JP2021009914A - Superconducting magnet device and control method thereof - Google Patents

Superconducting magnet device and control method thereof Download PDF

Info

Publication number
JP2021009914A
JP2021009914A JP2019122765A JP2019122765A JP2021009914A JP 2021009914 A JP2021009914 A JP 2021009914A JP 2019122765 A JP2019122765 A JP 2019122765A JP 2019122765 A JP2019122765 A JP 2019122765A JP 2021009914 A JP2021009914 A JP 2021009914A
Authority
JP
Japan
Prior art keywords
coil
temperature
magnetic field
superconducting coil
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019122765A
Other languages
Japanese (ja)
Other versions
JP7313933B2 (en
Inventor
大谷 安見
Yasumi Otani
安見 大谷
貞憲 岩井
Sadanori Iwai
貞憲 岩井
寛史 宮崎
Hiroshi Miyazaki
寛史 宮崎
伊藤 智庸
Tomoyasu Ito
智庸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019122765A priority Critical patent/JP7313933B2/en
Publication of JP2021009914A publication Critical patent/JP2021009914A/en
Application granted granted Critical
Publication of JP7313933B2 publication Critical patent/JP7313933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

To improve the stability of the magnetic field by suppressing the magnetic field fluctuation on the order of ppm due to a superconducting coil.SOLUTION: A super conducting magnet 10 includes a superconducting coil 11, a power supply 12 for exciting the superconducting coil, a coil energizing wire 13 that electrically connects the superconducting coil to the power supply, and a protection circuit 15 including a protection resistor 14 connected in parallel with the superconducting coil and in series with the power supply, and is configured to include a temperature variable device 17 that changes the temperature of a part of a variable resistor 18 of the coil energizing wire 13.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、超電導磁石装置および超電導磁石装置の制御方法に関する。 An embodiment of the present invention relates to a superconducting magnet device and a method for controlling a superconducting magnet device.

図7の超電導磁石装置100に示すように、超電導コイル101は、通電のための電線105を介して電源102により通電され、磁場を発生させることができる。図中の符号106は、電線105の電気抵抗を模式的に示したものである。通常、超電導磁石装置100では、例えば保護抵抗104及び遮断器103を設けて、超電導コイル101の異常時に、この超電導コイル101の焼損や放電等を防止することで系を保護している。また、超電導コイル101には、超電導線材の接続等による電気抵抗があり、この電気抵抗を符号107で模式的に示している。 As shown in the superconducting magnet device 100 of FIG. 7, the superconducting coil 101 is energized by the power supply 102 via the electric wire 105 for energization, and can generate a magnetic field. Reference numeral 106 in the figure schematically shows the electric resistance of the electric wire 105. Normally, in the superconducting magnet device 100, for example, a protection resistor 104 and a circuit breaker 103 are provided to protect the system by preventing the superconducting coil 101 from burning or discharging when an abnormality occurs in the superconducting coil 101. Further, the superconducting coil 101 has an electric resistance due to the connection of the superconducting wire, and the electric resistance is schematically shown by reference numeral 107.

電線105は、電気抵抗の小さな金属(通常は銅)等が用いられている。また、保護抵抗104は、超電導コイル101の保護のために必要な抵抗値と、想定される保護時の消費エネルギを考慮して適切な大きさになる金属が用いられている。 The electric wire 105 is made of a metal having a small electric resistance (usually copper) or the like. Further, the protection resistor 104 is made of a metal having an appropriate size in consideration of the resistance value required for protecting the superconducting coil 101 and the energy consumption during the expected protection.

このように、永久電流モードではない電源駆動方式の超電導磁石装置100は、電気抵抗がゼロとなる超電導コイル101に通電する経路、あるいは、実用上必須な部品である保護抵抗104等のように有限の抵抗値を持つ部材で構成された回路で成り立っている。 As described above, the superconducting magnet device 100 of the power supply drive system, which is not in the permanent current mode, has a finite path such as a path for energizing the superconducting coil 101 having zero electrical resistance, or a protective resistor 104 which is an essential component for practical use. It consists of a circuit composed of members having a resistance value of.

特開2008−41966号公報Japanese Unexamined Patent Publication No. 2008-41966 特開2005−259826号公報Japanese Unexamined Patent Publication No. 2005-259286 特開2004−179413号公報Japanese Unexamined Patent Publication No. 2004-179413

電源駆動方式の超電導磁石装置100には、超電導コイル101が発生する磁場の安定性にとって重要な課題がある。即ち、超電導コイル101側の経路の全抵抗R1と、保護抵抗104を含む保護回路105側の全抵抗Rとによって、電源102からの供給電流Iは、超電導コイル101側への分流電流Iと、保護抵抗104側への分流電流Iとに分流する。超電導コイル101での発生磁場と比例関係にある超電導コイル101側への分流電流Iは、
=I・(R/R)=(I−I)・(R/R
で表され、従って、
=I・R/(R+R)=I・[1−R/(R+R)]
で表される。
The power supply drive type superconducting magnet device 100 has an important problem for the stability of the magnetic field generated by the superconducting coil 101. That is, the total resistance R1 of the superconducting coil 101 side of the path, by the total resistance R 2 of the protection circuit 105 side including the protective resistor 104, the current I supplied from the power source 102, shunt current I 1 to the superconducting coil 101 And the shunt current I 2 to the protection resistor 104 side. The shunt current I 1 to the superconducting coil 101 side, which is proportional to the magnetic field generated by the superconducting coil 101, is
I 1 = I 2 · (R 2 / R 1 ) = (I-I 1 ) · (R 2 / R 1 )
Represented by, therefore
I 1 = I · R 2 / (R 1 + R 2 ) = I · [1-R 1 / (R 1 + R 2 )]
It is represented by.

このように、分流経路のある保護回路105を含めると、超電導コイル101側への分流電流Iは、抵抗R及びRに依存する。ここで問題となるのは、通常の金属は電気抵抗率に温度依存性があるため、室温変化等の外乱による温度変化で、超電導コイル101側への分流電流I(つまり磁場強度)が変動してしまうことである。 As described above, when the protection circuit 105 having the shunt path is included, the shunt current I 1 to the superconducting coil 101 side depends on the resistors R 1 and R 2 . The problem here is that since ordinary metals have temperature dependence on electrical resistivity, the diversion current I 1 (that is, magnetic field strength) to the superconducting coil 101 side fluctuates due to temperature changes due to disturbances such as room temperature changes. It is to do.

このため、通常の超電導磁石装置100の超電導コイル101では、上述の温度変化により、場合によっては数百ppm程度の磁場変動が生じてしまう。更に、通常各部の温度変化は一様ではなく、構成部材の抵抗率の温度依存性に差異があること等が原因で、この磁場変動は複雑な変動になる。 Therefore, in the superconducting coil 101 of the normal superconducting magnet device 100, a magnetic field fluctuation of about several hundred ppm may occur due to the above-mentioned temperature change. Further, the temperature change of each part is usually not uniform, and the magnetic field fluctuation becomes a complicated fluctuation due to a difference in the temperature dependence of the resistivity of the constituent members and the like.

永久電流モードは、そのための解決手段の一つであるが、永久電流モードのための永久電流スイッチがない電源駆動方式の超電導磁石装置100では、上述の超電導コイル101の磁場変動は、超電導磁石装置100の全体を恒温室に入れる等の対策をとらない限り、避けられない。 The permanent current mode is one of the solutions for that purpose, but in the power supply type superconducting magnet device 100 without a permanent current switch for the permanent current mode, the magnetic field fluctuation of the superconducting coil 101 described above is caused by the superconducting magnet device. It is unavoidable unless measures such as putting the entire 100 in a constant temperature chamber are taken.

本発明の実施形態は、上述の事情を考慮してなされたものであり、超電導コイルによるppmオーダーの磁場変動を抑制して磁場の安定性を向上させることができる超電導磁石装置および超電導磁石装置の制御方法を提供することを目的とする。 The embodiment of the present invention has been made in consideration of the above circumstances, and is a superconducting magnet device and a superconducting magnet device capable of suppressing magnetic field fluctuations on the order of ppm by the superconducting coil and improving the stability of the magnetic field. The purpose is to provide a control method.

本発明の実施形態における超電導磁石装置は、超電導コイルと、この超電導コイルを励磁するための電源と、前記超電導コイルを前記電源に電気的に接続するコイル通電電線と、前記超電導コイルに並列に且つ前記電源に直列に接続されて保護抵抗を含む保護回路と、を有する超電導磁石装置において、前記コイル通電電線の一部及び前記保護回路の一部の少なくとも一方の温度を変化させる温度可変装置を備えて構成されたことを特徴とするものである。 The superconducting magnet device according to the embodiment of the present invention includes a superconducting coil, a power source for exciting the superconducting coil, a coil energizing wire for electrically connecting the superconducting coil to the power source, and parallel to the superconducting coil. In a superconducting magnet device having a protection circuit connected in series with the power supply and including a protection resistor, the superconducting magnet device includes a temperature variable device that changes the temperature of at least one of a part of the coil energizing wire and a part of the protection circuit. It is characterized by being composed of.

さらに本発明の実施形態における超電導磁石装置の制御方法は、超電導コイルと、この超電導コイルを励磁するための電源と、前記超電導コイルを前記電源に電気的に接続するコイル通電電線と、前記超電導コイルに並列に且つ前記電源に直列に接続されて保護抵抗を含む保護回路と、を有する超電導磁石装置の制御方法において、前記超電導コイルが発生する磁場を磁場センサで計測し、この磁場センサが計測した磁場が目標値になるように温度可変装置を制御して、前記コイル通電電線の一部及び前記保護回路の一部の少なくとも一方の温度を変化させることを特徴とするものである。 Further, the control method of the superconducting magnet device according to the embodiment of the present invention includes a superconducting coil, a power source for exciting the superconducting coil, a coil energizing wire for electrically connecting the superconducting coil to the power source, and the superconducting coil. In the control method of a superconducting magnet device having a protection circuit including a protection resistor connected in parallel with the power supply and in series with the power supply, the magnetic field generated by the superconducting coil was measured by a magnetic field sensor, and the magnetic field sensor measured the magnetic field. The temperature variable device is controlled so that the magnetic field becomes a target value, and the temperature of at least one of a part of the coil energizing wire and a part of the protection circuit is changed.

本発明の実施形態によれば、超電導コイルによるppmオーダーの磁場変動を抑制して磁場の安定性を向上させることができる。 According to the embodiment of the present invention, it is possible to suppress the fluctuation of the magnetic field on the order of ppm by the superconducting coil and improve the stability of the magnetic field.

第1実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図。The circuit diagram which shows the structure of the superconducting magnet apparatus and the control method of the superconducting magnet apparatus which concerns on 1st Embodiment. 金属の電気抵抗の温度依存性を示すグラフ。A graph showing the temperature dependence of the electrical resistance of a metal. 第2実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図。The circuit diagram which shows the structure of the superconducting magnet apparatus and the control method of the superconducting magnet apparatus which concerns on 2nd Embodiment. 第3実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図。The circuit diagram which shows the structure of the superconducting magnet apparatus and the control method of the superconducting magnet apparatus which concerns on 3rd Embodiment. 第4実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図。The circuit diagram which shows the structure of the superconducting magnet apparatus and the control method of the superconducting magnet apparatus which concerns on 4th Embodiment. 第5実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図。The circuit diagram which shows the structure of the superconducting magnet apparatus and the control method of the superconducting magnet apparatus which concerns on 5th Embodiment. 従来の超電導磁石装置を示す回路図。A circuit diagram showing a conventional superconducting magnet device.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1)
図1は、第1実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図である。超電導磁石装置10は、図1に示すように、超電導コイル11と、この超電導コイル11を励磁するための電源12と、超電導コイル11を電源12に電気的に接続するコイル通電電線13と、保護抵抗14を含む保護回路15と、遮断器16と、コイル通電電線13の一部である可変抵抗体18の温度を変化させる温度可変装置17と、を有して構成される。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First Embodiment (Fig. 1)
FIG. 1 is a circuit diagram showing a configuration of a superconducting magnet device and a control method of the superconducting magnet device according to the first embodiment. As shown in FIG. 1, the superconducting magnet device 10 protects the superconducting coil 11, the power supply 12 for exciting the superconducting coil 11, and the coil energizing wire 13 for electrically connecting the superconducting coil 11 to the power supply 12. It includes a protection circuit 15 including a resistor 14, a breaker 16, and a temperature variable device 17 that changes the temperature of a variable resistor 18 that is a part of a coil energizing wire 13.

超電導コイル11は、コイル通電電線13を介して電源12により通電されて磁場を発生する。即ち、超電導コイル11は、永久電流モードではなく電源駆動方式により磁場を発生する。また、コイル通電電線13は、電気抵抗の小さな金属(例えば銅)等が用いられる。更に、遮断器16は、超電導コイル11、電源12及び保護抵抗14に直列に接続されている。 The superconducting coil 11 is energized by the power supply 12 via the coil energizing electric wire 13 to generate a magnetic field. That is, the superconducting coil 11 generates a magnetic field not by the permanent current mode but by the power supply driving method. Further, as the coil energizing electric wire 13, a metal having a small electric resistance (for example, copper) or the like is used. Further, the circuit breaker 16 is connected in series with the superconducting coil 11, the power supply 12, and the protection resistor 14.

保護抵抗14を含む保護回路15は、超電導コイル11に並列に且つ電源12に直列に接続される。保護抵抗14は、遮断器16と共に、超電導コイル11の異常時に超電導コイル11の焼損や放電を防止して超電導磁石装置10を保護する。この保護抵抗14は、超電導コイル11の保護のために必要な抵抗値と規定される保護時の消費エネルギとを考慮して適切な大きさになる金属が用いられる。保護抵抗14は、通常、銅よりも大きな電気抵抗率の金属が用いられる。 The protection circuit 15 including the protection resistor 14 is connected in parallel with the superconducting coil 11 and in series with the power supply 12. Together with the circuit breaker 16, the protection resistor 14 protects the superconducting magnet device 10 by preventing the superconducting coil 11 from burning or discharging when the superconducting coil 11 is abnormal. As the protection resistor 14, a metal having an appropriate size is used in consideration of the resistance value required for protection of the superconducting coil 11 and the energy consumption at the time of protection defined. As the protection resistor 14, a metal having an electrical resistivity larger than that of copper is usually used.

ここで、図1では、コイル通電電線13の電気抵抗を模式的に符号19で示している。また、超電導コイル11における超電導線材の接続等による電気抵抗を模式的に符号20で示している。 Here, in FIG. 1, the electric resistance of the coil energizing electric wire 13 is schematically indicated by reference numeral 19. Further, the electric resistance due to the connection of the superconducting wire in the superconducting coil 11 is schematically indicated by reference numeral 20.

温度可変装置17は、制御装置21の制御により、コイル通電電線13の一部である可変抵抗体18の温度を変化(例えば加熱または冷却)させて、この可変抵抗体18の電気抵抗を変更させる。このように電気抵抗が変化するので、可変抵抗体18は、図1では模式的に可変抵抗の記号で示している。また、可変抵抗体18は、例えば保護回路15よりも電源12の下流側(即ち超電導コイル11側)に設けられる。 The temperature variable device 17 changes the temperature (for example, heating or cooling) of the variable resistor 18 which is a part of the coil energizing electric wire 13 under the control of the control device 21 to change the electric resistance of the variable resistor 18. .. Since the electrical resistance changes in this way, the variable resistor 18 is schematically indicated by a variable resistance symbol in FIG. Further, the variable resistor 18 is provided, for example, on the downstream side of the power supply 12 (that is, on the superconducting coil 11 side) of the protection circuit 15.

可変抵抗体18は、上述のように温度可変装置17により温度が変化することで電気抵抗が変更される。これは、図2に示すように、金属が、例えば室温付近で温度が高いほど電気抵抗が大きくなるような温度依存性を有するからである。このため、電源12から超電導コイル11側に流れる分流電流と、保護回路15に流れる分流電流との比(分流比)が変化する。従って、室温変化等によってコイル通電電線13や保護回路15の電気抵抗が変更されて、超電導コイル11の発生磁場に変動が生じたとき、温度可変装置17は、可変抵抗体18の温度を変化させ、その電気抵抗を変更することで超電導コイル11へ流れる分流電流の電流値を変え、超電導コイル11の発生磁場を一定に保持することが可能になる。 The electrical resistance of the variable resistor 18 is changed by changing the temperature by the temperature variable device 17 as described above. This is because, as shown in FIG. 2, the metal has a temperature dependence such that the electric resistance increases as the temperature rises near room temperature, for example. Therefore, the ratio (shunt ratio) of the shunt current flowing from the power supply 12 to the superconducting coil 11 side and the shunt current flowing through the protection circuit 15 changes. Therefore, when the electric resistance of the coil energizing wire 13 or the protection circuit 15 is changed due to a change in room temperature or the like and the generated magnetic field of the superconducting coil 11 fluctuates, the temperature variable device 17 changes the temperature of the variable resistor 18. By changing the electric resistance, the current value of the diversion current flowing through the superconducting coil 11 can be changed, and the generated magnetic field of the superconducting coil 11 can be kept constant.

例えば、超電導コイル11の発生磁場が室温変化等によって微小量増加してしまったときには、温度可変装置17により可変抵抗体18の温度を上昇(加熱)させることで、コイル通電電線13側の電気抵抗が増大して超電導コイル11へ流れる分流電流が低下する。これにより、超電導コイル11の発生磁場を減少させて一定磁場に保持することが可能になる。以下、超電導磁石装置の制御方法について更に詳説する。 For example, when the generated magnetic field of the superconducting coil 11 increases by a minute amount due to a change in room temperature or the like, the temperature of the variable resistor 18 is raised (heated) by the temperature variable device 17, so that the electric resistance on the coil energizing wire 13 side is increased. Increases and the diversion current flowing through the superconducting coil 11 decreases. As a result, the generated magnetic field of the superconducting coil 11 can be reduced and maintained at a constant magnetic field. Hereinafter, the control method of the superconducting magnet device will be described in more detail.

超電導コイル11及びコイル通電電線13の全電気抵抗をR、保護回路15の電気抵抗をR、電源12から供給する電流をIとすると、超電導コイル11側に流れる分流電流Iは、
=I・R/(R+R)=I・[1−R/(R+R)]………(1)
で表される。
Assuming that the total electric resistance of the superconducting coil 11 and the coil energizing wire 13 is R 1 , the electric resistance of the protection circuit 15 is R 2 , and the current supplied from the power supply 12 is I, the diversion current I 1 flowing on the superconducting coil 11 side is
I 1 = I · R 2 / (R 1 + R 2 ) = I · [1-R 1 / (R 1 + R 2 )] ……… (1)
It is represented by.

保護回路15の電気抵抗R2が例えば1Ω(1000mΩ)、超電導コイル11及びコイル通電電線13の全電気抵抗Rが例えば10mΩである場合、超電導コイル11側に流れる分流電流Iは、電源12からの供給電流Iの99%(保護抵抗14に流れる分流電流は、電源12からの供給電流の1%)になる。超電導コイル11及びコイル通電電線13の全電気抵抗R(10mΩ)は、銅製のコイル通電電線13の室温側部分の電気抵抗が支配的である。仮に、このコイル通電電線13の室温側部分の電気抵抗が10mΩになっているとして、このコイル通電電線13の室温側部分は、温度を1℃上昇させると、電気抵抗が3000ppm(0.3%)程度増大する。 Electrical resistance R2 is, for example, 1Ω protection circuit 15 (1000M), when the total electrical resistance R 1 of the superconducting coil 11 and the coil energization wire 13 is, for example, 10 m [Omega, the shunt current I 1 flowing through the superconducting coil 11 side from the power source 12 99% of the supply current I of the above (the diversion current flowing through the protection resistor 14 is 1% of the supply current from the power supply 12). The total electric resistance R 1 (10 mΩ) of the superconducting coil 11 and the coil energized electric wire 13 is dominated by the electric resistance of the room temperature side portion of the copper coil energized electric wire 13. Assuming that the electric resistance of the room temperature side portion of the coil energized electric wire 13 is 10 mΩ, the electric resistance of the room temperature side portion of the coil energized electric wire 13 is 3000 ppm (0.3%) when the temperature is raised by 1 ° C. ) Increases.

超電導コイル11及びコイル通電電線13の全電気抵抗(コイル通電電線13の室温側部分の電気抵抗)Rが3000ppm変化(増大)してR´になったとき、超電導コイル11側へ流れる分流電流はIからI´に変化(減少)する。即ち、
´=I・R/(R´+R)………(2)
When the total electrical resistance of the superconducting coil 11 and the coil energizing wire 13 (electrical resistance of the room temperature side portion of the coil energizing wire 13) R 1 changes (increases) by 3000 ppm to become R 1 ′, the shunt flow flows to the superconducting coil 11 side. The current changes (decreases) from I 1 to I 1 '. That is,
I 1 '= I · R 2 / (R 1 '+ R 2 ) ………… (2)

式(1)と式(2)から、超電導コイル11側へ流れる分流電流の変化率は、
(I−I´)/I=R/(R+R)−R/(R´+R
=R・(R´−R)/(R+R)・(R´+R
となる。ここで、R´=1.003Rであるから、R´を消去して変形すると、
(I−I´)/I=0.003(R/R)/[(R/R)+1]・[(R´/R)+1]
となる。ここで、R/R=1/100であり、R´/R=1.003/100が十分に小さいことから、超電導コイル11側へ流れる分流電流の変化率は、
(I−I´)/I≒0.003(R/R)=0.003×1/100=30ppmになる。
From equations (1) and (2), the rate of change of the shunt current flowing to the superconducting coil 11 side is
(I 1 −I 1 ′) / I = R 2 / (R 1 + R 2 ) −R 2 / (R 1 ′ + R 2 )
= R 2 · (R 1 ' -R 1) / (R 1 + R 2) · (R 1' + R 2)
Will be. Here, 'because it is = 1.003R 1, R 1' R 1 is modified by erasing,
(I 1- I 1 ') / I = 0.003 (R 1 / R 2 ) / [(R 1 / R 2 ) +1] · [(R 1 '/ R 2 ) +1]
Will be. Here, since R 1 / R 2 = 1/100 and R 1 ′ / R 2 = 1.003 / 100 is sufficiently small, the rate of change of the shunt current flowing to the superconducting coil 11 side is
(I 1 −I 1 ′) / I≈0.003 (R 1 / R 2 ) = 0.003 × 1/100 = 30 ppm.

超電導コイル11側へ流れる分流電流の変化率と超電導コイル11にて発生する磁場の変化率とが比例関係にあるので、コイル通電電線13の室温側部分を1℃温度上昇させると、超電導コイル11にて発生する磁場は30ppm程度変動(減少)する。コイル通電電線13の室温側部分の全長ではなく、この全長の1/10の部分(可変抵抗体18に相当)のみを1℃温度上昇させると、その1/10部分の電気抵抗の増大も1/10になるので、超電導コイル11の発生磁場も1/10の3ppm程度変動(減少)する。この磁場変動(減少)を更に小さくしたい場合には、温度を変化(上昇)させる部分をより小さな領域にすればよい。 Since the rate of change of the diversion current flowing to the superconducting coil 11 side and the rate of change of the magnetic field generated in the superconducting coil 11 are in a proportional relationship, when the temperature of the room temperature side portion of the coil energized wire 13 is raised by 1 ° C., the superconducting coil 11 The magnetic field generated in the above fluctuates (decreases) by about 30 ppm. If the temperature of only 1/10 of the total length (corresponding to the variable resistor 18) is raised by 1 ° C. instead of the total length of the room temperature side of the coil energizing wire 13, the electric resistance of the 1/10 portion will also increase by 1. Since it becomes 1/10, the generated magnetic field of the superconducting coil 11 also fluctuates (decreases) by about 3 ppm, which is 1/10. If it is desired to further reduce this magnetic field fluctuation (decrease), the portion where the temperature is changed (increased) may be set to a smaller region.

従って、温度可変装置17による可変抵抗体18の温度上昇によって、超電導コイル11の発生磁場をppmオーダーで減少させ、これにより、超電導コイル11の発生磁場の変動をppmオーダーで抑制することが可能になる。 Therefore, the temperature rise of the variable resistor 18 by the temperature variable device 17 reduces the generated magnetic field of the superconducting coil 11 on the order of ppm, which makes it possible to suppress the fluctuation of the generated magnetic field of the superconducting coil 11 on the order of ppm. Become.

また、超電導コイル11の発生磁場が室温変化等によって微小量減少してしまったときには、温度可変装置17により可変抵抗体18の温度を低下(冷却)させることで、コイル通電電線13の電気抵抗が減少して超電導コイル11へ流れる分流電流が増加する。これにより、超電導コイル11の発生磁場を増加させて一定磁場に保持することが可能になる。この場合、温度可変装置17を冷却装置とすればよいが、あるいは、温度可変装置17をヒータ等の加熱装置とし、デフォルトでヒータ等により可変抵抗体18をある程度予め加熱しておき、超電導コイル11の発生磁場を増加させたい場合に加熱量を減少させるようにしてもよい。 Further, when the generated magnetic field of the superconducting coil 11 is slightly reduced by a change in room temperature or the like, the temperature of the variable resistor 18 is lowered (cooled) by the temperature variable device 17, so that the electric resistance of the coil energizing wire 13 is increased. The diversion current that decreases and flows to the superconducting coil 11 increases. This makes it possible to increase the generated magnetic field of the superconducting coil 11 and maintain it at a constant magnetic field. In this case, the temperature variable device 17 may be used as a cooling device, or the temperature variable device 17 may be used as a heating device such as a heater, and the variable resistor 18 is preheated to some extent by a heater or the like by default, and the superconducting coil 11 is used. The amount of heating may be reduced when it is desired to increase the generated magnetic field of.

以上のように構成されたことから、本実施形態によれば、次の効果(1)を奏する。
(1)コイル通電電線13と保護回路15の温度変化に起因する超電導コイル11のppmオーダーの磁場変動を、コイル通電電線13の一部である可変抵抗体18の温度を温度可変装置17により変化させて、その可変抵抗体18の電気抵抗を変更し、超電導コイル11へ流れる分流電流を変更することで抑制する。これにより、超電導コイル11が発生する磁場の安定性を向上させることができる。
Since it is configured as described above, according to the present embodiment, the following effect (1) is obtained.
(1) The temperature variable device 17 changes the magnetic field fluctuation of the superconducting coil 11 on the order of ppm due to the temperature change of the coil energized wire 13 and the protection circuit 15 and the temperature of the variable resistor 18 which is a part of the coil energized wire 13. The electric resistance of the variable resistor 18 is changed, and the shunt current flowing through the superconducting coil 11 is changed to suppress the change. As a result, the stability of the magnetic field generated by the superconducting coil 11 can be improved.

なお、上述の超電導コイル11の発生磁場の変動抑制制御を、電源12の設定電流を調整することで実現する場合には、その電流値を少なくとも7桁以上の範囲で制御する必要があり、困難であることが予想される。 In addition, when the above-mentioned control of suppressing fluctuation of the generated magnetic field of the superconducting coil 11 is realized by adjusting the set current of the power supply 12, it is necessary to control the current value in a range of at least 7 digits or more, which is difficult. Is expected to be.

[B]第2実施形態(図3)
図3は、第2実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図である。この第2実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 3)
FIG. 3 is a circuit diagram showing a configuration of a superconducting magnet device and a control method of the superconducting magnet device according to the second embodiment. In this second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第2実施形態の超電導磁石装置25が第1実施形態と異なる点は、温度可変装置17と同様に機能する温度可変装置27が温度を変化させる対象が、保護回路15の一部である可変抵抗体26である点である。この可変抵抗体26は、温度が変化することで電気抵抗が変化するため、図3では模式的に可変抵抗の記号で示している。 The difference between the superconducting magnet device 25 of the second embodiment and the first embodiment is that the object of the temperature variable device 27, which functions in the same manner as the temperature variable device 17, changes the temperature is a part of the protection circuit 15. The point is that it is a resistor 26. Since the electric resistance of the variable resistor 26 changes as the temperature changes, it is schematically indicated by a variable resistance symbol in FIG.

室温変化等によってコイル通電電線13や保護回路15の電気抵抗が変更されて超電導コイル11の発生磁場が微小量増加してしまったときには、制御装置28が温度可変装置27を制御して可変抵抗体26の温度を低下(冷却)させることで、保護回路15の電気抵抗を減少させて保護回路15へ流れる分流電流を増加させ、超電導コイル11側へ流れる分流電流を減少させる。これにより、超電導コイル11の発生磁場を減少させて一定磁場に保持することが可能になる。 When the electric resistance of the coil energizing wire 13 and the protection circuit 15 is changed due to a change in room temperature or the like and the generated magnetic field of the superconducting coil 11 increases by a minute amount, the control device 28 controls the temperature variable device 27 to control the variable resistor. By lowering (cooling) the temperature of 26, the electric resistance of the protection circuit 15 is reduced, the diversion current flowing through the protection circuit 15 is increased, and the diversion current flowing toward the superconducting coil 11 side is reduced. As a result, the generated magnetic field of the superconducting coil 11 can be reduced and maintained at a constant magnetic field.

また、室温変化等によってコイル通電電線13や保護回路15の電気抵抗が変更されて超電導コイル11の発生磁場が微小量減少してしまったときには、制御装置28が温度可変装置27を制御して可変抵抗体26の温度を上昇(加熱)させることで、保護回路15の電気抵抗を増大させて保護回路15へ流れる分流電流を減少させ、超電導コイル11側へ流れる分流電流を増加させる。これにより、超電導コイル11の発生磁場を増加させて一定磁場に保持することが可能になる。 Further, when the electric resistance of the coil energizing wire 13 and the protection circuit 15 is changed due to a change in room temperature or the like and the generated magnetic field of the superconducting coil 11 is reduced by a minute amount, the control device 28 controls and changes the temperature variable device 27. By raising (heating) the temperature of the resistor 26, the electric resistance of the protection circuit 15 is increased, the diversion current flowing through the protection circuit 15 is reduced, and the diversion current flowing toward the superconducting coil 11 side is increased. This makes it possible to increase the generated magnetic field of the superconducting coil 11 and maintain it at a constant magnetic field.

以上のように構成されたことから、本第2実施形態によれば、次の効果(2)を奏する。
(2)コイル通電電線13と保護回路15の温度変化に起因する超電導コイル11のppmオーダーの磁場変動を、保護回路15の可変抵抗体26の温度を温度可変装置27により変化させてその可変抵抗体26の電気抵抗を変更し、超電導コイル11へ流れる分流電流を変更させることで抑制する。これにより、超電導コイル11が発生する磁場の安定性を向上させることができる。
Since it is configured as described above, according to the second embodiment, the following effect (2) is obtained.
(2) The magnetic field fluctuation on the order of ppm of the superconducting coil 11 caused by the temperature change of the coil energizing wire 13 and the protection circuit 15 is changed by the temperature variable device 27 to change the temperature of the variable resistor 26 of the protection circuit 15, and the variable resistance thereof. It is suppressed by changing the electric resistance of the body 26 and changing the shunt current flowing through the superconducting coil 11. As a result, the stability of the magnetic field generated by the superconducting coil 11 can be improved.

なお、図3に2点鎖線で示すように、コイル通電電線13の一部に第1実施形態の可変抵抗体18を更に設けて、この可変抵抗体18を温度可変装置17により温度変化させてもよい。この場合、超電導コイル11の発生磁場を減少させる際には可変抵抗体18を温度可変装置17により加熱させ、また、超電導コイル11の発生磁場を増加させる際には可変抵抗体26を温度可変装置27により加熱させることで、それぞれ、超電導コイル11の発生磁場を一定に保持することができる。つまり、この場合には、温度可変装置17及び27を共に加熱手段とすることができる。 As shown by the alternate long and short dash line in FIG. 3, the variable resistor 18 of the first embodiment is further provided in a part of the coil energizing electric wire 13, and the temperature of the variable resistor 18 is changed by the temperature variable device 17. May be good. In this case, when the generated magnetic field of the superconducting coil 11 is reduced, the variable resistor 18 is heated by the temperature variable device 17, and when the generated magnetic field of the superconducting coil 11 is increased, the variable resistor 26 is heated by the temperature variable device. By heating with 27, the generated magnetic field of the superconducting coil 11 can be kept constant. That is, in this case, both the temperature variable devices 17 and 27 can be used as the heating means.

また、本第2実施形態においては温度可変装置27による可変抵抗体26の温度変化と、温度可変装置17による可変抵抗体18の温度変化とを同時に実施してもよい。更に、可変抵抗体26に代えて、保護抵抗14を温度可変装置27により温度変化させてもよい。 Further, in the second embodiment, the temperature change of the variable resistor 26 by the temperature variable device 27 and the temperature change of the variable resistor 18 by the temperature variable device 17 may be simultaneously carried out. Further, instead of the variable resistor 26, the protection resistor 14 may be temperature-changed by the temperature variable device 27.

[C]第3実施形態(図4)
図4は、第3実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図である。この第4実施形態において第1及び第2実施形態と同様な部分については、第1及び第2実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third Embodiment (Fig. 4)
FIG. 4 is a circuit diagram showing a configuration of a superconducting magnet device and a control method of the superconducting magnet device according to the third embodiment. In this fourth embodiment, the same parts as those in the first and second embodiments are designated by the same reference numerals as those in the first and second embodiments to simplify or omit the description.

本第3実施形態の超電導磁石装置30が第1実施形態と異なる点は、超電導コイル11が発生する磁場を計測する磁場センサ31を備え、温度可変装置17の制御装置32が、磁場センサ31による磁場計測値が目標値になるように温度可変装置17を制御して、コイル通電電線13の可変抵抗体18の温度を変化させてその可変抵抗体18の電気抵抗を変更するよう構成された点である。 The superconducting magnet device 30 of the third embodiment is different from the first embodiment in that it includes a magnetic field sensor 31 for measuring the magnetic field generated by the superconducting coil 11, and the control device 32 of the temperature variable device 17 is based on the magnetic field sensor 31. A point configured to control the temperature variable device 17 so that the magnetic field measurement value becomes a target value, change the temperature of the variable resistor 18 of the coil energizing wire 13, and change the electric resistance of the variable resistor 18. Is.

磁場センサ31は、超電導コイル11による発生磁場の磁場強度が高い箇所、例えば超電導コイル11の近傍に設置される。また、超電導コイル11自体による磁場変動が想定される場合には、複数の磁場センサ31による磁場計測が有効である。制御装置32は、磁場センサ31による磁場計測値の目標値に対する変化がゼロになるように、温度可変装置17による可変抵抗体18の温度変化量を算出し、この可変抵抗体18の電気抵抗値をフィードバック制御する。これにより、超電導コイル11の磁場変動が抑制される。 The magnetic field sensor 31 is installed at a place where the magnetic field strength of the magnetic field generated by the superconducting coil 11 is high, for example, in the vicinity of the superconducting coil 11. Further, when the magnetic field fluctuation due to the superconducting coil 11 itself is assumed, the magnetic field measurement by the plurality of magnetic field sensors 31 is effective. The control device 32 calculates the amount of temperature change of the variable resistor 18 by the temperature variable device 17 so that the change of the magnetic field measurement value by the magnetic field sensor 31 with respect to the target value becomes zero, and the electric resistance value of the variable resistor 18 Feedback control. As a result, the magnetic field fluctuation of the superconducting coil 11 is suppressed.

また、磁場センサ31により計測された磁場計測値を、1点鎖線で示す温度可変装置27の制御装置33に送信し、この制御装置33が、磁場センサ31による磁場計測値の目標値に対する偏差がゼロになるように、温度可変装置27による可変抵抗体26の温度変化量を算出し、この可変抵抗体26の電気抵抗値をフィードバック制御して、超電導コイル11の磁場変動を抑制してもよい。 Further, the magnetic field measurement value measured by the magnetic field sensor 31 is transmitted to the control device 33 of the temperature variable device 27 indicated by the one-point chain line, and the control device 33 causes the deviation of the magnetic field measurement value by the magnetic field sensor 31 from the target value. The amount of temperature change of the variable resistor 26 by the temperature variable device 27 may be calculated so as to be zero, and the electric resistance value of the variable resistor 26 may be feedback-controlled to suppress the magnetic field fluctuation of the superconducting coil 11. ..

なお、この第3実施形態においても、温度可変装置27による可変抵抗体26の温度変化と、温度可変装置17による可変抵抗体18の温度変化とを同時に実施してもよい。 Also in this third embodiment, the temperature change of the variable resistor 26 by the temperature variable device 27 and the temperature change of the variable resistor 18 by the temperature variable device 17 may be simultaneously carried out.

以上のように構成されたことから、本第3実施形態によれば、第1及び第2実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(3)を奏する。 Based on the above configuration, according to the third embodiment, the effects (1) and (2) of the first and second embodiments are obtained, and the following effect (3) is obtained. Play.

(3)温度可変装置27の制御装置32は、磁場センサ31が計測した磁場が目標値になるように温度可変装置17を制御して、コイル通電電線13の可変抵抗体18の温度を変化させ、その可変抵抗体18の電気抵抗を変更する。また、温度可変装置27の制御装置33は、磁場センサ31が計測した磁場が目標値になるように温度可変装置27を制御して、保護回路15の可変抵抗体26の温度を変化させ、その可変抵抗体26の電気抵抗を変更する。これらにより、超電導コイル11の磁場変動を抑制して超電導コイル11の磁場を安定化させる制御を自動で行なうことができる。 (3) The control device 32 of the temperature variable device 27 controls the temperature variable device 17 so that the magnetic field measured by the magnetic field sensor 31 becomes a target value, and changes the temperature of the variable resistor 18 of the coil energizing electric wire 13. , The electrical resistance of the variable resistor 18 is changed. Further, the control device 33 of the temperature variable device 27 controls the temperature variable device 27 so that the magnetic field measured by the magnetic field sensor 31 becomes a target value, and changes the temperature of the variable resistor 26 of the protection circuit 15. The electric resistance of the variable resistor 26 is changed. As a result, it is possible to automatically control the fluctuation of the magnetic field of the superconducting coil 11 to stabilize the magnetic field of the superconducting coil 11.

このように超電導コイル11の発生磁場を直接計測して制御するので、電源12からの供給電流そのものによる磁場の不安定性、または超電導コイル11自体に起因する磁場の不安定性を含めて、超電導コイル11の磁場の安定化を図ることができる。 Since the generated magnetic field of the superconducting coil 11 is directly measured and controlled in this way, the superconducting coil 11 includes the instability of the magnetic field due to the current supplied from the power supply 12 itself or the instability of the magnetic field caused by the superconducting coil 11 itself. It is possible to stabilize the magnetic field of.

[D]第4実施形態(図5)
図5は、第4実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図である。この第4実施形態において第1及び第3実施形態と同様な部分については、第1及び第3実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth Embodiment (FIG. 5)
FIG. 5 is a circuit diagram showing a configuration of a superconducting magnet device and a control method of the superconducting magnet device according to the fourth embodiment. In the fourth embodiment, the same parts as those in the first and third embodiments are designated by the same reference numerals as those in the first and third embodiments to simplify or omit the description.

本第4実施形態の超電導磁石装置40では、温度可変装置17は、コイル通電電線13における真空容器41外の室温部Aに存在する室温部側通電電線45の温度を変化させて、この室温部側通電電線45の電気抵抗を変更させるよう構成されている。 In the superconducting magnet device 40 of the fourth embodiment, the temperature variable device 17 changes the temperature of the room temperature portion side energizing wire 45 existing in the room temperature portion A outside the vacuum vessel 41 in the coil energizing wire 13 to change the room temperature portion. It is configured to change the electrical resistance of the side energizing wire 45.

超電導コイル11は、断熱のための真空容器41に内蔵され、この真空容器41内で冷凍機42により冷却される。つまり、冷凍機42の冷却部は、超電導コイル11との間に配置された熱伝導率の高い伝熱板43を介して真空中で超電導コイル11を冷却する。また、真空容器41内には、超電導コイル11を内包すると共に冷凍機42により冷却される輻射シールド44が設けられ、この輻射シールド44により超電導コイル11への熱侵入量が低減される。 The superconducting coil 11 is built in a vacuum container 41 for heat insulation, and is cooled by the refrigerator 42 in the vacuum container 41. That is, the cooling unit of the refrigerator 42 cools the superconducting coil 11 in a vacuum via a heat transfer plate 43 having a high thermal conductivity arranged between the refrigerator 42 and the superconducting coil 11. Further, the vacuum vessel 41 is provided with a radiant shield 44 that includes the superconducting coil 11 and is cooled by the refrigerator 42, and the radiant shield 44 reduces the amount of heat invading the superconducting coil 11.

電源12は、真空容器41外の室温部Aに設置される。従って、この電源12及び超電導コイル11に接続されるコイル通電電線13は、室温部Aから真空容器41内の低温部Bに導入される。電源12からの電流は、電源12、保護回路15及び遮断器16等で構成される回路から、コイル通電電線13における室温部側通電電線45及び低温部側通電電線46を順次経て、超電導コイル11へ供給される。ここで、室温部側通電電線45は、コイル通電電線13における真空容器41外の室温部Aに存在する領域であり、低温部側通電電線46は、コイル通電電線13における真空容器41内の低温部Bに存在する領域である。 The power supply 12 is installed in the room temperature portion A outside the vacuum vessel 41. Therefore, the coil energizing electric wire 13 connected to the power supply 12 and the superconducting coil 11 is introduced from the room temperature portion A to the low temperature portion B in the vacuum vessel 41. The current from the power supply 12 is passed through the circuit composed of the power supply 12, the protection circuit 15, the circuit breaker 16 and the like, the room temperature side energizing wire 45 and the low temperature part side energizing wire 46 in the coil energizing wire 13, and then the superconducting coil 11 Is supplied to. Here, the room temperature portion side energizing electric wire 45 is a region existing in the room temperature portion A outside the vacuum container 41 in the coil energizing electric wire 13, and the low temperature portion side energizing electric wire 46 is the low temperature in the vacuum container 41 in the coil energizing electric wire 13. This is a region existing in part B.

磁場センサ31により計測された超電導コイル11の発生磁場の計測値は、温度可変装置17の制御装置32へ送信される。この制御装置32は、磁場センサ31による磁場計測値が目標値になるように温度可変装置17を制御して、コイル通電電線13の室温部側通電電線45の温度を変化させ、その室温部側通電電線45の電気抵抗を変更する。これにより、超電導コイル11が発生する磁場の変動を抑制することが可能になる。 The measured value of the generated magnetic field of the superconducting coil 11 measured by the magnetic field sensor 31 is transmitted to the control device 32 of the temperature variable device 17. The control device 32 controls the temperature variable device 17 so that the magnetic field measurement value by the magnetic field sensor 31 becomes a target value, changes the temperature of the room temperature side energizing wire 45 of the coil energizing wire 13, and changes the temperature of the room temperature side. The electric resistance of the energizing wire 45 is changed. This makes it possible to suppress fluctuations in the magnetic field generated by the superconducting coil 11.

以上のよう構成されたことから、本第4実施形態によれば、第1及び第3実施形態の効果(1)及び(3)と同様な効果を奏するほか、次の効果(4)を奏する。 Based on the above configuration, according to the fourth embodiment, in addition to the same effects as the effects (1) and (3) of the first and third embodiments, the following effect (4) is obtained. ..

(4)コイル通電電線13における真空容器41外の室温部Aに存在する室温部側通電電線45を温度可変装置17により温度変化させる構成である。このため、室温部側通電電線45の温度変化が冷凍機42の熱負荷にならず、従って、冷凍機42の仕様等を変更する必要がない利点があると共に、超電導磁石装置40の稼働を継続した状態で温度可変装置17、制御装置32及び磁場センサ31を増設することができる。 (4) The temperature of the room temperature side energizing wire 45 existing in the room temperature part A outside the vacuum container 41 of the coil energizing wire 13 is changed by the temperature variable device 17. Therefore, there is an advantage that the temperature change of the energizing wire 45 on the room temperature side does not become a heat load of the refrigerator 42, and therefore it is not necessary to change the specifications of the refrigerator 42, and the operation of the superconducting magnet device 40 is continued. In this state, the temperature variable device 17, the control device 32, and the magnetic field sensor 31 can be added.

[E]第5実施形態(図6)
図6は、第5実施形態に係る超電導磁石装置および超電導磁石装置の制御方法の構成を示す回路図である。この第5実施形態において第1、第3及び第4実施形態と同様な部分については、これらの第1、第3及び第4実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth Embodiment (Fig. 6)
FIG. 6 is a circuit diagram showing a configuration of a superconducting magnet device and a control method of the superconducting magnet device according to the fifth embodiment. In this fifth embodiment, the same parts as those in the first, third and fourth embodiments are designated by the same reference numerals as those in the first, third and fourth embodiments to simplify or omit the description. To do.

本第5実施形態の超電導磁石装置50が第4実施形態と異なる点は、制御装置32により制御される温度可変装置17がコイル通電電線13における真空容器41内の低温部Bに存在する低温部側通電電線46の温度を変化させて、その低温部側通電電線46の電気抵抗を変更させるよう構成された点である。 The difference between the superconducting magnet device 50 of the fifth embodiment and the fourth embodiment is that the temperature variable device 17 controlled by the control device 32 exists in the low temperature section B in the vacuum vessel 41 of the coil energized electric wire 13. This is a point configured to change the temperature of the side energizing electric wire 46 to change the electric resistance of the low temperature portion side energizing electric wire 46.

つまり、磁場センサ31により計測された超電導コイル11の発生磁場の計測値を受信した温度可変装置17の制御装置32は、磁場センサ31による磁場計測値が目標値になるように温度可変装置17を制御する。これにより、コイル通電電線13の低温部側通電電線46の温度が変化してその低温部側通電電線46の電気抵抗が変更され、超電導コイル11が発生する磁場の変動を抑制することが可能になる。 That is, the control device 32 of the temperature variable device 17 that has received the measured value of the generated magnetic field of the superconducting coil 11 measured by the magnetic field sensor 31 sets the temperature variable device 17 so that the magnetic field measured value by the magnetic field sensor 31 becomes a target value. Control. As a result, the temperature of the low temperature portion side energizing wire 46 of the coil energizing wire 13 changes, the electric resistance of the low temperature portion side energizing wire 46 is changed, and it is possible to suppress fluctuations in the magnetic field generated by the superconducting coil 11. Become.

以上のように構成されたことから、本第5実施形態によれば、第1及び第3実施形態の効果(1)及び(3)と同様な効果を奏するほか、次の効果(5)を奏する。 Based on the above configuration, according to the fifth embodiment, the effects (1) and (3) of the first and third embodiments are obtained, and the following effect (5) is obtained. Play.

(5)真空容器41内の低温部Bに存在する低温部側通電電線46は、冷却状態にあるため室温部側通電電線45よりも電気抵抗が低く、そのため、断面積が室温部側通電電線45よりも小さく、熱容量が小さい。更に、低温部側通電電線46は、真空容器41内に設置されるため断熱性が良好で、温度可変装置17により温度制御されたときに熱の出入が少なく、効率良く温度変化する。これらのことから、温度可変装置17が低温部側通電電線46の温度を変化させる際の熱量を抑えることができ、且つ温度変化の応答性が高い。従って、温度可変装置17が低温部側通電電線46の温度を変化させて超電導コイル11が発生する磁場の変動を抑制する際の制御性に優れる。特に、磁場の変動周期が短い短時間の磁場変動を抑制する制御性に優れている。 (5) The low temperature part side energizing wire 46 existing in the low temperature part B in the vacuum vessel 41 has a lower electric resistance than the room temperature part side energizing wire 45 because it is in a cooled state, and therefore the cross-sectional area is the room temperature part side energizing electric wire. It is smaller than 45 and has a small heat capacity. Further, since the low temperature portion side energizing electric wire 46 is installed in the vacuum container 41, it has good heat insulating properties, and when the temperature is controlled by the temperature variable device 17, heat does not flow in and out, and the temperature changes efficiently. From these facts, it is possible to suppress the amount of heat when the temperature variable device 17 changes the temperature of the low temperature portion side energizing electric wire 46, and the responsiveness to the temperature change is high. Therefore, the temperature variable device 17 is excellent in controllability when the temperature of the low temperature portion side energizing electric wire 46 is changed to suppress the fluctuation of the magnetic field generated by the superconducting coil 11. In particular, it has excellent controllability to suppress short-term magnetic field fluctuations with a short magnetic field fluctuation cycle.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and their replacements and changes can be made. Is included in the scope and gist of the invention, and is also included in the invention described in the claims and the equivalent scope thereof.

例えば、第4及び第5実施形態では、冷凍機42が2段冷凍機で、真空容器41内に輻射シールド44が配置されたものを述べたが、冷凍機42が単段冷凍機であってもよく、また、輻射シールド44が存在しないものでもよい。更に冷凍機42ではなく、液体ヘリウムや液体窒素などの冷媒を用いて超電導コイル11を冷却する構成の超電導磁石装置であってもよい。 For example, in the fourth and fifth embodiments, the refrigerator 42 is a two-stage refrigerator and the radiation shield 44 is arranged in the vacuum container 41, but the refrigerator 42 is a single-stage refrigerator. Also, the radiation shield 44 may not be present. Further, instead of the refrigerator 42, the superconducting magnet device may be configured to cool the superconducting coil 11 by using a refrigerant such as liquid helium or liquid nitrogen.

また、第1〜第5実施形態における超電導コイルが高温超電導コイルである場合に、各実施形態は特に有効である。即ち、高温超電導コイルは、接続抵抗が大きいために永久電流モードでは電流及び磁場の減衰が大きくなってしまい、磁場の安定性に課題がある。このため、高温超電導コイルを用いた超電導磁石装置では、永久電流モードを用いないで電源駆動方式が用いられることから、高温超電導コイルを用いた超電導磁石装置において、第1〜第5実施形態を適用することで磁場の安定性を向上させることができる。 Further, each embodiment is particularly effective when the superconducting coil in the first to fifth embodiments is a high-temperature superconducting coil. That is, since the high-temperature superconducting coil has a large connection resistance, the attenuation of the current and the magnetic field becomes large in the permanent current mode, and there is a problem in the stability of the magnetic field. Therefore, in the superconducting magnet device using the high-temperature superconducting coil, the power supply drive method is used without using the permanent current mode. Therefore, the first to fifth embodiments are applied to the superconducting magnet device using the high-temperature superconducting coil. By doing so, the stability of the magnetic field can be improved.

10…超電導磁石装置、11…超電導コイル、12…電源、13…コイル通電電線、14…保護抵抗、15…保護回路、17…温度可変装置、18…可変抵抗体、21…制御装置、25…超電導磁石装置、26…可変抵抗体、27…温度可変装置、30…超電導磁石装置、31…磁場センサ、32…制御装置、40…超電導磁石装置、41…真空容器、42…冷凍機、45…室温部側通電電線、46…低温部側通電電線、50…超電導磁石装置、A…室温部、B…低温部 10 ... Superconducting magnet device, 11 ... Superconducting coil, 12 ... Power supply, 13 ... Coil energizing wire, 14 ... Protection resistance, 15 ... Protection circuit, 17 ... Temperature variable device, 18 ... Variable resistor, 21 ... Control device, 25 ... Superconducting magnet device, 26 ... Variable resistor, 27 ... Temperature variable device, 30 ... Superconducting magnet device, 31 ... Magnetic field sensor, 32 ... Control device, 40 ... Superconducting magnet device, 41 ... Vacuum container, 42 ... Refrigerator, 45 ... Room temperature side energized wire, 46 ... Low temperature side energized wire, 50 ... Superconducting magnet device, A ... Room temperature, B ... Low temperature

Claims (5)

超電導コイルと、この超電導コイルを励磁するための電源と、前記超電導コイルを前記電源に電気的に接続するコイル通電電線と、前記超電導コイルに並列に且つ前記電源に直列に接続されて保護抵抗を含む保護回路と、を有する超電導磁石装置において、
前記コイル通電電線の一部及び前記保護回路の一部の少なくとも一方の温度を変化させる温度可変装置を備えて構成されたことを特徴とする超電導磁石装置。
A superconducting coil, a power source for exciting the superconducting coil, a coil energizing wire for electrically connecting the superconducting coil to the power source, and a protective resistor connected in parallel with the superconducting coil and in series with the power source. In a superconducting magnet device having a protection circuit, including
A superconducting magnet device including a temperature variable device that changes the temperature of at least one of a part of the coil energizing electric wire and a part of the protection circuit.
前記超電導コイルが発生する磁場を計測する磁場センサを備え、
温度可変装置の制御装置は、前記磁場センサが計測した磁場が目標値になるように前記温度可変装置を制御して、前記コイル通電電線の一部及び保護回路の一部の少なくとも一方の温度を変化させるよう構成されたことを特徴とする請求項1に記載の超電導磁石装置。
A magnetic field sensor for measuring the magnetic field generated by the superconducting coil is provided.
The control device of the temperature variable device controls the temperature variable device so that the magnetic field measured by the magnetic field sensor becomes a target value, and controls the temperature of at least one of a part of the coil energizing wire and a part of the protection circuit. The superconducting magnet device according to claim 1, wherein the superconducting magnet device is configured to be changed.
前記超電導コイルが真空容器に内蔵され、この真空容器内で前記超電導コイルが冷凍機により冷却され、電源が前記真空容器外の室温部に設置されることで前記コイル通電電線が前記真空容器内の低温部に導入され、
温度可変装置は、前記コイル通電電線の前記室温部に存在する一部の温度を変化させるよう構成されたことを特徴とする請求項1または2に記載の超電導磁石装置。
The superconducting coil is built in a vacuum vessel, the superconducting coil is cooled by a refrigerator in the vacuum vessel, and a power source is installed in a room temperature portion outside the vacuum vessel so that the coil energizing wire is placed in the vacuum vessel. Introduced in low temperature areas,
The superconducting magnet device according to claim 1 or 2, wherein the temperature variable device is configured to change the temperature of a part of the coil energized electric wire existing in the room temperature portion.
前記超電導コイルが真空容器に内蔵され、この真空容器内で前記超電導コイルが冷凍機により冷却され、電源が前記真空容器外の室温部に設置されることで前記コイル通電電線が前記真空容器内の低温部に導入され、
温度可変装置は、前記コイル通電電線の前記低温部に存在する一部の温度を変化させるよう構成されたことを特徴とする請求項1または2に記載の超電導磁石装置。
The superconducting coil is built in a vacuum vessel, the superconducting coil is cooled by a refrigerator in the vacuum vessel, and a power source is installed in a room temperature portion outside the vacuum vessel so that the coil energizing wire is placed in the vacuum vessel. Introduced in low temperature areas,
The superconducting magnet device according to claim 1 or 2, wherein the temperature variable device is configured to change the temperature of a part of the coil energized electric wire existing in the low temperature portion.
超電導コイルと、この超電導コイルを励磁するための電源と、前記超電導コイルを前記電源に電気的に接続するコイル通電電線と、前記超電導コイルに並列に且つ前記電源に直列に接続されて保護抵抗を含む保護回路と、を有する超電導磁石装置の制御方法において、
前記超電導コイルが発生する磁場を磁場センサで計測し、
この磁場センサが計測した磁場が目標値になるように温度可変装置を制御して、前記コイル通電電線の一部及び前記保護回路の一部の少なくとも一方の温度を変化させることを特徴とする超電導磁石装置の制御方法。
A superconducting coil, a power source for exciting the superconducting coil, a coil energizing wire for electrically connecting the superconducting coil to the power source, and a protective resistor connected in parallel with the superconducting coil and in series with the power source. In the control method of the superconducting magnet device having a protection circuit including
The magnetic field generated by the superconducting coil is measured by a magnetic field sensor.
A superconducting magnet characterized by controlling a temperature variable device so that the magnetic field measured by the magnetic field sensor becomes a target value to change the temperature of at least one of a part of the coil energizing wire and a part of the protection circuit. How to control the magnet device.
JP2019122765A 2019-07-01 2019-07-01 Superconducting magnet device and control method for superconducting magnet device Active JP7313933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019122765A JP7313933B2 (en) 2019-07-01 2019-07-01 Superconducting magnet device and control method for superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019122765A JP7313933B2 (en) 2019-07-01 2019-07-01 Superconducting magnet device and control method for superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2021009914A true JP2021009914A (en) 2021-01-28
JP7313933B2 JP7313933B2 (en) 2023-07-25

Family

ID=74199672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019122765A Active JP7313933B2 (en) 2019-07-01 2019-07-01 Superconducting magnet device and control method for superconducting magnet device

Country Status (1)

Country Link
JP (1) JP7313933B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501332Y1 (en) * 1970-09-30 1975-01-14
JPS57141904A (en) * 1981-02-27 1982-09-02 Hitachi Ltd Power source controlling device of super conduction device
JPS59158505A (en) * 1983-02-28 1984-09-08 Hitachi Ltd Superconductive equipment
JPS62169312A (en) * 1986-01-20 1987-07-25 Sumitomo Electric Ind Ltd Superconductive electromagnet
JPH05144639A (en) * 1991-11-20 1993-06-11 Hitachi Ltd Superconducting device
JPH06120573A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Exciting device for superconductive coil
JP2008020266A (en) * 2006-07-11 2008-01-31 National Institute For Materials Science Superconducting magnet system
JP2009158680A (en) * 2007-12-26 2009-07-16 Kobe Steel Ltd Superconducting coil apparatus
WO2011074092A1 (en) * 2009-12-17 2011-06-23 株式会社日立製作所 Superconducting magnet device, and method of imparting electric current into superconducting magnet
JP2018125338A (en) * 2017-01-30 2018-08-09 株式会社日立製作所 Superconducting magnet device and excitation method of superconducting magnet device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501332Y1 (en) * 1970-09-30 1975-01-14
JPS57141904A (en) * 1981-02-27 1982-09-02 Hitachi Ltd Power source controlling device of super conduction device
JPS59158505A (en) * 1983-02-28 1984-09-08 Hitachi Ltd Superconductive equipment
JPS62169312A (en) * 1986-01-20 1987-07-25 Sumitomo Electric Ind Ltd Superconductive electromagnet
JPH05144639A (en) * 1991-11-20 1993-06-11 Hitachi Ltd Superconducting device
JPH06120573A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Exciting device for superconductive coil
JP2008020266A (en) * 2006-07-11 2008-01-31 National Institute For Materials Science Superconducting magnet system
JP2009158680A (en) * 2007-12-26 2009-07-16 Kobe Steel Ltd Superconducting coil apparatus
WO2011074092A1 (en) * 2009-12-17 2011-06-23 株式会社日立製作所 Superconducting magnet device, and method of imparting electric current into superconducting magnet
JP2018125338A (en) * 2017-01-30 2018-08-09 株式会社日立製作所 Superconducting magnet device and excitation method of superconducting magnet device

Also Published As

Publication number Publication date
JP7313933B2 (en) 2023-07-25

Similar Documents

Publication Publication Date Title
US6147844A (en) Quench protection for persistant superconducting magnets for magnetic resonance imaging
JP4688079B2 (en) System and method for quenching and overcurrent protection of superconductors
JP5964058B2 (en) Superconducting magnet assembly
JP4356080B2 (en) Magnetic field generator for MRI
JP4896620B2 (en) Superconducting magnet
US8174803B2 (en) System for creating a magnetic field via a superconducting magnet
US20230137679A1 (en) Superconducting magnet system and quench protection circuit thereof
US20150111753A1 (en) Superconducting magnet apparatus
EP3712911A1 (en) Superconducting current lead and device arrangement
US9638774B2 (en) Discharge controlled superconducting magnet
US6653835B2 (en) Magnetic resonance tomograph with a temperature controller for thermally highly sensitive components
JP2021009914A (en) Superconducting magnet device and control method thereof
JP6983629B2 (en) How to operate the superconducting magnet device and the superconducting magnet device
WO2015111201A1 (en) Superconducting magnet device
JP6860513B2 (en) Superconducting magnet device
JP2019160818A (en) High-temperature superconducting magnet device, and operation control device and method thereof
JP7110035B2 (en) Superconducting magnet device
JP2020068293A (en) Superconducting magnet device
JP2021503175A (en) Superconducting magnet assembly
JP2018022791A (en) Operational method for superconducting magnet device and superconducting magnet device
JP3358958B2 (en) Thermal control type permanent current switch
US1121979A (en) Thermo-electric regulator.
JP2016119431A (en) Superconducting magnet device
JP2016051833A (en) Superconducting electromagnet device
RU2630133C2 (en) Method of operation of arc electric furnace and melting unit equipped with the operated this method of the arc electric furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230712

R150 Certificate of patent or registration of utility model

Ref document number: 7313933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150