JPS5915876B2 - Crane running speed control device - Google Patents

Crane running speed control device

Info

Publication number
JPS5915876B2
JPS5915876B2 JP13647576A JP13647576A JPS5915876B2 JP S5915876 B2 JPS5915876 B2 JP S5915876B2 JP 13647576 A JP13647576 A JP 13647576A JP 13647576 A JP13647576 A JP 13647576A JP S5915876 B2 JPS5915876 B2 JP S5915876B2
Authority
JP
Japan
Prior art keywords
crane
acceleration
control valve
sine wave
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13647576A
Other languages
Japanese (ja)
Other versions
JPS5361842A (en
Inventor
「あきら」 落合
英輔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Kogyo Co Ltd
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Yuken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd, Yuken Kogyo Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP13647576A priority Critical patent/JPS5915876B2/en
Publication of JPS5361842A publication Critical patent/JPS5361842A/en
Publication of JPS5915876B2 publication Critical patent/JPS5915876B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は油圧モータな走行駆動源として走行するクレー
ンの制御装置に係わり、ワイヤロープにて吊下げた吊荷
が振子運動を起すのを防ぐため、加減速時における加速
度パタンを近似正弦波としたクレーン走行速度制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a crane that uses a hydraulic motor as a travel drive source, and in order to prevent a suspended load suspended from a wire rope from causing pendulum motion, the present invention is designed to control the acceleration during acceleration and deceleration. This invention relates to a crane traveling speed control device whose pattern is an approximate sine wave.

ワイヤロープにて重量物を吊下げ搬送するクレーンにお
いて、クレーンを停止状態から加速しある速度に達した
後一定速度で運転する場合、加速終了の時点でワイヤロ
ープの支点と吊荷の重心点を結ぶ線と垂直軸とのなす角
度があると、吊荷に対してクレーンの定速運転中進行方
向の動きに加えて一定周期の振子運動が重畳される。
In a crane that suspends and transports a heavy load using a wire rope, when the crane accelerates from a stopped state, reaches a certain speed, and then operates at a constant speed, the fulcrum of the wire rope and the center of gravity of the suspended load must be aligned at the end of acceleration. If there is an angle between the connecting line and the vertical axis, a constant cycle pendulum motion will be superimposed on the suspended load in addition to the movement in the forward direction during constant speed operation of the crane.

この振子運動は運転上危険なばかりでなく、進行方向に
正負の繰返し外力が働き、クレーンの性能、寿命などに
悪影響をおよぼす。
This pendulum motion is not only dangerous for operation, but also causes repeated positive and negative external forces to act in the direction of movement, adversely affecting the performance and life of the crane.

またクレーン停止時にも吊荷に振子の運動があると、目
的地に搬送したにもかかわらず、振れによって他へ干渉
することもあり吊荷の振れが小さくなるまで待たなけれ
ばならないなどの問題があった。
Furthermore, if there is a pendulum movement in the suspended load even when the crane is stopped, the swing may interfere with other objects even though it has been transported to the destination, causing problems such as having to wait until the swing of the suspended load becomes smaller. there were.

一般にこの種のクレーンを手動運転する場合運転者は経
験から吊荷の振れが小さくなるようクレーンの加減速度
を調整し、吊荷の振れのない状態で運転するようにして
いる。
Generally, when operating this type of crane manually, the operator adjusts the acceleration/deceleration speed of the crane based on experience to minimize swinging of the suspended load, so as to operate without swinging of the suspended load.

また自動運転の場合は何んらかの手段を設は加減速度を
調整することにより吊荷の振子運動をなくすことが必要
となる。
In addition, in the case of automatic operation, it is necessary to eliminate the pendulum movement of the suspended load by providing some means to adjust the acceleration/deceleration.

本発明は上記の事情に鑑みてなされたもので吊荷の状態
を理想的な単振子と仮定して、運動を解析し、クレーン
の加速度がワイヤーの長さで決まる固有周期の整数倍周
期の正弦波で与えられると、加速終了時の吊荷は支点の
直下付近にあって定速移動中は荷振れを起さないことに
着目したものである。
The present invention has been made in view of the above circumstances, and analyzes the motion of the suspended load assuming that it is an ideal simple pendulum. This method focuses on the fact that when a sine wave is applied, the suspended load is located directly below the fulcrum at the end of acceleration and does not swing during constant speed movement.

即ち第1図に示すように吊荷の状態を理想的な単振子と
仮定して、クレーン本体の進行方向への変位、速度、加
速度をそれぞれX、シ、αとすると運動方程式は次の1
)式のように表わされる。
That is, as shown in Figure 1, assuming that the suspended load is an ideal simple pendulum, and the displacement, velocity, and acceleration of the crane body in the advancing direction are respectively defined as X, C, and α, the equation of motion is as follows:
) is expressed as the formula.

−9,9゜ここで吊荷の振れ角θを非常に小さいも
のとすると、sinθとθは近似になり、sinθζθ
とすると上記1)式は次の2)で示される。
-9,9゜Here, if the swing angle θ of the suspended load is very small, sin θ and θ become approximate, and sin θζθ
Then, the above equation 1) is expressed as the following 2).

となる。becomes.

いま、仮りに、クレーンのX方向への変位を正弦波で与
え、その振幅なa、角速度なωとすると2)式は3)式
で示される。
Now, suppose that the displacement of the crane in the X direction is given by a sine wave, and its amplitude is a and its angular velocity is ω, then equation 2) is expressed as equation 3).

この3)式を解くと次の4)式が得られる。Solving this equation 3) yields the following equation 4).

ここで速度Vおよび振れ角θを縦軸に、時間tを横軸に
とり、ワイヤの長さlによって決まる固有角速度ωnと
クレーンの加速の角速度との比nをパラメータとして作
図すると第2図のようになる。
If the velocity V and swing angle θ are plotted on the vertical axis and the time t is plotted on the horizontal axis, and the ratio n between the natural angular velocity ωn determined by the wire length l and the angular velocity of the crane's acceleration is used as a parameter, it will look like Figure 2. become.

第2図では、各パラメータにおける加速終了時の速度を
等しくするために速度Vと振れ角θは、それぞれの値に
各パラメータnを乗じである。
In FIG. 2, in order to equalize the speed at the end of acceleration for each parameter, the speed V and the deflection angle θ are multiplied by each parameter n.

この第2図から明らかなように゛クレーンの加速度αが
、n=ωn10)=2 、3 、4 、・・・(n≧2
)の条件を満−たす正弦波で与えられると、加速終了時
に吊荷は支点の真下付近にあって定速移動中は荷振れを
起さない。
As is clear from Fig. 2, the acceleration α of the crane is n=ωn10)=2,3,4,...(n≧2
), the suspended load will be located directly below the fulcrum at the end of acceleration and will not swing during constant speed movement.

また第2図には表わしていないが、同じ加速時間で最終
速度を同じとする三角波形の加速度と比較しても加速中
の振巾はすくない。
Although not shown in FIG. 2, the amplitude during acceleration is small compared to triangular waveform acceleration with the same acceleration time and the same final velocity.

なお減速の場合は加速と全く逆の過程を経ることにより
、停止時吊荷な支点の真下付近に停止することができる
のであ込。
In addition, in the case of deceleration, by going through the completely opposite process to acceleration, it is possible to stop directly below the fulcrum of the suspended load.

一定形状の重量物を所定位置から所定位置まで繰返し搬
送を行うオートローダ形式のクレーン装置においては、
吊荷搬送時のワイヤロープの長さを一定とするため、ワ
イヤーの長さから決まる固有角速度ωnは一定となり、
そこで加速の角速度ωはωnの整数倍ということから倍
数を選択し、角速度ωを決定することができる。
In an autoloader type crane device that repeatedly transports a heavy object of a fixed shape from one predetermined position to another,
Since the length of the wire rope is constant when transporting a suspended load, the inherent angular velocity ωn determined from the length of the wire is constant,
Therefore, since the angular velocity ω of acceleration is an integral multiple of ωn, the angular velocity ω can be determined by selecting a multiple.

よって前記したクレーン装置の加減速パターンは一定の
パターンとなり、同パターンによりクレーン装置の走行
速度を制御すると、前述した理由から荷振れを起・すこ
となく吊荷を搬送できるのである。
Therefore, the above-mentioned acceleration/deceleration pattern of the crane device becomes a constant pattern, and if the traveling speed of the crane device is controlled using the same pattern, the suspended load can be transported without causing load swing for the reasons mentioned above.

本発明は前述したオートローダ形式のクレーン装置のク
レーン走行駆動源として油圧モータを使用し、加減速時
同油圧モータに供給する圧油の流量を比例流量制御弁に
て調整するようになし、同制御弁の作動を近似正弦波で
制御することにより、クレーン走行の加減速パタンを近
似正弦波としたものである。
The present invention uses a hydraulic motor as the crane traveling drive source of the above-mentioned autoloader type crane device, and uses a proportional flow control valve to adjust the flow rate of pressure oil supplied to the hydraulic motor during acceleration and deceleration. By controlling the valve operation with an approximate sine wave, the acceleration/deceleration pattern of the crane travel is made into an approximate sine wave.

以下実施例の油圧回路図であ゛る第3図によりクレーン
走行装置について具体的に説明する。
The crane traveling device will be specifically explained below with reference to FIG. 3, which is a hydraulic circuit diagram of the embodiment.

11はクレーン装置の走行駆動源である油圧モータ、1
2は油圧モータ11の回転を減速する減速歯車列、13
は減速歯車列12を介して油圧モータ11により回転駆
動され軌道上を転がる走行車輪である。
11 is a hydraulic motor which is a traveling drive source of the crane device;
2 is a reduction gear train that reduces the rotation of the hydraulic motor 11; 13;
is a running wheel that is rotationally driven by a hydraulic motor 11 via a reduction gear train 12 and rolls on a track.

そして油圧モータ11を作動すると走行車輪13が回転
駆動して、クレーン装置は軌道に案内されて移動す全。
When the hydraulic motor 11 is activated, the traveling wheels 13 are driven to rotate, and the crane device is guided by the track and moved.

14は油圧モータ11に供給する圧油の流量を制御する
比例流量制御弁、15は油圧モータ11に供給する圧油
の方向を切換える電磁式方向切換弁、16は過負荷防止
用リリーフ弁である。
14 is a proportional flow control valve that controls the flow rate of pressure oil supplied to the hydraulic motor 11; 15 is an electromagnetic directional control valve that switches the direction of the pressure oil supplied to the hydraulic motor 11; and 16 is an overload prevention relief valve. .

17は定電圧の入力信号を受けると近似正弦波の電圧波
形の出力信号を発生する折線関数発生器、18は折線関
数発生器17にて発生された近似正弦波を増巾し比例流
量制御弁14の比例制御弁を駆動するに必要な信号とす
る比例制御弁駆動増巾器である。
17 is a linear function generator that generates an output signal with an approximate sine wave voltage waveform when receiving a constant voltage input signal; 18 is a proportional flow rate control valve that amplifies the approximate sine wave generated by the linear function generator 17; This is a proportional control valve drive amplifier that generates a signal necessary to drive 14 proportional control valves.

このような構成であればクレーン走行開始の信号が与え
られると、電磁方向切換弁15が選択されクレーンの走
行方定が決定されるとともに、折線関数発生器1Tは近
似正弦波の信号を発生し、比例制御駆動増巾器1Bを介
して比例流量制御弁14の比例制御弁を作動することに
なる。
With such a configuration, when a signal to start crane travel is given, the electromagnetic directional control valve 15 is selected to determine the direction of crane travel, and the polygonal function generator 1T generates an approximate sine wave signal. , will operate the proportional control valve of the proportional flow control valve 14 via the proportional control drive amplifier 1B.

比例流量制御弁14はポンプから送られてきた圧油の流
量を送られてきた信号に比例する流量に制御して油圧モ
ータ1゛1に供給することになる。
The proportional flow rate control valve 14 controls the flow rate of the pressure oil sent from the pump to a flow rate proportional to the sent signal, and supplies the flow rate to the hydraulic motor 1'1.

一方クレーンの走行速度は油圧モー、夕11に供給され
る流量に比例するため、リリーフの加速度パターンは近
似正弦波となり、前述した理由により吊荷を振らすこと
な(定速走行に移行することができるのである。
On the other hand, since the traveling speed of the crane is proportional to the flow rate supplied to the hydraulic motor, the acceleration pattern of the relief becomes an approximate sine wave. This is possible.

またクレーン停止の場合においても油圧モータ11に供
給される圧油の流量が近似正弦波に比例して減じられる
ため、クレーンの減速度パタンは近似正弦波となり、前
述した理由により吊荷を振らすことなく停止することが
できるのである。
Furthermore, even when the crane is stopped, the flow rate of the pressure oil supplied to the hydraulic motor 11 is reduced in proportion to the approximate sine wave, so the deceleration pattern of the crane becomes an approximate sine wave, causing the suspended load to swing due to the above-mentioned reason. It can be stopped without any trouble.

′以上詳述したように、本発明はクレーンの走行加減速
時における加減速度パタンを近似正弦波としているため
クレーンの増減速走行時、および定速走行時吊荷の振れ
を無くせことができ、クレーンの無人運転、自動化を可
能としたものである。
'As detailed above, in the present invention, since the acceleration/deceleration pattern during acceleration/deceleration of the crane is an approximate sine wave, it is possible to eliminate the swing of the suspended load when the crane is accelerating/decelerating and when traveling at a constant speed. This enables unmanned crane operation and automation.

またクレーン走行駆動源に油圧モータを採用し、同油圧
モータに供給する圧油の流量を制御することにより前述
した加減速度パタンを容易に生成することができ、特に
ワイヤロープの長さが一定であるオートローダ形式のク
レーン装置においては加減速の周期を可変とすることな
(固有のもので良いため制御は非常に簡単なものとなる
In addition, by adopting a hydraulic motor as the crane travel drive source and controlling the flow rate of pressure oil supplied to the hydraulic motor, the acceleration/deceleration pattern described above can be easily generated, especially when the length of the wire rope is constant. In some autoloader type crane devices, the acceleration/deceleration period is not variable (it can be unique, so control is very simple).

【図面の簡単な説明】 第1図はクレーンの進行方向と吊荷の振れの関係を示す
図、第2図はクレーンの速度と吊荷の振れ角度の関係を
示す図、第3図は本発明の一実施例のクレーン走行速度
制御装置の油圧回路図である。 11・・・・・・油圧モータ、13・・・・・・走行車
輪、14・・・・・・比例流量制御弁、17・・・・・
・折線関数発生器。
[Brief explanation of the drawings] Figure 1 is a diagram showing the relationship between the traveling direction of the crane and the swing of the suspended load, Figure 2 is a diagram showing the relationship between the speed of the crane and the swing angle of the suspended load, and Figure 3 is the diagram showing the relationship between the crane's traveling direction and the swing of the suspended load. 1 is a hydraulic circuit diagram of a crane travel speed control device according to an embodiment of the invention. 11...Hydraulic motor, 13...Traveling wheel, 14...Proportional flow control valve, 17...
- Linear function generator.

Claims (1)

【特許請求の範囲】[Claims] 1 油圧モータを走行駆動源として使用するクレーン走
行装量において、前記油圧モータに供給する圧油の方向
およi流量を指−する方向切換弁および比例流量制御弁
と、吊荷な吊下げるワイヤーロープの長さで決まる固有
周期の整数倍周期の近似正弦波を発生する折線関数発生
器と、同発生器より発生された近似正弦波を増巾し前記
比例流量制御弁の比例制御弁を駆動するための制御信号
とする比例制御弁駆動増巾器とからなり、前記クレーン
加減速時の加減速度パタンを近似正弦波とし、クレーン
の定速走行時および停止時に吊荷の振れを無くしたクレ
ーン走行速度制御装置。
1. In a crane traveling device that uses a hydraulic motor as a traveling drive source, a directional switching valve and a proportional flow control valve that direct the direction and flow rate of pressure oil supplied to the hydraulic motor, and a wire for hanging a load. A polygonal function generator that generates an approximate sine wave with a period that is an integral multiple of the natural period determined by the length of the rope, and the approximate sine wave generated by the generator is amplified to drive the proportional control valve of the proportional flow control valve. The crane is equipped with a proportional control valve-driven amplifier that serves as a control signal for the crane, and the acceleration/deceleration pattern during acceleration/deceleration of the crane is an approximate sine wave, thereby eliminating swing of the suspended load when the crane is running at a constant speed and when the crane is stopped. Travel speed control device.
JP13647576A 1976-11-13 1976-11-13 Crane running speed control device Expired JPS5915876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13647576A JPS5915876B2 (en) 1976-11-13 1976-11-13 Crane running speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13647576A JPS5915876B2 (en) 1976-11-13 1976-11-13 Crane running speed control device

Publications (2)

Publication Number Publication Date
JPS5361842A JPS5361842A (en) 1978-06-02
JPS5915876B2 true JPS5915876B2 (en) 1984-04-12

Family

ID=15175983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13647576A Expired JPS5915876B2 (en) 1976-11-13 1976-11-13 Crane running speed control device

Country Status (1)

Country Link
JP (1) JPS5915876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500388B1 (en) * 2005-09-01 2007-05-15 Avl List Gmbh METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
JPS5361842A (en) 1978-06-02

Similar Documents

Publication Publication Date Title
EP0562124B1 (en) Method and apparatus for controlling prevention of deflection of rope of crane
JPH08268684A (en) Winding machine with traveling device conducting small pendulum motion at the time of braking
JPS5915876B2 (en) Crane running speed control device
JPH0117913B2 (en)
KR870011035A (en) Dustproof Control Method in Suspension Crane
GB2294028A (en) Swing-stop control method for a crane
JP2569446B2 (en) Control method of steadying operation of suspended load
JPS61268883A (en) Circuit device for controllign speed of revolution of hydraulic device
EP0423372A4 (en) Driving control device for vehicle and control method therefor
FI89155C (en) STYRFOERFARANDE FOER KRAN
JP2948473B2 (en) Sway control device for suspended load
Gupta et al. Simplified open-loop anti-sway technique
JP2637264B2 (en) Crane automatic steady rest device
JP2522020B2 (en) Control method of steadying operation of suspended load
KR20030093643A (en) Apparatus and method for motion control of robot
JPH0940363A (en) Clamping and positioning device of crain
JPH0356395A (en) Method for controlling oscillation in ceiling crane
JPS6294471A (en) Steering control device
SU1129174A1 (en) Device for controlling braking of transfer mechanism of load lifting gear having flexible load suspension
JP3314368B2 (en) Anti-sway device for suspended loads
JPS5835736Y2 (en) hydraulic excavator
JPS6219354B2 (en)
SU755736A1 (en) Lift hydrodrive control system
JP2799670B2 (en) Method and device for controlling steadying of a suspended load carrying crane
JPH0940364A (en) Clamping and positioning device of crain