JPS59158505A - Superconductive equipment - Google Patents

Superconductive equipment

Info

Publication number
JPS59158505A
JPS59158505A JP58030817A JP3081783A JPS59158505A JP S59158505 A JPS59158505 A JP S59158505A JP 58030817 A JP58030817 A JP 58030817A JP 3081783 A JP3081783 A JP 3081783A JP S59158505 A JPS59158505 A JP S59158505A
Authority
JP
Japan
Prior art keywords
winding
divided
magnetic field
windings
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58030817A
Other languages
Japanese (ja)
Other versions
JPH0732096B2 (en
Inventor
Yasuomi Yagi
恭臣 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58030817A priority Critical patent/JPH0732096B2/en
Publication of JPS59158505A publication Critical patent/JPS59158505A/en
Publication of JPH0732096B2 publication Critical patent/JPH0732096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To reduce the number of power leads and reduce the heat invasion into a superconductive magnet by a method wherein the density of each isolated winding is varied in accordance with the required magnetic field distribution and those isolated windings are excited in series. CONSTITUTION:A superconductive coil is composed of a plurality of isolated windings divided along the axial direction and the winding density of each isolated winding is varied in accordance with the required magnetic field distribution and those isolated windings are excited in series. For instance, the isolated windings 2A, 2B, 2C of the superconductive coil are connected in series and these windings are wound in such a manner that their density N(l) versus the position (l) of the coil along the center axis is thicker at the positions of the isolated windings 2A, 2C of both sides.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導装置に係υ、更に具体的には磁界分布を
所定の分布にするためのコイル巻線法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a superconducting device υ, and more specifically to a coil winding method for making a magnetic field distribution into a predetermined distribution.

〔従来技術〕[Prior art]

最近では超電導磁石がミリ波の発振管(ジャイロト、ロ
ン)、核砧気共鳴−CT (ComputerTomo
graphy  )等に応用されるに至っている。
Recently, superconducting magnets have been used for millimeter wave oscillation tubes (Gyroto, Ron), nuclear resonance resonance CT (Computer Tomo
graphy), etc.

これらの応用分野において、超電導磁石はコイルの軸上
におけるある領域に均一な磁界、あるいはある勾配をも
った磁界等を定常的に発生する手段として用いられてい
る。
In these application fields, superconducting magnets are used as a means to constantly generate a uniform magnetic field or a magnetic field with a certain gradient in a certain region on the axis of a coil.

従来のこの棟の用途に供される超電導装置にあっては所
望の磁界分布を得るた6に超電導磁石を構成するffA
電纏コイルを軸方向に複数に分割し、各分割コイルに供
給する励磁電流を独立に調整する方法が採用さfている
。たとえば第1図体)vc示すようにクライオスタット
1内に収納された超電導コイル2は3分割され、これら
の巻線の中心領域4(第1図[F]))で均一な磁界分
布を得るためには両端に位置する分割巻線2人、2cの
励磁電流■の値を中心に位置する分割巻線2Bより若干
、大きくする必要がある(第1図(C))、。尚、第1
図(ト)、a3)で実線は均一磁界の場合、破線は勾配
磁界の場合の場合における磁界分布、励磁′電流を夫々
、示している。
In the conventional superconducting equipment used for this building, in order to obtain the desired magnetic field distribution, ffA, which constitutes the superconducting magnet, is used in order to obtain the desired magnetic field distribution.
A method is adopted in which the electric coil is divided into a plurality of parts in the axial direction and the excitation current supplied to each divided coil is adjusted independently. For example, as shown in Fig. 1 [F], the superconducting coil 2 housed in the cryostat 1 is divided into three parts, and in order to obtain a uniform magnetic field distribution in the central region 4 of these windings (Fig. 1 [F])). It is necessary to make the value of the excitation current 2 of the two divided windings 2c located at both ends slightly larger than that of the divided winding 2B located at the center (FIG. 1(C)). Furthermore, the first
In Figure (g), a3), the solid line shows the magnetic field distribution and the excitation current in the case of a uniform magnetic field, and the broken line shows the magnetic field distribution and excitation current in the case of a gradient magnetic field, respectively.

さて、両端の分割巻線、2h、2cの励磁電流の値を分
割巻線2Bのそれより犬きくするのに従来では第2図に
示すように3台の電源1.6,17゜18を用いて各分
割巻線2A、、2B、2Cに夫々、独立に励磁電流L 
、I2 、I3  (II≧12)I、=I。)を流し
ていた。従って電源16゜17.18JJ各分割巻線2
A、2B、2CK、、拾tするのに用いられるパワーリ
ード10,11゜12、’13,14.15は6本、必
要となる。通常、超電導装#における常温よりの熱侵入
量はパワーリードの本数により支配され、はぼそれによ
り液体ヘリウムの消費量が決定ゾれる。そしてパワーリ
ードからの熱侵入量は、はぼ通1 直流(励磁′電流)
■oの二乗に比例するので第2図に示した従来例では各
パワーリード10〜150通電電流はいずれも■。付近
の値であるので熱侵入itWは W≧6x f (、I7 )  ・・・・・・・・・ 
(1)となる。但し、上式においてr(itF)≧に、
[(kは定数)である。すなわち、所定の磁界分布を得
るため、超電導コイルをN分割すると、1個のコイルの
場合に比して約N倍の熱侵入量を持つこととなり、液体
ヘリウムの消費量が大幅に増大するという欠点があった
Now, in order to make the excitation current value of the divided windings 2h and 2c at both ends much higher than that of the divided winding 2B, three power supplies 1.6 and 17°18 were used as shown in Figure 2. The excitation current L is applied to each divided winding 2A, 2B, and 2C independently.
, I2 , I3 (II≧12) I, =I. ) was playing. Therefore, power supply 16° 17.18JJ each divided winding 2
A, 2B, 2CK, 6 power leads 10, 11, 12, '13, 14, 15 are required to pick up the power leads. Normally, the amount of heat intrusion from room temperature into a superconducting device is controlled by the number of power leads, which in turn determines the amount of liquid helium consumed. And the amount of heat intrusion from the power lead is 1 DC (excitation current)
■Since it is proportional to the square of o, in the conventional example shown in FIG. 2, the current flowing through each power lead 10 to 150 is ■. Since the values are close to each other, the heat intrusion itW is W≧6x f (, I7) ・・・・・・・・・
(1) becomes. However, in the above formula, if r(itF)≧,
[(k is a constant). In other words, if a superconducting coil is divided into N parts in order to obtain a predetermined magnetic field distribution, the amount of heat penetration will be approximately N times that of a single coil, and the amount of liquid helium consumed will increase significantly. There were drawbacks.

〔本発明の目的〕[Object of the present invention]

本発明の目的はパワーリードの本数を減少させることに
より超電導磁石への熱侵入量の低減を図った超電導装置
全提供することにある。
An object of the present invention is to provide an entire superconducting device in which the amount of heat entering a superconducting magnet is reduced by reducing the number of power leads.

〔発明の概吸〕[Summary of the invention]

本発明は軸力向に分割して巻回された超電動コイルを七
する超′PIL、!4装置において、要求される磁界分
布に応じて谷分割巻線の巻線密度を変化させ且つこれら
の分割巻線を直列励磁するまうに構成することにより超
電導コイルの分割数に蕪関係に、等制約にパワーリード
の本数を2本で済むようにし、熱侵人輌−の低減を図っ
たものである。
The present invention is a super 'PIL' which uses seven super electric coils that are divided and wound in the axial direction. 4 device, by changing the winding density of the valley-divided winding according to the required magnetic field distribution and by configuring these divided windings to be excited in series, the number of divisions of the superconducting coil can be changed in a similar manner. The number of power leads can be reduced to two to reduce the number of heat-invading vehicles.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例f:第3図に示す。jiJ図い)に示
す如く、超電導コイルの各分割巻線2A、2B。
An embodiment f of the present invention is shown in FIG. As shown in Figure 2), each divided winding 2A, 2B of the superconducting coil.

2Cけ直列に接続され、これらの巻線密度N(4)はコ
イルの中心軸上における位#tに対し同図(B)に示す
ように両端の分割巻線2A、2Cで密となるように巻回
されている。この場合に各分割巻線の巻線密度N(力は
仄のようにして決定される。
2C are connected in series, and the winding density N(4) of these windings is dense with the divided windings 2A and 2C at both ends, as shown in the same figure (B), with respect to the position #t on the central axis of the coil. is wrapped around. In this case, the winding density N (force) of each divided winding is determined as shown below.

例えば超電導コイル(円筒コイル)の全長をり。For example, the total length of a superconducting coil (cylindrical coil).

コイルの中心軸上だおいて該コイルの端部がら任意の点
までの距離をl、コイルの中心軸方向の位置を示す座標
軸を・y、y軸と直交する座標軸全磁界分布B(y)と
し、距離tからL+dtの間の巻線によ多形成される磁
界をG (y、 !−)とすると、超電導コイル全体に
よ多形成される磁界B(y)は次式により求−土る。
The distance from the end of the coil to any point on the central axis of the coil is l, the coordinate axis indicating the position in the direction of the central axis of the coil is y, and the coordinate axis orthogonal to the y-axis is the total magnetic field distribution B(y) If the magnetic field formed by the winding between the distance t and L + dt is G (y, !-), then the magnetic field B (y) formed in the entire superconducting coil can be expressed as Ru.

Bυ)=fN(4)G (y、 t’) d4 ・・曲
(2)上式(2)より所望の磁界分布を形成する巻線密
度N(Ak決定する。このようにして夫々、決定された
巻線密度N(4の巻線2A、2B、2Cに同一の励磁電
流を流したとき、所定の電流密度、磁界分布となるよう
にしておく。本実施例における超電導装置の回路おh成
を第4図に示す。同図に示すようにクライオスタット1
0内に収納された分割巻線は電源20により直列励磁さ
れる。尚、抵抗R1,R2,R3は保護抵抗である。
Bυ)=fN(4)G (y, t') d4 ... Curve (2) From the above equation (2), determine the winding density N (Ak) that forms the desired magnetic field distribution.In this way, each When the same excitation current is passed through the windings 2A, 2B, and 2C of the winding density N (4), a predetermined current density and magnetic field distribution are obtained. The configuration is shown in Figure 4.As shown in the figure, the cryostat 1
The divided windings housed within 0 are serially excited by the power supply 20. Note that the resistors R1, R2, and R3 are protective resistors.

このように本実施例では直列励磁で所定の磁界分布が得
られるので、3分割コイルであってもパワーリードは2
本で済み、第2図に示した従来例甘だ、°この場合に゛
電源も1台でよい。次に第5図及び第6図に本発明の他
の実施例を示す。本実施例では超電導コイルによ多形成
される磁界分布を所定の分布となるようにするために各
分割巻線の巻線密度を変えるだけでなく、各分割巻線に
励磁電流の微調整用電源を設け、磁界分布を補正するも
のである。すなわち、コイルの巻線密度による調整では
磁界の均−性等は、巻線精度等に限界があり、はぼ1%
程度が限度である。それ以上の均−性等を実現するには
各分割巻線への励磁電流を微調整する必要がある。この
ために本実施例では第5図に示すように主電源33の他
に微調整用電源:31.32が設けられ、分割巻線2B
、2Cには主電源33からの励磁電流■。の他に補正電
流■。I + IO1+IO2が加わった電流が流れる
In this way, in this example, a predetermined magnetic field distribution can be obtained by series excitation, so even if the coil is divided into 3 parts, the power lead is 2.
A book is sufficient, and the conventional example shown in Fig. 2 is insufficient. In this case, only one power supply is required. Next, FIGS. 5 and 6 show another embodiment of the present invention. In this example, in order to make the magnetic field distribution formed by the superconducting coil a predetermined distribution, not only the winding density of each divided winding is changed, but also the fine adjustment of the excitation current is applied to each divided winding. A power source is provided to correct the magnetic field distribution. In other words, when adjusting the winding density of the coil, there is a limit to the uniformity of the magnetic field, etc. due to the winding precision, etc., and it is approximately 1%.
The extent is the limit. In order to achieve greater uniformity, it is necessary to finely adjust the excitation current to each divided winding. For this purpose, in this embodiment, as shown in FIG. 5, in addition to the main power supply 33, a fine adjustment power supply: 31.
, 2C is the excitation current ■ from the main power supply 33. In addition to correction current ■. A current containing I + IO1+IO2 flows.

この状態を第6図に示す。このとき補正電流■。、。This state is shown in FIG. At this time, the correction current ■. ,.

IO2は、各分割巻線の巻線密度により磁界分布を調整
しているので、励磁電流■。の1%程度でよい。
Since the magnetic field distribution of IO2 is adjusted by the winding density of each divided winding, the exciting current is ■. Approximately 1% of the amount is sufficient.

したがって、補正電流■。l r IO2を流すために
必要なパワーリード36.37からの熱侵入量WはI、
!≧101’ + I6:であるから、無視でき、パワ
ーリードが2本増えても、熱侵入量Wは第4図の実施例
と同様である。
Therefore, the correction current■. l r The amount of heat input W from the power lead 36.37 required to flow IO2 is I,
! ≧101' + I6: Therefore, it can be ignored, and even if the number of power leads is increased by two, the amount of heat penetration W is the same as in the embodiment shown in FIG.

このように本実施例によれば磁界分布をよシ槍確+cg
ll整することが可能である。
In this way, according to this embodiment, the magnetic field distribution can be improved with certainty +cg
ll adjustment is possible.

尚、以上に述べた実施例では超電動コイルについてのみ
説明したが、常電導コイルにも適用可能である。−また
実施例では3分割巻線の場合について説明したが、これ
に限定されることはない。
In addition, in the embodiment described above, only a superelectric coil was explained, but it is also applicable to a normal conductive coil. - Also, in the embodiment, the case of a three-divided winding has been described, but the present invention is not limited to this.

以上に説明した如く、本発明では軸方向に複数に分割し
て巻回された超電導コイルを有する超電導装置において
、要求される磁界分布に応じて各分割巻線の巻@密度を
変化させ且つこれらの分割巻線を直列励磁するように構
成したので、本発明によればパワーリードは等制約[2
本で済み、熱侵入量の低減全図った高精度の超電導装置
を実現できる。
As explained above, in the present invention, in a superconducting device having a superconducting coil that is divided and wound into a plurality of parts in the axial direction, the winding density of each divided winding is changed according to the required magnetic field distribution, and Since the divided windings are configured to be excited in series, according to the present invention, the power lead is subject to equal constraints [2
It is possible to realize a high-precision superconducting device that only requires a book and completely reduces the amount of heat intrusion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導装置における超電導コイルの巻線
構造と磁界分布及び各巻線の励磁電流との関係を示すf
説明図、第2図は第1図の超電導コイルが使用される従
来の超電導装置の回・路構成図、第3図は本発明の一実
7f8例に適用される超電導コイルの各分割巻線の巻線
密度を示す説明図、第4図は第3図に示した超電導コイ
ルが使用される超電導装置の回路構成図、第5図は本発
明の他の実施例を示す超電導装置の回路構成図、第6図
は第5図における谷分割巻線2’A、2B、2Cに流れ
る励磁電流の特性を示す図である。 1 、 10=・り7(オスl 7 ト、2A、2B、
2C・・・分割巻線、31.32・・・微調整用電源、
33・・・11 第7図 1                     )L、
  −一一一二−J −Ir 弔3図 第4−(ト) 0 弔5図 弔6図 ]イ1しの4立置
Figure 1 shows the relationship between the winding structure of a superconducting coil, magnetic field distribution, and excitation current of each winding in a conventional superconducting device.
An explanatory diagram, FIG. 2 is a circuit diagram of a conventional superconducting device in which the superconducting coil shown in FIG. 4 is a circuit configuration diagram of a superconducting device in which the superconducting coil shown in FIG. 3 is used, and FIG. 5 is a circuit configuration diagram of a superconducting device showing another embodiment of the present invention. 6 are diagrams showing the characteristics of the excitation current flowing through the valley-divided windings 2'A, 2B, and 2C in FIG. 5. 1, 10 = 7 (male 7, 2A, 2B,
2C...divided winding, 31.32...power supply for fine adjustment,
33...11 Figure 7 1) L,
-1112-J -Ir Funeral Figure 3 Figure 4-(G) 0 Funeral Figure 5 Figure 6] I1-4 Standing

Claims (1)

【特許請求の範囲】 1、軸方向に複数に分割して巻回された超電導コイルを
有する超′亀導装置において、要求される磁界分布に応
じて各分割巻線の巻線密度を変化させ且つこれらの分割
巻線を直列励磁することを特徴とする超電導装置。 2、超電導コイルの両端部に位置する分割巻線をその巻
線密度が牛心部の分割巻線の巻線密度に比して密となる
ように巻回したことを特徴とする特許請求の範囲第1項
に記載の超電導装置。 3、前記複数の分割巻線のうちの一部又は全部に励磁電
流の微調整用電源を設をブたこと全特徴とする特許請求
の範囲第1項又は第2項のいずれかに記載の超電導装置
[Claims] 1. In a superconducting device having a superconducting coil divided and wound in a plurality of parts in the axial direction, the winding density of each divided winding is changed according to the required magnetic field distribution. A superconducting device characterized in that these divided windings are excited in series. 2. A patent claim characterized in that the divided windings located at both ends of the superconducting coil are wound so that the winding density thereof is denser than that of the divided windings in the cow's core. A superconducting device according to scope 1. 3. The device according to claim 1 or 2, characterized in that some or all of the plurality of divided windings are provided with a power source for fine adjustment of the excitation current. Superconducting device.
JP58030817A 1983-02-28 1983-02-28 Superconducting device Expired - Lifetime JPH0732096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58030817A JPH0732096B2 (en) 1983-02-28 1983-02-28 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58030817A JPH0732096B2 (en) 1983-02-28 1983-02-28 Superconducting device

Publications (2)

Publication Number Publication Date
JPS59158505A true JPS59158505A (en) 1984-09-08
JPH0732096B2 JPH0732096B2 (en) 1995-04-10

Family

ID=12314247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58030817A Expired - Lifetime JPH0732096B2 (en) 1983-02-28 1983-02-28 Superconducting device

Country Status (1)

Country Link
JP (1) JPH0732096B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144802A (en) * 1984-12-19 1986-07-02 Toshiba Corp Superconductive electromagnet device
JPS6297307A (en) * 1985-10-24 1987-05-06 Mitsubishi Electric Corp Uniform magnetic field coil
JPS6457605A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Superconducting device
JP2004165538A (en) * 2002-11-15 2004-06-10 Sumitomo Heavy Ind Ltd Superconducting magnet device
JP2008047563A (en) * 2006-08-10 2008-02-28 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with superconducting coil
JP2008047561A (en) * 2006-08-10 2008-02-28 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with superconducting coil
JP2017502751A (en) * 2013-12-23 2017-01-26 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Electromagnetic interference shield coil for MRI system
JP2017162896A (en) * 2016-03-08 2017-09-14 住友重機械工業株式会社 Superconducting cyclotron and superconducting electromagnet
JP2021009914A (en) * 2019-07-01 2021-01-28 株式会社東芝 Superconducting magnet device and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103408U (en) * 1982-12-27 1984-07-12 日本電子株式会社 electromagnet device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103408U (en) * 1982-12-27 1984-07-12 日本電子株式会社 electromagnet device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144802A (en) * 1984-12-19 1986-07-02 Toshiba Corp Superconductive electromagnet device
JPS6297307A (en) * 1985-10-24 1987-05-06 Mitsubishi Electric Corp Uniform magnetic field coil
JPS6457605A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Superconducting device
JP2004165538A (en) * 2002-11-15 2004-06-10 Sumitomo Heavy Ind Ltd Superconducting magnet device
JP2008047563A (en) * 2006-08-10 2008-02-28 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with superconducting coil
JP2008047561A (en) * 2006-08-10 2008-02-28 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with superconducting coil
JP2017502751A (en) * 2013-12-23 2017-01-26 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Electromagnetic interference shield coil for MRI system
JP2017162896A (en) * 2016-03-08 2017-09-14 住友重機械工業株式会社 Superconducting cyclotron and superconducting electromagnet
JP2021009914A (en) * 2019-07-01 2021-01-28 株式会社東芝 Superconducting magnet device and control method thereof

Also Published As

Publication number Publication date
JPH0732096B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US3577067A (en) Persistent mode superconductive orthogonal gradient cancelling coils
Hanson et al. Magnetically shielded solenoid with field of high homogeneity
US4581580A (en) Intentionally non-orthogonal correction coils for high-homogeneity magnets
JP3447090B2 (en) Magnetic resonance apparatus having superconducting magnet
JPS59158505A (en) Superconductive equipment
US4180769A (en) Superconducting solenoid with compensation for axial gradients
US7365540B2 (en) Hybrid magnet configuration
JP4293341B2 (en) Superconducting magnet device
JP3737895B2 (en) Permanent current superconducting magnet system
JP2001061228A (en) Current limiter
US6774752B2 (en) NMR high field magnet coil system with superconducting capability and having an outwardly protruding inner coil section
JPS62224005A (en) Magnet for nuclear spin resonance device
CN112730944B (en) Current measuring method and device based on Rogowski coil
Du et al. Design of an Emittance Compensation Superconducting Magnet Package for LCLS-II-HE's SRF Photo-Injector
KR20220101193A (en) Magnetic components with electrically variable properties
JPS5934608A (en) Core for small sized reactor
JP3842945B2 (en) Shim device for nuclear magnetic resonance equipment
JPS58186915A (en) Superconductive magnet
JP3993919B2 (en) Permanent current superconducting magnet system
JP2002043116A (en) Superconducting magnet device
JP2003068519A (en) Superconductive magnet device, and method of stabilizing magnetic field therewith
JPH02228008A (en) Variable inductor
Schmidt et al. Magnetic field data on Fermilab Energy-Saver quadrupoles
JPS61115310A (en) Superconducting magnet
JPS60153111A (en) Magnetic-field uniformity correcting device