回転した91苧止したりする。この
入力の開閉時間を所定の間隔で行なえば、回転動作と停
止動作も所定の間隔で行なえる。
The disc 14 and the boss 15 are integrally connected by serrations or keys, and are movable in the longitudinal direction of the closed container 1. Therefore, electromagnetic coil 1
When human force is applied to 2, the disc 14 is attracted to the surface of the friction part 130, and the closed container 1 is braked by this friction part 1;
will be stopped. In other words, when the input to the electromagnetic coil 2 is opened or closed, the sealed container 1 is rotated and stopped. If this input opening/closing time is performed at predetermined intervals, rotation and stopping operations can also be performed at predetermined intervals.

第4図は第3図の回転式熱伝達装置を停止した場合の状
態を示したものであp1第5図は第4図のB−B’断面
図である。密閉容器1内の液体2は、その下部に溜り、
上面には液体2はへばり付いていない。このため凝縮部
では、その上面部にて激しい凝縮が起る。この凝縮液は
内壁をったって降下するので、上面部は常に薄膜となυ
熱抵抗は著しく小さくなる。
FIG. 4 shows the state when the rotary heat transfer device of FIG. 3 is stopped, and p1 and FIG. 5 are sectional views taken along line BB' in FIG. 4. The liquid 2 in the sealed container 1 accumulates at the bottom,
The liquid 2 does not stick to the upper surface. Therefore, intense condensation occurs on the upper surface of the condensing section. Since this condensate falls down the inner wall, a thin film is always formed on the top surface.
Thermal resistance is significantly reduced.

第6図は第3図に示す回転式熱伝達装置の制御回路ブロ
ック図であ5,20は電源回路、21はパワートランジ
スタ等よりなるパワースイッチング回路、22は速度発
電機である。23は前記パワースイッチング回路21を
介して発熱体である電動機5の速度を制御する速度制御
回路である。
FIG. 6 is a control circuit block diagram of the rotary heat transfer device shown in FIG. 3. Reference numerals 5 and 20 are power supply circuits, 21 is a power switching circuit including power transistors, etc., and 22 is a speed generator. A speed control circuit 23 controls the speed of the electric motor 5, which is a heating element, via the power switching circuit 21.

Eは電源入力、Sは速度指示信号である。E is a power input, and S is a speed instruction signal.

速度制御回路23は、速度指示信号Sと速度発電機の出
力に応じてスイッチング回路21及びブレーキ10を制
御する。このように速度指示信号Sによって電動機5は
起動、停止する。
The speed control circuit 23 controls the switching circuit 21 and the brake 10 according to the speed instruction signal S and the output of the speed generator. In this way, the electric motor 5 is started and stopped by the speed instruction signal S.

第7図に、速度指示イ=号Sと時間Tとの関係の1例を
示す。
FIG. 7 shows an example of the relationship between the speed instruction S and the time T.

△t1: 回転動作時間 △t2:停止動作時間△t3
:加速時間  △t4:減速時間 とすると。
△t1: Rotating operation time △t2: Stopping operation time △t3
: Acceleration time △t4: Deceleration time.

△1.と△t2は0.1秒〜60秒の範囲。△1. and Δt2 are in the range of 0.1 seconds to 60 seconds.

Δt3と△t4は0.01秒〜6秒 の範囲が望せしい
Desirably, Δt3 and Δt4 are in the range of 0.01 seconds to 6 seconds.

第8図は他の実施例であり、第9図は第8図のC−C’
断囲図、第10図は第8図のD−D′断面図である。f
fl閉容器1の回転を停止した時、凝縮部においては、
その上面の液膜は重力の影響により降下するので、伝熱
性能は向上する。しかし蒸発部においては、内壁全体が
いつも液膜で囲われていた方が、熱抵抗を小さくし、ま
た限界熱流束を向上させるためにも良い。そのためこの
実施例においでは、蒸発部の密閉容器1内面を粗化し儒
れを艮くしたものである。11は粗化面である。
Fig. 8 shows another embodiment, and Fig. 9 shows CC' in Fig. 8.
The sectional view, FIG. 10, is a sectional view taken along line DD' in FIG. f
When the rotation of the fl closed container 1 is stopped, in the condensing section,
Since the liquid film on the upper surface falls under the influence of gravity, heat transfer performance is improved. However, in the evaporation section, it is better to always surround the entire inner wall with a liquid film in order to reduce thermal resistance and improve critical heat flux. Therefore, in this embodiment, the inner surface of the closed container 1 in the evaporation section is roughened to make it less stiff. 11 is a roughened surface.

これとは逆に、#組部の密閉容器1内面は良く磨いて平
滑面にしておくのが良い。このようにすると高速回転動
作をしていたぞ閉容器1が停止する間の低速回転時(記
号n′)において、すでに凝縮部においては、内面と液
体2はスリップして、第8図に示すごとく液体2は密閉
容器1の下部に溜る。これに対し蒸発部においては、内
面が粗化されているため、第9図に示すごとく低速回転
時においても液体2は密閉容器1の上面にへはり付いて
いる。完全に停止した時でも、しばらくの間液体2は密
閉容器1内壁の上面に付着している。内向の粗化度が大
きい場合には、液体2をかき上げる効果が作用し、さら
に効果が置まる。粗化する方法としで、蒸発面を酸化す
る方法をとっても良い。
On the contrary, it is better to polish the inner surface of the sealed container 1 at the # assembly part well to make it a smooth surface. In this way, the closed container 1 was rotating at a high speed. During the low speed rotation (symbol n') while the closed container 1 is stopped, the inner surface and the liquid 2 have already slipped in the condensing section, as shown in Fig. 8. The liquid 2 accumulates at the bottom of the closed container 1. On the other hand, in the evaporation section, since the inner surface is roughened, the liquid 2 sticks to the upper surface of the closed container 1 even during low speed rotation, as shown in FIG. Even when it has completely stopped, the liquid 2 remains attached to the upper surface of the inner wall of the closed container 1 for a while. When the degree of inward roughness is large, the effect of stirring up the liquid 2 acts, and the effect is further increased. As a roughening method, a method of oxidizing the evaporation surface may be used.

第11図は他の実施例であp1第12図は第11図のE
−E’断面図である。これは密閉容器1内面に溝が付い
ている場合である。12−aは溝底。
Fig. 11 shows another embodiment, p1 Fig. 12 shows E of Fig. 11.
-E' sectional view. This is the case when the inner surface of the closed container 1 is grooved. 12-a is the groove bottom.

12−bは溝山を示ず。溝山12−bの上面を粗化する
と、第12図に示すように溝山12−b上面にも液体2
がへはり付き、蒸発部においては熱抵抗が著しく小さく
なる。
12-b does not show a groove mountain. When the upper surface of the groove ridge 12-b is roughened, the liquid 2 is also formed on the upper surface of the groove ridge 12-b as shown in FIG.
The heat resistance in the evaporation section becomes significantly smaller.

第13図は第12図の変形例である。これは蒸発部の溝
底12−aの要所要所にかき上げ板13を圧入し、液体
2をかき上げ、溝山12−bの上面を濡らすようにした
ものである。第14図はかき上げ板13の斜視図である
FIG. 13 is a modification of FIG. 12. This is constructed by press-fitting scraping plates 13 into key points of the groove bottom 12-a of the evaporation section to scrape up the liquid 2 and wet the upper surface of the groove crest 12-b. FIG. 14 is a perspective view of the scraping plate 13.

第15図は第13図の変形例である。第13図の実施例
では、溝底12−a内にかき上げ板13を圧入したのみ
で、力を加えた時はずれ易い。このためこの実施例にお
いては、止めリング14によってかき上げ板13をしっ
かりと固定するようになっている。止めリング14とか
け上げ板13は、第17図のように打ち抜きで一体加工
して作るのが良い。
FIG. 15 is a modification of FIG. 13. In the embodiment shown in FIG. 13, the scraping plate 13 is only press-fitted into the groove bottom 12-a, and it is likely to come off when force is applied. Therefore, in this embodiment, the scraping plate 13 is firmly fixed by the retaining ring 14. The retaining ring 14 and the lifting plate 13 are preferably made by stamping them as one piece as shown in FIG. 17.

第16図は他の実施例である。これは密閉容器1内壁に
毛細管作用を行なわせるための多孔物質15を内張りし
た場合の例である。多孔物質15内に蒸発性の液体2が
含浸されているが、余剰の液体2が多孔物質15上に浮
んでいる。この余剰の液体2は、蒸発部の限界熱流束を
向上させるために入れであるのであるが、第16図に示
すように、かき上げ板13によって液体2はかき上げら
れ、低速回転時および停止時においては、蒸発部の上面
の多孔物質15を良く儒らし限界熱流束はさらに尚まる
FIG. 16 shows another embodiment. This is an example in which the inner wall of the closed container 1 is lined with a porous material 15 for causing capillary action. The porous material 15 is impregnated with an evaporative liquid 2, but the excess liquid 2 floats on the porous material 15. This surplus liquid 2 is placed in a container to improve the critical heat flux of the evaporation section, but as shown in FIG. In some cases, the porous material 15 on the upper surface of the evaporation section is made more flexible, and the critical heat flux is further improved.

第18図はヒートパイプの全熱抵抗(蒸発部の熱抵抗士
凝縮部の熱抵抗)と変数 −n Y−−1□−(yrz/顛2)の関係を示す。
FIG. 18 shows the relationship between the total thermal resistance of the heat pipe (the thermal resistance of the evaporating section and the thermal resistance of the condensing section) and the variable -nY-1□-(yrz/2).

液体封入率(ヒートパイプ内容積に対する液体の体積比
)は0.2〜0.4の範囲の実験結果である。
The liquid filling ratio (the volume ratio of the liquid to the internal volume of the heat pipe) is an experimental result in the range of 0.2 to 0.4.

n−Qの時の全熱抵抗金1としている。The total thermal resistance at n-Q is assumed to be 1.

Yが上昇(nが上昇)するとヒートパイプ内部の液体が
動揺し、−柚の強制対流効果により全熱抵抗は若干Y=
Oの時より下がる。Yが104以−Fになると全熱抵抗
は急上昇する。これは凝縮部内壁に液体が全面にへばり
つき薄族部が無くなるからである。Y−1〜104範囲
で設計するのが良い。第19図は他の実施例で、出力軸
を本体より切り離し、出力軸を常に回転させておくこと
ができる。
When Y rises (n rises), the liquid inside the heat pipe becomes agitated, and due to the forced convection effect of -Yuzu, the total thermal resistance becomes slightly Y=
It's lower than when it was O. When Y becomes 104 or more -F, the total thermal resistance increases rapidly. This is because the liquid sticks to the entire surface of the inner wall of the condensing section, eliminating the thin group. It is preferable to design within the range of Y-1 to 104. FIG. 19 shows another embodiment in which the output shaft is separated from the main body so that the output shaft can be kept rotating at all times.

図において、20は分離された出力軸、21は連結体、
6′はマグネット7′は摩擦部である。
In the figure, 20 is a separated output shaft, 21 is a connecting body,
6' is a magnet 7' which is a friction part.

円板8が実線矢印の方向に移動し、摩擦部7に吸引され
た時には密閉容器1は停止する。円板8が破線矢印の方
向に移動し、摩擦部7′に吸引された時には密閉容器1
は回転し、この回転力は連結体21を介して、分離され
た出力軸20に伝わる。連結体21の重量を大きくして
フライホイールにしておけば、分離された出力軸200
回転数はほぼ一定に保てる。
When the disc 8 moves in the direction of the solid arrow and is attracted by the friction portion 7, the closed container 1 stops. When the disc 8 moves in the direction of the dashed arrow and is attracted by the friction part 7', the closed container 1
rotates, and this rotational force is transmitted to the separated output shaft 20 via the coupling body 21. If the weight of the connecting body 21 is increased and it is made into a flywheel, the separated output shaft 200
The rotation speed can be kept almost constant.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、回転式熱伝達装置の回転
を間欠的′に停止させ、熱伝達装置を構成する中空容器
の内壁面にへばり付いている液体を降下させることによ
り凝縮熱抵抗を大幅に向上させることができる。
As described above, the present invention intermittently stops the rotation of a rotary heat transfer device and causes the liquid clinging to the inner wall surface of the hollow container constituting the heat transfer device to fall, thereby generating condensed heat. The resistance can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

のB−B’断面図、第5図は本発明の構成図、第6図は
同じく制御ブロックを示す図、第7図は制御特性を示す
図である。第8図は他の実施例、第9図、第10図はそ
れぞれ第8図のc−c’断面図、D−D’断面図、第1
1図は他の実施例、第12図は第11図のE−E’断面
図、第13図は変形例、第14図は第13図に用いるか
き上げ板の斜視図、第15図、第16図は変形実施例、
第17図は、第15図、第16図に用いるかき上げ板の
展開図である。第18図はヒートバイブの全熱抵抗と変
数Yの関係を示す図、第19図は本発明の他の実施例を
示す図である。 1・・・密閉容器、2・・・液体、3・・・蒸気空間部
、4・冷却器、5・本体、6・・・マグネット、7・・
・摩擦部、8・・円板、9・・ボス、10・・・発熱体
、11・・・粗化面、12−a・・・溝底、12−b・
・・溝山、13・・・かき上げ板、14・・・リング、
15・・・多孔物質。 瀦5j図 拓  3  層 第  4  図 不  〆  図 、7/) 第  7  ロ ー 間 T 猶  8  図 Y q 図   1−7o 図 11、 第  11   図 拓 +z   図    JE5 舅 13  関    不 、4 図 η 15  図    箔 l乙 図 5 %  17   図 4 手続補正書(方式) 2.。、 5El、、 6、、.20 。 特許庁長官殿 1、事件の表示 昭和58年特許願第 32725  号2・発明の名称 熱伝達装置 3補正をする者 11e1とCI枡N 特許出願人 V、iil、   (blo)株式式ン111 σ 装
 イ′[所4、代  理  人
FIG. 5 is a block diagram of the present invention, FIG. 6 is a diagram showing a control block, and FIG. 7 is a diagram showing control characteristics. FIG. 8 shows another example, and FIGS.
1 is another embodiment, FIG. 12 is a sectional view taken along line EE' in FIG. 11, FIG. 13 is a modification, FIG. 14 is a perspective view of the scraping plate used in FIG. 13, and FIG. 15. FIG. 16 shows a modified example.
FIG. 17 is a developed view of the scraping board used in FIGS. 15 and 16. FIG. 18 is a diagram showing the relationship between the total thermal resistance of the heat vibrator and the variable Y, and FIG. 19 is a diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Airtight container, 2... Liquid, 3... Vapor space, 4... Cooler, 5... Main body, 6... Magnet, 7...
- Friction part, 8... Disc, 9... Boss, 10... Heating element, 11... Roughened surface, 12-a... Groove bottom, 12-b.
... Mizoyama, 13... Raking board, 14... Ring,
15... Porous material. 〦5j Illustration 3rd layer 4th figure No 〆 Figure, 7/) 7th row between T Yu 8 Figure Yq Figure 1-7o Figure 11, 11th illustration +z Figure JE5 舅 13 SENK FU, 4 Figure η 15 Figure Foil l Otsu Figure 5 % 17 Figure 4 Procedural amendment (method) 2. . , 5El, , 6, . 20. Commissioner of the Japan Patent Office 1, Indication of the case Patent Application No. 32725 of 1981 2 Name of the invention Heat transfer device 3 Amended party 11e1 and CI Masu N Patent applicant V, Iil, (Blo) Stock Formula N 111 σ Sou I' [Sho 4, Agent

Claims (1)

【特許請求の範囲】 ■1回転体の発熱部を、該回転体と共に回転する円筒状
の密閉容器内に封入された液体の蒸発、凝縮作用を利用
し、で冷却する熱伝達装置において、前記回転体の回転
速度を制御する手段を設け、該手段により前記回転体の
回転を間欠的に停止させることにより熱伝達装置の伝熱
性を向−ヒさせるようにした熱伝達装置。 2、回転体を0.1〜60秒の範囲で周期的に回転、停
止させてなる特許請求の範囲第1項記載の熱伝達装置。
[Scope of Claims] (1) A heat transfer device that cools a heat generating part of a rotating body by utilizing the evaporation and condensation action of a liquid sealed in a cylindrical closed container that rotates together with the rotating body, A heat transfer device comprising: means for controlling the rotational speed of a rotary body; and the heat transfer performance of the heat transfer device is improved by intermittently stopping the rotation of the rotary body. 2. The heat transfer device according to claim 1, wherein the rotating body is periodically rotated and stopped within a range of 0.1 to 60 seconds.
JP58032725A 1983-03-02 1983-03-02 Heat transmitter Granted JPS59158988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58032725A JPS59158988A (en) 1983-03-02 1983-03-02 Heat transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58032725A JPS59158988A (en) 1983-03-02 1983-03-02 Heat transmitter

Publications (2)

Publication Number Publication Date
JPS59158988A true JPS59158988A (en) 1984-09-08
JPS6315519B2 JPS6315519B2 (en) 1988-04-05

Family

ID=12366815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58032725A Granted JPS59158988A (en) 1983-03-02 1983-03-02 Heat transmitter

Country Status (1)

Country Link
JP (1) JPS59158988A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090613A1 (en) * 2004-03-17 2005-09-29 Technological Resources Pty Limited Direct smelting plant
WO2011051183A1 (en) * 2009-10-28 2011-05-05 Siemens Aktiengesellschaft Electric machine
FR3065124A1 (en) * 2017-04-10 2018-10-12 Liebherr-Aerospace Toulouse Sas ROTATING MACHINE COMPRISING A ROTARY SHAFT INCLUDING A HEAT PUMP
CN108981433A (en) * 2018-08-16 2018-12-11 中国矿业大学 A kind of heating of rotating heat pipe, cooling and safety device
DE102021211340A1 (en) 2021-10-07 2023-04-13 Mahle International Gmbh Rotor for an electric motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954719A (en) * 2011-08-26 2013-03-06 陕西桥上桥锅炉容器制造有限责任公司 Integrated heat pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312544A (en) * 1976-07-20 1978-02-04 Sharp Corp Heat pipe
JPS54109109A (en) * 1978-02-15 1979-08-27 Fuji Electric Co Ltd Heat-pipe cooling type rotary machine
JPS5728988A (en) * 1980-07-25 1982-02-16 Matsushita Electric Ind Co Ltd Heat transmission controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312544A (en) * 1976-07-20 1978-02-04 Sharp Corp Heat pipe
JPS54109109A (en) * 1978-02-15 1979-08-27 Fuji Electric Co Ltd Heat-pipe cooling type rotary machine
JPS5728988A (en) * 1980-07-25 1982-02-16 Matsushita Electric Ind Co Ltd Heat transmission controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090613A1 (en) * 2004-03-17 2005-09-29 Technological Resources Pty Limited Direct smelting plant
WO2011051183A1 (en) * 2009-10-28 2011-05-05 Siemens Aktiengesellschaft Electric machine
US9252642B2 (en) 2009-10-28 2016-02-02 Siemens Aktiengesellschaft Electrical machine
FR3065124A1 (en) * 2017-04-10 2018-10-12 Liebherr-Aerospace Toulouse Sas ROTATING MACHINE COMPRISING A ROTARY SHAFT INCLUDING A HEAT PUMP
CN108981433A (en) * 2018-08-16 2018-12-11 中国矿业大学 A kind of heating of rotating heat pipe, cooling and safety device
DE102021211340A1 (en) 2021-10-07 2023-04-13 Mahle International Gmbh Rotor for an electric motor

Also Published As

Publication number Publication date
JPS6315519B2 (en) 1988-04-05

Similar Documents

Publication Publication Date Title
US4519447A (en) Substrate cooling
JPS59158988A (en) Heat transmitter
JP4067577B2 (en) External cooling device for electric drive motor of centrifugal pump device
JP2002501599A (en) Superconducting heat transfer medium
JPH0575917B2 (en)
JPS54127057A (en) Sealed exothermic device
JP2814025B2 (en) Heating and cooling device
JPS5459149A (en) Thermal fixing device for copying machine
SU1580080A1 (en) Braking disc with cooling
JPS54140044A (en) Bearing unit
US4461555A (en) Method and apparatus for processing and drying photographic disc film
JPS63207994A (en) Heat circulating device
JPH0229310Y2 (en)
JPS5582291A (en) Heat pipe
SU1621190A1 (en) Device for evaporative cooling of electronic devices
SU941753A1 (en) Cooling device of heat-pipe type for brake disk
JPS59232165A (en) Thermal energy storage element
SU1580131A1 (en) Braking disc with cooling
SU900477A1 (en) Cooling device
JPS59134433A (en) Heat storage type radiation heating panel
SU1451523A1 (en) Rotating heat tube
JPH0191635A (en) Bearing cooling system for horizontal water-turbine generator
JPS5579992A (en) Heat transfer device
SU1760296A1 (en) Heat transfer device
JPS5911515Y2 (en) liquid-containing cooler