JP2522020B2 - Control method of steadying operation of suspended load - Google Patents

Control method of steadying operation of suspended load

Info

Publication number
JP2522020B2
JP2522020B2 JP63141756A JP14175688A JP2522020B2 JP 2522020 B2 JP2522020 B2 JP 2522020B2 JP 63141756 A JP63141756 A JP 63141756A JP 14175688 A JP14175688 A JP 14175688A JP 2522020 B2 JP2522020 B2 JP 2522020B2
Authority
JP
Japan
Prior art keywords
suspended load
speed
acceleration
deflection angle
reaches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63141756A
Other languages
Japanese (ja)
Other versions
JPH01313298A (en
Inventor
伸 佐久本
幸彦 沼崎
亨 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP63141756A priority Critical patent/JP2522020B2/en
Publication of JPH01313298A publication Critical patent/JPH01313298A/en
Application granted granted Critical
Publication of JP2522020B2 publication Critical patent/JP2522020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control And Safety Of Cranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は吊り荷の振れ止め運転制御方法に係り、特に
自動制御によって吊り荷の移動運転を行うクレーンにお
ける吊り荷の振れ止め運転の制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for controlling a steady motion of a suspended load, and more particularly to a method for controlling a steady motion of a suspended load in a crane that performs a traveling operation of a suspended load by automatic control. Regarding

[従来の技術] 一般に、コンテナクレーン等においては、荷物を吊り
上げた後に出来るだけ速やかに最大速度まで加速して、
横行運転の作業時間の短縮を計る必要がある。
[Prior Art] Generally, in a container crane or the like, after hoisting a load, it accelerates to the maximum speed as quickly as possible,
It is necessary to reduce the work time for traverse operation.

ただしこの加速にともなって、吊り荷が振り子状に振
動し、吊り移動の安全性に悪影響を及ぼすと共に、所定
の荷下ろし位置の上方に達してもこの振動が収まらず、
作業時間が長くかかってしまうことになる。このため従
来は、運転者が経験や勘に基づいてこの振れを減衰させ
るような調節運転を行い、最大速度に達したときに振れ
角がなるべく小さくなるように横行運転を行うようにし
ていた。
However, with this acceleration, the suspended load vibrates like a pendulum, which adversely affects the safety of the suspension movement, and this vibration does not subside even when it reaches above the predetermined unloading position,
It will take a long time to work. For this reason, conventionally, the driver performs an adjustment operation based on his experience and intuition so as to damp this shake, and performs a traverse operation so that the shake angle becomes as small as possible when the maximum speed is reached.

[発明が解決しようとする課題] ところで近来にあっては、クレーンの運転を自動制御
によって行い、作業能率を向上させようとする提案が種
々なされている。
[Problems to be Solved by the Invention] By the way, recently, various proposals have been made to try to improve work efficiency by automatically operating a crane.

しかしながら、加速したときに生ずる吊り荷の振れを
適切に減衰させるのは難しかった。たとえば、吊り荷の
振れ角を検出して、その角度に対応する加速度を設定し
ようとしても、吊り荷の重量や吊りロープの長さによっ
て運転条件が変わってしまい、必ずしも適切な制御を行
うことができなかった。
However, it was difficult to appropriately damp the vibration of the suspended load that occurs when the vehicle is accelerated. For example, even if the deflection angle of a suspended load is detected and an acceleration corresponding to that angle is set, the operating conditions change depending on the weight of the suspended load and the length of the suspension rope, and it is not always possible to perform appropriate control. could not.

そこで本発明は、上記事情に鑑み、加速中に生ずる吊
り荷の振れを、適切に減衰させるような運転をさせる制
御方法を提供すべく創案されたものである。
Therefore, in view of the above circumstances, the present invention was devised to provide a control method for performing an operation that appropriately damps the vibration of a suspended load that occurs during acceleration.

[課題を解決するための手段および作用] 本発明は、横行を開始したトロリが定速に達したとき
に吊り荷の振れ角が略0になるような経験上の調節運転
を数値化して、種々の運転条件毎に経験則として設定し
ておき、この経験則に基づいて、検出した吊り荷の重量
と吊り下げロープ長とから加速中止速度と再加速開始振
れ角とを決定し、加速運転されたトロリが加速中止速度
に達したときに、その速度を保持する等速運転に切り換
え、その等速運転中において吊り荷の振れ角を検出手段
にて検出し、その検出値が再加速開始振れ角になった時
に、所定の最大横行速度に達する加速運転を再開させる
ものである。また吊り荷の重量及び吊り下げロープ長が
経験則にない運転条件であったときに、その運転条件に
近い経験則からファジィ推論により加速中止速度及び再
加速開始振れ角を決定することが好ましい。
[Means and Actions for Solving the Problem] The present invention quantifies the empirical adjustment operation such that the swing angle of the suspended load becomes approximately 0 when the trolley that started traversing reaches a constant speed, It is set as an empirical rule for each of various operating conditions, and based on this empirical rule, the acceleration suspension speed and the re-acceleration start deflection angle are determined from the detected weight of the suspended load and the hanging rope length to accelerate the operation. When the trolley reached the acceleration stop speed, it switches to constant speed operation to maintain that speed, the deflection angle of the suspended load is detected by the detection means during the constant speed operation, and the detected value starts reacceleration. When the deflection angle is reached, the acceleration operation that reaches a predetermined maximum transverse speed is restarted. Further, when the weight of the suspended load and the length of the hanging rope are operating conditions that are not empirical rules, it is preferable to determine the acceleration stop speed and the reacceleration start deflection angle by fuzzy reasoning from empirical rules that are close to the operating conditions.

このように、加速中止速度に達した時点で等速運動に
切り換え、振れ角が再加速開始振れ角になったときに加
速を再開することにより、横行開始時の加速により生じ
た吊り荷の振れは、最大横行速度に達するまでに減衰さ
れる。
In this way, when the acceleration stop speed is reached, the motion is switched to constant-velocity motion, and when the deflection angle reaches the re-acceleration start deflection angle, the acceleration is restarted, so that the suspended load deflection caused by the acceleration at the start of traverse Are dampened until the maximum traverse speed is reached.

[実施例] 以下本発明の実施例を、添付図面に従って説明する。Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

まず第2図によって、本発明に係る吊り荷の振れ止め
運転制御方法を適用したクレーンの自動制御装置の一実
施例を説明する。
First, referring to FIG. 2, an embodiment of an automatic control device for a crane to which the steadying operation control method for a suspended load according to the present invention is applied will be described.

この装置1は、吊り荷2の状態を検出するための検出
手段3と、その情報に基づいて演算を行う演算処理装置
4と、動力源(図示せず)からの駆動力を適宜トロリ5
等に伝達する運転装置6とにより主に構成されている。
The apparatus 1 includes a detecting unit 3 for detecting the state of the suspended load 2, an arithmetic processing unit 4 for performing an arithmetic operation based on the information, and a trolley 5 for appropriately applying a driving force from a power source (not shown).
And the like.

演算処理装置4は、運転者が従来行ってきた調節運
転、すなわち横行を開始したトロリ5が定速に達したと
きに吊り荷2の振れ角θが略0になるような運転を、種
々の運転条件毎に数値化して、経験則たるルールマップ
としてあらかじめ入力されていると共に、これを必要に
応じて運転データとして取り出すことができるように、
公知のファジィコントローラ(図示せず)が搭載されて
いる。
The arithmetic processing unit 4 performs various adjustment operations that the driver has conventionally performed, that is, an operation in which the swing angle θ of the suspended load 2 becomes approximately 0 when the trolley 5 that has started to traverse reaches a constant speed. It is digitized for each operating condition and is input in advance as a rule map that is an empirical rule, and it can be taken out as operating data when necessary.
A known fuzzy controller (not shown) is mounted.

検出手段3は、吊りロープの張力を検出する張力セン
サと、その巻量を検出する巻量センサと、吊り荷の振れ
角を検知する公知の振れ角センサとからなる。そしてこ
れら張力および巻量を演算処理装置4に入力させること
により、吊り荷の荷重Mと吊りロープの長さL1を算出さ
せるようになっている。
The detecting means 3 includes a tension sensor for detecting the tension of the suspension rope, a winding amount sensor for detecting the winding amount, and a known deflection angle sensor for detecting the deflection angle of the suspended load. By inputting these tension and winding amount into the arithmetic processing unit 4, the load M of the suspended load and the length L 1 of the suspended rope are calculated.

運転装置6は、演算処理装置4および振れ角センサか
らの信号を受信したときに、適宜比較演算して、所望の
運転を行うように形成されている。運転装置6からは、
電気信号の形で出力され、順次、電動モータ7、減速機
8、ドラム9を介してトロリ5まで伝達されるようにな
っている。
The driving device 6 is formed such that when receiving signals from the arithmetic processing device 4 and the deflection angle sensor, the driving device 6 performs an appropriate comparison operation to perform a desired operation. From the driving device 6,
The signal is output in the form of an electric signal, and is sequentially transmitted to the trolley 5 via the electric motor 7, the speed reducer 8, and the drum 9.

次に本発明の実施例を、上記構成の作用として説明す
る。
Next, an embodiment of the present invention will be described as an operation of the above configuration.

第1図および第3図に示すように、荷役データにより
最大横行速度Vmaxが選択されて横行開始指令が運転装置
6に入力されると、本発明の制御が開始される。
As shown in FIG. 1 and FIG. 3, when the maximum traverse speed Vmax is selected by the cargo handling data and the traverse start command is input to the driving device 6, the control of the present invention is started.

まず荷役データから、巻き目標ロープ長L2が演算処理
装置4に入力されると共に、吊り荷の荷重Mと横行開始
時のロープ長L1とさらに初期の吊り荷振れ角θとが入
力される。演算処理装置4は、これらの情報により、加
速中止速度V1と、再加速開始振れ角θとを決定する。
そして横行運転が開始されると、運転装置6は、トロリ
5の速度Vと、加速中止速度V1とを比較し、V=V1にな
ったときに、その速度を保持する等速運転に切り換え
る。
First, from the cargo handling data, the winding target rope length L 2 is input to the arithmetic processing unit 4, and the load M of the suspended load, the rope length L 1 at the start of traverse, and the initial suspended load deflection angle θ 0 are also input. It The arithmetic processing unit 4 determines the acceleration stop speed V 1 and the reacceleration start deflection angle θ 1 based on these pieces of information.
Then, when the traverse operation is started, the operation device 6 compares the speed V of the trolley 5 with the acceleration stop speed V 1, and when V = V 1 , the operation device 6 performs the constant speed operation in which the speed is maintained. Switch.

その後、振れ角センサが検知した振れ角θが、再加速
開始振れ角θに達すると、再び加速運転に切り換え、
所定の最大横行速度Vmaxにする。すなわち、第3図中、
(a)〜(d)に示したように速度が変化することにな
る。そして第1図に示したように、吊り荷の振れ角θ
は、横行方向後方側に生じ、加速中止速度V1に切り換え
られた後も惰性によって増加し、ピークに達した後、横
行方向前方側に揺れ戻る。この時の振れ角が、最大横行
速度Vmaxに達したときに0になるように、すなわち再加
速運転による横行方向後方側への振れと、惰性によるこ
れと反対方向の振れとが相殺するように、再加速がなさ
れる。
After that, when the deflection angle θ detected by the deflection angle sensor reaches the re-acceleration start deflection angle θ 1 , the acceleration operation is switched to again,
A predetermined maximum transverse speed Vmax is set. That is, in FIG.
The speed changes as shown in (a) to (d). Then, as shown in FIG. 1, the deflection angle θ of the suspended load
Occurs on the rear side in the transverse direction, increases by inertia even after switching to the acceleration stop speed V 1 , reaches a peak, and then swings back to the front side in the transverse direction. The deflection angle at this time becomes 0 when the maximum transverse velocity Vmax is reached, that is, the deflection to the rear side in the transverse direction due to the re-acceleration operation and the deflection in the opposite direction due to inertia cancel each other out. , Will be re-accelerated.

このように、荷役データや吊り荷の振れ角だけでな
く、ロープ長および荷重も考慮して運転データを決定す
るようにしたので、振れどめを確実に行うことができ
る。またこのことは、横行運転中に障害物を跨ぐなどの
吊りロープ長の変化があったときにおいても、安全かつ
円滑に対処できることとなる。そして運転データを決定
する上で、経験則を利用して行うようにしたので、極め
て実際的である。
In this way, not only the cargo handling data and the swing angle of the suspended load but also the rope length and the load are taken into consideration to determine the operation data, so that the swing can be surely performed. This also makes it possible to handle safely and smoothly even when there is a change in the suspension rope length such as when straddling an obstacle during traverse operation. Then, in determining the driving data, the rule of thumb is used so that it is extremely practical.

ここで、本実施例における加速中止速度V1と、再加速
開始振れ角θとの決定手順を、第4図によって説明し
ておく。
Here, the procedure for determining the acceleration stop speed V 1 and the re-acceleration start deflection angle θ 1 in this embodiment will be described with reference to FIG.

準備されるルールマップには、ある最大横行速度Vmax
のもとでの、横行開始時のロープ長L1と巻き目標ロープ
長L2と吊り荷荷重Mとに対応する適切な加速中止速度V1
と、再加速開始振れ角θとを設定しておく。例えば、
L1とL2とを5m毎、Mを10Ton毎に設定して組み合わせ、
それぞれの場合において、どのような値のV1と角θ
にすれば、Vmaxに達したときに振れ角θが0になるか
を、運転者の経験およびコンピュータシミュレーション
により書き込んでおく。
The prepared rule map has a certain maximum traverse speed Vmax.
Of the appropriate acceleration stop speed V 1 corresponding to the rope length L 1 at the start of traverse, the target rope length L 2 for winding, and the suspended load M under
And the re-acceleration start deflection angle θ 1 are set in advance. For example,
Set L 1 and L 2 every 5m and M every 10Ton and combine
In each case, what value of V 1 and angle θ 1 should be used to set the deflection angle θ to 0 when Vmax is reached is written based on the driver's experience and computer simulation.

そして実際の横行運転におけるデータが入力される
と、そのデータに関係する設定数値に近いルールを抽出
すると共に、メンバシップ関数により適合度μを算出す
る。メンバシップ関数としては、例えば各ルールにおけ
る設定値の前後の値の適合度を三角形の直線で近似した
ものを用いる。この算出により、第4図(f)に示した
ように、運転条件がより近いルールの出力値(θ)に
対しては高い適合度μとなり、それよりも離れた運転
条件のルールの出力値(θ)に対しては低い適合度μ
となる。そして第4図(g)に示したように、算出し
た適合度μによって修正(図形上、截頭処理)し、これ
らの和集合の「重心」を検出して、確定値「θ」とす
る。
Then, when the data in the actual traverse operation is input, the rule close to the set numerical value related to the data is extracted, and the fitness μ is calculated by the membership function. As the membership function, for example, one that approximates the goodness of fit of the values before and after the set value in each rule by a triangular straight line is used. As a result of this calculation, as shown in FIG. 4 (f), the goodness of fit μ b is obtained with respect to the output value (θ b ) of the rule whose driving condition is closer, and the rule of the driving condition farther than that is used. Low fitness μ for output value (θ a ).
a . Then, as shown in FIG. 4 (g), correction (on the figure, truncated processing) is performed according to the calculated goodness of fit μ, the “center of gravity” of these unions is detected, and the fixed value “θ 1 ” is obtained. To do.

これで、経験則を連続的なデータとして取り出すこと
ができる。
With this, the rule of thumb can be extracted as continuous data.

なお、第4図においては、再加速開始振れ角θを例
示したが、加速中止速度V1も同様の手順によって確定さ
れるものである。
Note that, in FIG. 4, the re-acceleration start deflection angle θ 1 is illustrated, but the acceleration stop speed V 1 is also determined by the same procedure.

[発明の効果] 以上要するに本発明によれば、次のような優れた効果
を発揮する。
[Effects of the Invention] In summary, according to the present invention, the following excellent effects are exhibited.

(1)請求項1記載の方法によれば、経験則に基づいた
加速中止速度及び再加速開始振れ角による調整運転によ
って、吊り荷の振れを最大横行速度に達するまでに確実
に減衰させることができ、クレーンの自動運転における
適切な制御が実現される。
(1) According to the method described in claim 1, the vibration of the suspended load can be reliably attenuated by the adjustment operation based on the empirical rule based on the acceleration stop speed and the reacceleration start deflection angle until the maximum traverse speed is reached. Therefore, appropriate control can be realized in the automatic operation of the crane.

(2)請求項2記載の方法によれば、経験則を連続的な
データとして取り出すことができる。
(2) According to the method of claim 2, the rule of thumb can be extracted as continuous data.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る吊り荷の振れ止め運転制御方法の
一実施例を示した速度と振れ角との対比図、第2図はそ
の方法を実施するための構成を示した図、第3図は第1
図を説明するための流れ図、第4図はファジィ推論の適
用を説明するための流れ図である。 図中、V1は加速中止速度、Vmaxは最大横行速度、θ
再加速開始振れ角である。
FIG. 1 is a comparison diagram of speed and deflection angle showing an embodiment of a steadying operation control of a suspended load according to the present invention, and FIG. 2 is a diagram showing a configuration for carrying out the method, FIG. Figure 3 is the first
FIG. 4 is a flow chart for explaining the application of fuzzy inference. In the figure, V 1 is the acceleration stop speed, V max is the maximum traverse speed, and θ 1 is the reacceleration start deflection angle.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】横行を開始したトロリが定速に達したとき
に吊り荷の振れ角が略0になるような経験上の調節運転
を数値化して、種々の運転条件毎に経験則として設定し
ておき、該経験則に基づいて、検出した吊り荷の重量と
吊り下げロープ長とから加速中止速度と再加速開始振れ
角とを決定し、加速運転された上記トロリが加速中止速
度に達したときに、その速度を保持する等速運転に切り
換え、その等速運転中において吊り荷の振れ角を検出手
段にて検出し、その検出値が上記再加速開始振れ角にな
った時に、所定の最大横行速度に達する加速運転を再開
させることを特徴とする吊り荷の振れ止め運転制御方
法。
1. An empirical adjustment operation in which a swing angle of a suspended load becomes substantially 0 when a trolley that has started traversing reaches a constant speed is quantified and set as an empirical rule for each of various operating conditions. Based on the empirical rule, the acceleration suspension speed and the reacceleration start deflection angle are determined from the detected weight of the suspended load and the hanging rope length, and the trolley that has been accelerated operates reaches the acceleration suspension speed. At that time, the operation is switched to a constant speed operation to maintain the speed, the deflection angle of the suspended load is detected by the detecting means during the constant speed operation, and when the detected value reaches the reacceleration start deflection angle, a predetermined value is determined. A method for controlling the steady motion of a suspended load, which comprises restarting an acceleration operation that reaches the maximum traverse speed of.
【請求項2】上記吊り荷の重量及び吊り下げロープ長が
経験則にない運転条件であったときに、その運転条件に
近い経験則からファジィ推論により加速中止速度及び再
加速開始振れ角を決定する請求項1記載の吊り荷の振れ
止め運転制御方法。
2. When the weight of the suspended load and the length of the hanging rope are operating conditions that are not empirical rules, the acceleration stop speed and re-acceleration start deflection angle are determined by fuzzy reasoning from empirical rules that are close to the operating conditions. The method for controlling the steady motion of a suspended load according to claim 1.
JP63141756A 1988-06-10 1988-06-10 Control method of steadying operation of suspended load Expired - Fee Related JP2522020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63141756A JP2522020B2 (en) 1988-06-10 1988-06-10 Control method of steadying operation of suspended load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63141756A JP2522020B2 (en) 1988-06-10 1988-06-10 Control method of steadying operation of suspended load

Publications (2)

Publication Number Publication Date
JPH01313298A JPH01313298A (en) 1989-12-18
JP2522020B2 true JP2522020B2 (en) 1996-08-07

Family

ID=15299464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63141756A Expired - Fee Related JP2522020B2 (en) 1988-06-10 1988-06-10 Control method of steadying operation of suspended load

Country Status (1)

Country Link
JP (1) JP2522020B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443566A (en) * 1994-05-23 1995-08-22 General Electric Company Electronic antisway control
CN103395698B (en) * 2013-08-23 2015-06-24 徐工集团工程机械股份有限公司 Safety control method, device and system for execution actions of crawling crane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE429641B (en) * 1981-09-17 1983-09-19 Asea Ab VIEW ON SIDE MOVEMENT OF PENDING LOAD

Also Published As

Publication number Publication date
JPH01313298A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
JPH08290892A (en) Steady brace device of suspended cargo
JP2569446B2 (en) Control method of steadying operation of suspended load
JP2522020B2 (en) Control method of steadying operation of suspended load
JP2531403B2 (en) Control method of steadying operation of suspended load
JPH0742072B2 (en) Steady stop control device for suspension crane
JP3132757B2 (en) Crane control method
JP2586586B2 (en) Operation control method for vertical vibration prevention of suspended load
JP3692620B2 (en) Stabilizer for container crane
JP2020121875A (en) crane
JP2000153989A (en) Bracing controller for lifted cargo
JPH0940363A (en) Clamping and positioning device of crain
KR100230573B1 (en) Control method and device for crane
JP2561192B2 (en) Suspended load stop control method and device
JP2979824B2 (en) Crane steady rest control device
JP3692621B2 (en) Stabilizer for container crane
JP2875525B1 (en) Crane traveling control method and traveling control device
JP3632308B2 (en) Stabilizer for container crane
JPH09156876A (en) Shake stopping device for crane
JPH05319780A (en) Bracing control device for crane
JPH06286976A (en) Swing stop method for suspension cargo of crane
JPH09328290A (en) Automatic operation control method of overhead crane
JPH07257876A (en) Control method for crane swing stopping operation
JPH0940364A (en) Clamping and positioning device of crain
JPH08319085A (en) Turning attitude control method for hanging load of crane
JPH05238674A (en) Suspended load oscillation angle detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees