JPS61115310A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPS61115310A
JPS61115310A JP59237853A JP23785384A JPS61115310A JP S61115310 A JPS61115310 A JP S61115310A JP 59237853 A JP59237853 A JP 59237853A JP 23785384 A JP23785384 A JP 23785384A JP S61115310 A JPS61115310 A JP S61115310A
Authority
JP
Japan
Prior art keywords
superconducting
compensation
magnetic
magnetic fluxes
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237853A
Other languages
Japanese (ja)
Inventor
Hikonari Ishikawa
石川 彦成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP59237853A priority Critical patent/JPS61115310A/en
Publication of JPS61115310A publication Critical patent/JPS61115310A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To enable the generation of a stable and uniform magnetic field, by incorporating magnetic flux holding coils serially in conventional superconductive compensation windings. CONSTITUTION:Magnetic flux holding coils 11 and 12 are provided at the opposite ends of a hollow cylinder of a superconducting main magnet. By this constitution, the ratio of the number of magnetic fluxes traversing superconducting compensation windings out of the magnetic fluxes generated in a constantly- conducting compensation winding 3 to the total sum of the magnetic fluxes traversing the superconducting compensation windings can be lessened sharply. The reason is that the total number of the magnetic fluxes traversing the superconducting compensation windings 2 and 2' is lessened sharply since the magnetic fluxes generated in the constantly-conducting compensation winding 3 scarcely traverse the magnetic flux holding coils 11 and 12. Accordingly, the rate of a change in the number of magnetic fluxes traversing the superconducting compensation windings 2 and 2', which is caused by a change in a current of the constantly-conducting compensation winding 3, is diminished in a large degree, and consequently a change in a current flowing through the superconducting compensation windings 2 and 2' is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導磁石にI!11′る。[Detailed description of the invention] (Industrial application field) The present invention provides superconducting magnets with I! 11'.

(従来の技術) 超伝導磁石は、導体を極低温度に冷却したときに生じる
超伝導現象(抵抗値が0になる現象)を利用して極小の
電力で強い磁場を発生させる装置である。この種の装置
は、例えばMHD発電用の磁界発生装置や、核磁気共鳴
装置の磁界発生装置として、或いはその他のVL@の磁
界発生装置として用いられている。
(Prior Art) A superconducting magnet is a device that generates a strong magnetic field with minimal electric power by utilizing the superconductivity phenomenon (the phenomenon in which the resistance value becomes 0) that occurs when a conductor is cooled to an extremely low temperature. This type of device is used, for example, as a magnetic field generating device for MHD power generation, a magnetic field generating device for a nuclear magnetic resonance apparatus, or a magnetic field generating device for other VL@.

第3図は、従来のこの種の装置の実施例を示す構成因で
ある。図は、円筒中心の切断面を示している。図におい
て、1は円筒状に巻回され極低温に冷却された状態で主
磁束を発生させる超伝導主磁石、2.2′は該超伝導主
磁石1により円筒中心部にできる磁場を均一化するため
に超伝導主磁石1の外周に巻回された超伝導補償巻線(
超伝導シム)、3は同じく円筒中心部にできる磁場を均
一化するため、円筒中心部に配された常伝導補償巻線(
室温シム)である。
FIG. 3 shows the components of an embodiment of a conventional device of this type. The figure shows a cross section at the center of the cylinder. In the figure, 1 is a superconducting main magnet that is wound into a cylindrical shape and generates a main magnetic flux when cooled to an extremely low temperature, and 2.2' is a superconducting main magnet that homogenizes the magnetic field created in the center of the cylinder by the superconducting main magnet 1. A superconducting compensation winding (
3 is a normal-conducting compensation winding (
room temperature shim).

このように構成された超伝導磁石において、超伝導主磁
石1−を、例えば液体ヘリウムで冷却し電流を流すと、
円筒中心部の円筒軸方向く図の2軸方向)に磁界を発生
する。併せて超伝導補償巻線2.2′及び常伝導補償巻
線3に電流を流すことにより、円筒中心の磁場を均一に
することができる。この種の高均一度超伝導磁石では、
磁石の中心領域(図に示す半径aの球内。一般に865
cm)の磁場のみが問題となる。しかもZ軸方向の磁場
分布が重要となる。そこで、磁石のつくるZ軸方向磁場
を取出してテーラ−(Taylor )級数に展開して
表現する。
In the superconducting magnet configured in this way, when the superconducting main magnet 1- is cooled with, for example, liquid helium and a current is applied,
A magnetic field is generated at the center of the cylinder in the direction of the cylinder axis (two axes in the figure). At the same time, by passing current through the superconducting compensation windings 2 and 2' and the normal conduction compensation windings 3, the magnetic field at the center of the cylinder can be made uniform. In this kind of highly homogeneous superconducting magnet,
The central region of the magnet (within a sphere of radius a shown in the figure, generally 865
Only the magnetic field (cm) is of concern. Moreover, the magnetic field distribution in the Z-axis direction is important. Therefore, the Z-axis direction magnetic field generated by the magnet is extracted and expressed by expanding it into a Taylor series.

B (Z)=Bo +Bt Z+B2 Z2+B! Z
’+・・・+Bn Z” 但し、Bo 、al・・・3nは微分係数高均一度超伝
導磁石の場合、超伝導補償音12゜2′は、特に上式の
1次項をつくるような補償巻線に例をとれば、3次項が
Oとなる位置に配置されている。
B (Z)=Bo +Bt Z+B2 Z2+B! Z
'+...+Bn Z' However, Bo, al...3n are differential coefficients in the case of a highly homogeneous superconducting magnet, and the superconducting compensation sound 12°2' is especially the compensation that creates the first-order term in the above equation. Taking a winding as an example, it is placed at a position where the third-order term is O.

(発明が解決しよつとする問題点) ところで、円筒中心に所望の磁場をつくるときは、超伝
導主磁石1で高磁場を発生させ、その磁場を超伝導補償
音1112.2’ 、常伝導補償巻線3の順に用いて主
磁場のもつ1次、2次項等の不均一成分を打消し、高均
一度磁場をつくっている。
(Problems to be Solved by the Invention) By the way, when creating a desired magnetic field at the center of the cylinder, a high magnetic field is generated by the superconducting main magnet 1, and the magnetic field is converted into superconducting compensation sound 1112.2', normal conduction The compensation winding 3 is used in this order to cancel out non-uniform components such as primary and secondary terms of the main magnetic field, creating a highly homogeneous magnetic field.

しかしながら、常伝導補償巻[13の電流を設定する際
には、超伝導主磁石1.超伝導補償巻線2゜2′は電源
より切離し、永久電流モードになっているため、常伝導
巻線3の電流を変化させると、このI!流がつくる磁束
によって超伝導主磁石1及び超伝導補償音112.2’
 に流れている永久電流が変化してしまい、中心磁場が
均一になるように制御することができなくなってしまう
However, when setting the current of the normal conduction compensation winding [13], the superconducting main magnet 1. The superconducting compensation winding 2゜2' is disconnected from the power source and is in persistent current mode, so when the current in the normal conducting winding 3 is changed, this I! Superconducting main magnet 1 and superconducting compensation sound 112.2' due to the magnetic flux created by the flow
The persistent current flowing in the center changes, making it impossible to control the central magnetic field to be uniform.

従来装置の場合、例えば常伝導補償巻線3の3次項を変
化させると超伝導主磁石1の1次項電流が変化する。そ
こで、予めその値を予測し、超伝導補償音$12.2’
の磁場を打消すように常伝導補償巻線3に1次項電流を
流すことが考えられる。
In the case of the conventional device, for example, when the third-order term of the normal conduction compensation winding 3 is changed, the first-order term current of the superconducting main magnet 1 changes. Therefore, we predicted the value in advance and obtained a superconducting compensation sound of $12.2'
It is conceivable to flow a primary term current through the normal conduction compensation winding 3 so as to cancel the magnetic field.

しかしながら、このような方法では常伝導補償巻線3の
負荷が大きくなり、多くの電流を流す必要が生じる。こ
の結果、常伝導補償巻線3自体が発熱したり、場合によ
っては超伝導補償巻線2が3次、5次項等々の磁場を発
生し、常伝導補償巻線の設計が極めて複雑且つ困難にな
ってしまう。    ゛本発明は、このような点に鑑み
てなされたもので、その目的は、安定な均一磁場を発生
させることができる超伝導磁石を実現することにある。
However, in such a method, the load on the normal conduction compensation winding 3 becomes large, and a large amount of current needs to flow. As a result, the normal conduction compensation winding 3 itself generates heat, and in some cases, the superconducting compensation winding 2 generates magnetic fields such as third-order and fifth-order terms, making the design of the normal conduction compensation winding extremely complicated and difficult. turn into. The present invention has been made in view of these points, and its purpose is to realize a superconducting magnet that can generate a stable uniform magnetic field.

(問題点を解決するための手段) 前記した問題点を解決する本発明は、円筒状に巻回され
た超伝導主磁石と、該超伝導主磁石により円筒中心部叫
できる1fijiを均一化するため超伝導主磁石の外周
に巻回された超伝導補償巻線と円筒中心部に配された常
伝導補償巻線とにより構成されてなる超伝導磁石におい
て、超伝導主磁石の外周に超伝導補償巻線と直列に接続
された磁束保持コイルを設けたことを特徴とするもので
ある。
(Means for Solving the Problems) The present invention, which solves the above-mentioned problems, uses a superconducting main magnet wound in a cylindrical shape and equalizes the 1fiji that can be generated at the center of the cylinder by the superconducting main magnet. Therefore, in a superconducting magnet composed of a superconducting compensation winding wound around the outer circumference of a superconducting main magnet and a normal-conducting compensation winding arranged at the center of the cylinder, there is a superconducting It is characterized by providing a magnetic flux holding coil connected in series with the compensation winding.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示す構成図である。第3
図と同一のものは、同一の番号を付して示す。図におい
て、11は超伝導補償巻線2と直列に接続された第1の
磁束保持コイル、12は同じく超伝導補償音12’ と
直列に接続された第2の磁束保持コイルである。これら
磁束保持コイル11.12は中心より可能な限り離れた
超伝導主磁石1の外周部に巻回された巻数の多いコイル
である。
FIG. 1 is a configuration diagram showing an embodiment of the present invention. Third
Components that are the same as those in the figures are indicated by the same numbers. In the figure, 11 is a first magnetic flux holding coil connected in series with the superconducting compensation winding 2, and 12 is a second magnetic flux holding coil also connected in series with the superconducting compensation winding 12'. These magnetic flux holding coils 11, 12 are coils with a large number of turns wound around the outer circumference of the superconducting main magnet 1 as far away from the center as possible.

第2図は、第1図に示づ装置の等価回路図である。磁束
保持コイル11.12は、図に示すように超伝導補償巻
線2.2′と直列に接続されている。SWは永久電流を
流すための切換スイッチである。即ち、まず外部電源よ
り電流を流しておき、超伝導状態になった後に、外部電
源を切離し、スイッチSWの接点をオンにして回路を短
絡状態にすることにより永久電流を流すことができる。
FIG. 2 is an equivalent circuit diagram of the device shown in FIG. The flux-holding coil 11.12 is connected in series with the superconducting compensation winding 2.2' as shown. SW is a changeover switch for flowing persistent current. That is, first, a current is caused to flow from an external power source, and after the superconducting state is achieved, the external power source is disconnected, and the contact of the switch SW is turned on to short-circuit the circuit, thereby allowing a persistent current to flow.

このように構成された回路の動作を、以下に説明する。The operation of the circuit configured in this way will be explained below.

従来装置の場合、超伝導補償音12.2’ は前述した
ように、常伝導補償巻線3に電流を流すことにより生じ
る磁束によって、強く影響を受ける。
In the case of the conventional device, the superconducting compensation sound 12.2' is strongly influenced by the magnetic flux generated by passing a current through the normal-conducting compensation winding 3, as described above.

その結果、自己のコイルを横切る磁束数を一定に保とう
とするため電流を大きく変化させ、中心領域での磁場分
布を歪めていた。そこで、本発明装置のように超伝導主
磁石円筒の両端に磁束保持コイル11.12を設ける。
As a result, in an attempt to keep the number of magnetic fluxes crossing its own coil constant, the current changes significantly, distorting the magnetic field distribution in the central region. Therefore, magnetic flux holding coils 11 and 12 are provided at both ends of the superconducting main magnet cylinder as in the device of the present invention.

このようにすると、常伝導補償巻線3に発生する磁束の
うち超伝導補償巻線を横切る磁束数の、超伝導補償さ線
を横切る磁束の総和に対する比率を大幅に減少させるこ
とができる。その理由は、常伝導補償巻線3の発生する
磁束は、はとんど附束保持コイル11.12を横切らな
いので、超伝導補償者1i12.2’ を横切る全磁束
数が大幅に減少するからである。
In this way, the ratio of the number of magnetic fluxes that cross the superconducting compensation winding among the magnetic flux generated in the normal-conducting compensation winding 3 to the total magnetic flux that crosses the superconducting compensated wire can be significantly reduced. The reason for this is that the magnetic flux generated by the normal-conducting compensator winding 3 hardly crosses the flux retaining coil 11.12, so the total number of magnetic fluxes that cross the superconducting compensator 1i12.2' is significantly reduced. It is from.

従って、常伝導補償巻線3の電流変化による超伝導補償
者$62.2’ を横切る磁束数の変化の割合が大きく
減少し、超伝導補償巻線2.2′の電流変化が減少する
。即ち1本発明によれば、常伝導補償巻線3と超伝導補
償者1i12.2’の相互作用による磁場の乱れを無視
できる程度に軽減することができる。
Therefore, the rate of change in the number of magnetic fluxes across the superconducting compensator $62.2' due to current changes in the normal-conducting compensation winding 3 is greatly reduced, and the current change in the superconducting compensating winding 2.2' is reduced. That is, according to the present invention, the disturbance of the magnetic field due to the interaction between the normal conduction compensating winding 3 and the superconducting compensator 1i12.2' can be reduced to a negligible extent.

上述の説明においては、磁束保持コイルを超伝導主磁石
円筒の両端に巻回した場合を例にとったが、必ずしも両
端に設ける必要はなく、少なくとも一端に巻回すればよ
い。又、上述の説明では、Z軸方向の1次シムについて
考えてきたが、同様の方法は全ての超伝導補償巻線につ
いて適用することができる。
In the above description, the case where the magnetic flux holding coil is wound around both ends of the superconducting main magnet cylinder is taken as an example, but it is not necessarily necessary to provide it at both ends, and it is sufficient to wind it around at least one end. Also, in the above description, the primary shim in the Z-axis direction has been considered, but a similar method can be applied to all superconducting compensation windings.

(発明のりJ宋) 以上詳細に説明したように、本発明によれば、従来の超
伝導補償巻線に直列に磁束保持コイルを組込むことによ
り、中心領域の磁場制御を容易に行うことができるので
安定な均一磁場を発生させることができる。又、常伝導
補償巻線に過度の負荷を加えずに済むので常伝導補償巻
線の設計が容易になる。
(Invention Nori J Song) As explained in detail above, according to the present invention, by incorporating a magnetic flux holding coil in series with the conventional superconducting compensation winding, it is possible to easily control the magnetic field in the central region. Therefore, a stable and uniform magnetic field can be generated. Further, since it is not necessary to apply an excessive load to the normal conduction compensation winding, the design of the normal conduction compensation winding becomes easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は第1
図の等価回路を示す図、第3図は従来装置例を示す図で
ある。 1・・・超伝導主磁石 2.2′・・・超伝導補償巻線
3・・・常伝導補償巻線 11.12・・・磁束保持コイル SW・・・スイッチ 特許出願人  日本電子株式会社 代 理 人  弁理士 井島藤治 外1名 諮1図 第2図
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
FIG. 3 is a diagram showing an example of a conventional device. 1... Superconducting main magnet 2.2'... Superconducting compensation winding 3... Normal conduction compensation winding 11.12... Magnetic flux holding coil SW... Switch patent applicant JEOL Ltd. Representative Patent Attorney: Fuji Ijima (1 person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 円筒状に巻回された超伝導主磁石と、該超伝導主磁石に
より円筒中心部にできる磁場を均一化するため超伝導主
磁石の外周に巻回された超伝導補償巻線と円筒中心部に
配された常伝導補償巻線とにより構成されてなる超伝導
磁石において、超伝導主磁石の外周に超伝導補償巻線と
直列に接続された磁束保持コイルを設けたことを特徴と
する超伝導磁石。
A superconducting main magnet wound into a cylindrical shape, a superconducting compensating winding wound around the outer circumference of the superconducting main magnet in order to equalize the magnetic field generated in the center of the cylinder by the superconducting main magnet, and the center of the cylinder. A superconducting magnet comprising a normal-conducting compensation winding arranged in Conduction magnet.
JP59237853A 1984-11-12 1984-11-12 Superconducting magnet Pending JPS61115310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237853A JPS61115310A (en) 1984-11-12 1984-11-12 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237853A JPS61115310A (en) 1984-11-12 1984-11-12 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPS61115310A true JPS61115310A (en) 1986-06-02

Family

ID=17021377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237853A Pending JPS61115310A (en) 1984-11-12 1984-11-12 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS61115310A (en)

Similar Documents

Publication Publication Date Title
JP3043478B2 (en) Magnet assembly
JPH0564634A (en) Magnetic apparatus
JP3447090B2 (en) Magnetic resonance apparatus having superconducting magnet
JP3238425B2 (en) Magnet device for magnetic resonance imaging
JPS60240111A (en) Transformer
JPH0799723B2 (en) Uniform magnetic field coil
Pulyer et al. Generation of remote homogeneous magnetic fields
EP1340456A1 (en) Low-leakage magnetic-field magnet and shield coil assembly
EP0609604A1 (en) Magnetic field generation device of use in superconductive type MRI
CN108226832A (en) Magnetic assembly with the HTS shimmings that superconductivity is closed
JPH0219430B2 (en)
JPH04105307A (en) Superconducting magnet apparatus
JPS61115310A (en) Superconducting magnet
JPS59158505A (en) Superconductive equipment
ES2378160T3 (en) Core for a controllable inductor device
JP3150507B2 (en) Superconducting magnet device
JPH1097917A (en) Superconductor magnet device
JPS6217096A (en) Magnetic field impressing device for drawing up single crystal
JP2001069665A (en) Current-limiting unit
JPH097819A (en) Superconductive device
JPS6058562B2 (en) Method for adjusting magnetic field distribution of superconducting magnets
Batrakov et al. Superconducting wavelength shifters and multipole wigglers developed in Budker INP
JP2593435B2 (en) A magnet that generates a highly uniform magnetic field
JPH0461103A (en) Permanent current superconducting magnet apparatus
JPH1189085A (en) Power limitter