JPS59156962A - Manufacture of alumina sintered substrate - Google Patents

Manufacture of alumina sintered substrate

Info

Publication number
JPS59156962A
JPS59156962A JP58029685A JP2968583A JPS59156962A JP S59156962 A JPS59156962 A JP S59156962A JP 58029685 A JP58029685 A JP 58029685A JP 2968583 A JP2968583 A JP 2968583A JP S59156962 A JPS59156962 A JP S59156962A
Authority
JP
Japan
Prior art keywords
alumina
substrate
alumina sintered
spherical
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58029685A
Other languages
Japanese (ja)
Inventor
洋一 福島
三原 敏弘
多木 宏光
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58029685A priority Critical patent/JPS59156962A/en
Publication of JPS59156962A publication Critical patent/JPS59156962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルミナ焼結基板の製造方法に関するもので、
特に表面が平滑なアルミナ焼結基板の製造方法を提供す
るものである。本発明で得られるアルミナ焼結基板は蒸
着膜、スパッタ膜等の薄膜用基板として有用なものであ
る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing an alumina sintered substrate.
In particular, the present invention provides a method for manufacturing an alumina sintered substrate with a smooth surface. The alumina sintered substrate obtained by the present invention is useful as a substrate for thin films such as vapor deposited films and sputtered films.

従来例の構成とその問題点 エレクトロニクス機器の小型化高性能化に伴い用いられ
る回路素子の薄膜化が試みられ、いくつかの薄膜素子が
実用化されている。これらの薄膜素子の形成に不可欠な
薄膜用基板としては、一般にガラス基板が用いられてい
る。しかし、ガラス基板は耐熱性に劣り、1000℃以
上の高温での薄膜形成を必要とする例えばチタン酸バリ
ウム。
2. Description of the Related Art Conventional configurations and their problems With the miniaturization and higher performance of electronic equipment, attempts have been made to reduce the thickness of circuit elements used, and several thin film elements have been put into practical use. A glass substrate is generally used as a thin film substrate essential for forming these thin film elements. However, glass substrates have poor heat resistance, such as barium titanate, which requires thin film formation at a high temperature of 1000°C or higher.

チタン酸鉛等の薄膜形成には、基板として用いられない
0これはグレーズ処理によシ表面を平滑化したアルミナ
焼結基板にも共通した欠点である。
It cannot be used as a substrate for forming thin films such as lead titanate. This is a drawback common to alumina sintered substrates whose surfaces are smoothed by glazing.

従来1000℃以上の高耐熱性を有する薄膜用基板とし
てはアルミナ焼結基板が用いられており、電気絶縁性に
優れ、機械的強度の大きい基板材料である。しかしなが
ら、アルミナ純度96%程度のアルミナ焼結基板では表
面平滑性が中心線平均粗さで0.6〜1μmであって、
1μm以下の厚みの薄膜を形成する基板としては用いら
れない。高耐熱性を有し、表面平滑性の優れた基板材料
としてはサファイア基板や表面研摩処理を施したアルミ
ナ焼結基板があるが、これらコストの高い基板材料であ
る。
Conventionally, an alumina sintered substrate has been used as a thin film substrate having high heat resistance of 1000° C. or higher, and is a substrate material with excellent electrical insulation and high mechanical strength. However, in an alumina sintered substrate with an alumina purity of about 96%, the surface smoothness is 0.6 to 1 μm in terms of center line average roughness.
It cannot be used as a substrate for forming a thin film with a thickness of 1 μm or less. As substrate materials having high heat resistance and excellent surface smoothness, there are sapphire substrates and alumina sintered substrates subjected to surface polishing treatment, but these substrate materials are expensive.

発明の目的 本発明は表面平滑性に優れかつ安価なアルミナ焼結基板
を製造する方法を提供することを目的とするものである
OBJECTS OF THE INVENTION The object of the present invention is to provide a method for manufacturing an inexpensive alumina sintered substrate with excellent surface smoothness.

発明の構成 本発明はアルミナ原料粉末と酸化マグネシウムとの混合
粉末を有機バインダーと混合してスラリーを作製してか
ら空気中において加熱焼成するアルミナ焼結基板の製造
方法において、アルミナ原料粉末としてその粒子の形状
が球状であるものを使用することによって、表面平滑性
のよいアルミナ焼結基板を作製できるものである。
Structure of the Invention The present invention provides a method for manufacturing an alumina sintered substrate in which a slurry is prepared by mixing a mixed powder of alumina raw material powder and magnesium oxide with an organic binder, and then the slurry is heated and fired in air. By using a material having a spherical shape, an alumina sintered substrate with good surface smoothness can be produced.

本発明による表面平滑性の優れたアルミナ焼結基板はア
ルミナ原料粉末と有機バインダーが均一に混合したグリ
ーンシートにより実現されたものであって、上記グリー
ンシート中のアルミナ原料粉末と有機バインダーの分散
性はアルミナ原料粉末の形状により左右され、特に球状
の粉末粒子を用いることによりアルミナ原料粉末および
有機バインダーが均一に分散したグリーンシートが得ら
れることが見い出されたのである。球状粒子が均一に分
散したアルミナグリーンシートは、これを加熱焼成する
際、有機バインダーが分解した後も空孔分布が均一で、
アルミナ粒子の固相反応が均一に進行し、異常粒成長や
表面粒子の局部的な陥没等も起こりにくくなるのである
The alumina sintered substrate with excellent surface smoothness according to the present invention is realized by a green sheet in which alumina raw material powder and an organic binder are uniformly mixed, and the dispersibility of the alumina raw material powder and organic binder in the green sheet is It has been found that green sheets in which the alumina raw powder and organic binder are uniformly dispersed can be obtained by using spherical powder particles, in particular, depending on the shape of the alumina raw powder. Alumina green sheets with uniformly dispersed spherical particles have a uniform pore distribution even after the organic binder decomposes when heated and fired.
The solid phase reaction of the alumina particles proceeds uniformly, making it difficult for abnormal grain growth and local depression of surface particles to occur.

本発明におけるアルミナグリーンシートの空気中におけ
る加熱焼成では1600’Cより低い温度で加熱処理す
ると焼結体のかさ密度が3.9q/cηλ以下となり好
ましくない。一方高い温度で熱処理すると焼結体の表面
平滑性が損なわれ、1600℃より高い温度の熱処理で
は焼結体表面の中心線平均粗さは0.06μmより犬き
くなって1500℃よりも低い温度での焼成と同じく好
丑しくない。
When the alumina green sheet of the present invention is fired in air at a temperature lower than 1600'C, the bulk density of the sintered body becomes 3.9q/cηλ or less, which is not preferable. On the other hand, heat treatment at high temperatures impairs the surface smoothness of the sintered body, and heat treatment at temperatures higher than 1600°C causes the center line average roughness of the sintered body surface to become more than 0.06 μm, and at temperatures lower than 1500°C. It is not unpleasant like baking.

実施例の説明 以下本発明について実施例により具体的に説明する。Description of examples The present invention will be specifically explained below using examples.

実施例1 原料粉末の形状として球形で形状がよくそろっているも
の、角張った形状で比較的そろっているもの、球状のも
のや角張ったもの、その他複雑な形状の粒子が混在した
もの、球状のものや角張ったものと綿状のものとが混在
したものの4種類のアルミナ粉末でそれぞれ純度99.
9%、平均粒径0.4μmの原料粉末を用意した0この
4種類のアルミナ粉末997.5gに、それぞれ99.
9%、平均粒径0.19μmの酸化マグネンウムを2,
5q添加し、それぞれの混合原料粉末にn−ブタノール
とメタノールの等景況合液を4009加え、ジブチルフ
タレー1−80 g 、ポリビニルブチラール脂120
qを添加し、弗素樹脂ポット中で96時間の混合を行な
った。得られたそれぞれ4種類のス:y’)−を、18
8μm厚のポリエステルフィルム上にドクターブレード
を用いて塗布することにより、0.35藷の厚みのグリ
ーンシートを形成した04種類のグリーンシートの表面
電子顕微鏡写真を第1図〜第4図に示す。第1図は球形
で形状がよくそろっている原料粉末から得られたグl)
 −ンシートの表面であり、第2図は角張った形状で比
較的そろっている原料粉末から得られたグリーンシート
の表面、第3図は球状のものや角張ったものその他複雑
な形状の粒子が混在した不ぞろいの原料粉末から得られ
たグリーンシートの表面、ならびに第4図は球状のもの
や角張ったものと綿状のものとが混在した原料粉末から
得られたグリーンシートの表面をそれぞれ示したもので
ある。
Example 1 The shape of the raw material powder is spherical and well-shaped, angular and relatively uniform, spherical, angular, and other complex-shaped particles mixed together, and spherical. Four types of alumina powder, each with a purity of 99.
99.9% each was added to 997.5g of these four types of alumina powder prepared using raw material powder with an average particle size of 0.4μm.
9% magnesium oxide with an average particle size of 0.19 μm.
5q was added, and 4009 g of a liquid mixture of n-butanol and methanol was added to each mixed raw material powder, and 1-80 g of dibutyl phthalate and 120 g of polyvinyl butyral fat were added.
q was added and mixed for 96 hours in a fluororesin pot. Each of the four types of S:y')- obtained was
Figures 1 to 4 show surface electron micrographs of 04 types of green sheets, which were formed by coating onto an 8 μm thick polyester film using a doctor blade to form green sheets with a thickness of 0.35 mm. Figure 1 shows a graphite obtained from raw material powder that is spherical and well-shaped.
Figure 2 shows the surface of a green sheet obtained from raw material powder that has an angular shape and is relatively uniform. Figure 3 shows a mixture of spherical, angular, and other complex-shaped particles. Figure 4 shows the surface of a green sheet obtained from raw material powder that is irregularly shaped, and Figure 4 shows the surface of a green sheet obtained from raw material powder that has a mixture of spherical, angular, and cotton-like powders. It is.

第1図に見られる如く、球状の粉末を用いた場合には、
ち密で均一な表面を有したグリーンシートが得られてお
り乾燥時の亀裂も生じ難いものである。一方、第2図〜
第4図に見られるように、球状以外の形状の粉末を原料
粉末とした場合には空孔の多い不均一な表面を有したグ
リーンシートが得られている。第1図〜第4図に示した
4鍾のアルミナグリーンシートを361L平方の形状に
切断して、それら電気炉中に設定し、空気中において2
00℃/時の昇温速度で1550°C寸で昇温し、この
温度に2時間保持した後、500°C丑で300°C/
時で降温した後炉冷した。得らノtたアルミナ焼結基板
のかさ密度および中心線平均粗さくRa)を下表に示す
Oアルミナグリーンシート番号の1 、2 + 3 +
 4は、それぞれ第1図,第2図、第3図、第4図に相
当するものである。
As seen in Figure 1, when using spherical powder,
A green sheet with a dense and uniform surface is obtained, and cracks are less likely to occur during drying. On the other hand, Figure 2~
As seen in FIG. 4, when a powder having a shape other than spherical is used as the raw material powder, a green sheet having an uneven surface with many pores is obtained. The four alumina green sheets shown in Figures 1 to 4 were cut into 361L square shapes, placed in an electric furnace, and placed in air for 2 hours.
The temperature was raised to 1550°C at a heating rate of 00°C/hour, held at this temperature for 2 hours, and then heated to 300°C/hour at a rate of 500°C.
After the temperature had cooled down for a while, it was cooled in the furnace. The bulk density and center line average roughness (Ra) of the obtained alumina sintered substrates are shown in the table below.
4 correspond to FIG. 1, FIG. 2, FIG. 3, and FIG. 4, respectively.

上表から明らかなように、粒の形状が球状のアルミナ原
料粉末を用いた場合には、がさ密度3.93g/cyA
と最も密度が高く、中心線平均粗さもo、o5μmと小
さい。一方、粒の形状が球形以外のアルミナ原料粉末を
用いた場合は、がさ密度が3.9q/cd以下でおシ、
中心線平均粗さも。、1μm以上と粗くなっている。
As is clear from the above table, when using alumina raw material powder with spherical grain shape, the bulk density is 3.93 g/cyA.
It has the highest density, and the center line average roughness is as small as o, o5 μm. On the other hand, when using alumina raw material powder with a particle shape other than spherical, the bulk density is 3.9q/cd or less.
Also centerline average roughness. , the roughness is 1 μm or more.

実施例2 純度99.9%、平均粒径。、4μmの粉末粒子の形状
が球状のアルミナ原料粉末997.69に、副成分とし
て純度99・9%、平均粒径0.19μmの酸化マグネ
シウム2.59を添加混合した。この原料混合粉末にn
−ブタノールとメタノールの等景況合液を400q加え
た後、ジブチルフタレートBQq、ポリビニルブチラー
ル樹脂120qを添加し、弗素樹脂ポット中で96時間
混合を行なった。かようにして得られたスラリーを、1
88μm厚のポリエステルフィルム上にドクタープレイ
ドを用いて塗布することによpo、3smの厚みのグリ
ーンシートを形成した。乾燥後36M平方の形状に切断
した後、電気炉中に設定して1000℃。
Example 2 Purity 99.9%, average particle size. , 2.59% of magnesium oxide having a purity of 99.9% and an average particle size of 0.19 μm was added and mixed as an accessory component to 997.69% of alumina raw powder having a spherical powder particle shape of 4 μm. This raw material mixed powder has n
- After adding 400q of an isostatic mixture of butanol and methanol, dibutyl phthalate BQq and 120q of polyvinyl butyral resin were added and mixed for 96 hours in a fluororesin pot. The slurry thus obtained is 1
A green sheet with a thickness of 3 sm was formed by coating on a polyester film with a thickness of 88 .mu.m using a doctor plaid. After drying and cutting into 36M square shapes, they were placed in an electric furnace at 1000°C.

1450°C,1500℃、1550°G、1600℃
、1650℃の6通シの焼成温度で6回の焼成を行なっ
た。各温度までは200℃/時の昇温速度で昇温し、と
の温度に2時間保持した後、soo’c’Hでは300
’C/時で降温し、それから室温まで炉冷した。得られ
たアルミナ焼結体基板のかさ密度および中心線平均粗さ
Raをそれぞれの焼成温度に対してプロットしたものを
第5図に示す。
1450°C, 1500°C, 1550°G, 1600°C
, six firings were performed at six firing temperatures of 1650°C. The temperature was raised at a heating rate of 200°C/hour to each temperature, and after holding at that temperature for 2 hours,
The temperature was lowered at a rate of 1.5°C/hour and then furnace cooled to room temperature. FIG. 5 shows the bulk density and center line average roughness Ra of the obtained alumina sintered substrates plotted against each firing temperature.

第6図から明らかなごとく、かさ密度は1500℃以上
では3.9 q / tst以上と高い値を示すが、そ
れ以下の温度では3.9q/cdよりも低くなっている
。また中心線平均粗さは1000℃以下では0.04〜
0.06μmと優れた平滑性を示すが、1650’Cで
は0.08μmと粗くなッテくる。
As is clear from FIG. 6, the bulk density shows a high value of 3.9 q/tst or more at temperatures above 1500°C, but becomes lower than 3.9 q/cd at temperatures below that. In addition, the center line average roughness is 0.04 ~ 0.04 at 1000℃ or less
It exhibits excellent smoothness of 0.06 μm, but becomes rough at 0.08 μm at 1650'C.

1500〜1600℃の範囲内の温度で焼成したナルミ
ナ焼結基板はかさ密度3.9g / r、a以上の高密
度と、中心線平均粗さ0.06μm以下の優れた平滑性
を有したものである。
The Narumina sintered substrate fired at a temperature within the range of 1500 to 1600°C has a bulk density of 3.9 g/r, a high density of more than a, and excellent smoothness with a center line average roughness of less than 0.06 μm. It is.

発明の効果 以上の実施例に見る如く、本発明の方法は粒子形状が球
状のアルミナ原料粉末を用い、1500〜1600℃の
範囲内の温度で焼成することによって表面平滑性の優れ
たアルミナ焼結体基板を製造することができる。この方
法によるアルミナ焼結体基板は高温形成薄膜素子の基板
として有用なものであシ、高周波用素子への応用が考え
られ、その工業的価値は大なるものがある。
Effects of the Invention As seen in the examples above, the method of the present invention uses alumina raw material powder with spherical particle shapes and is fired at a temperature within the range of 1500 to 1600°C, thereby producing alumina sintered with excellent surface smoothness. A body substrate can be manufactured. The alumina sintered substrate produced by this method is useful as a substrate for high-temperature formed thin film devices, and its application to high-frequency devices is considered, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図は原料粉末の異なるア
ルミナグリーンシートの表面電子顕微鏡写真であシ、第
5図は球形で形状がよくそろった原料粉末を用いて得ら
れたアルミナ焼結基板のかさ密度と中心線平均粗さくR
a)との関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図 opm
Figures 1, 2, 3, and 4 are surface electron micrographs of alumina green sheets made of different raw material powders, and Figure 5 is a photograph obtained using a spherical raw material powder with a uniform shape. Bulk density and center line average roughness R of alumina sintered substrate
It is a figure showing the relationship with a). Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 opm

Claims (1)

【特許請求の範囲】[Claims] 形状が球状である酸化アルミニウム粉末粒子を有機バイ
ンダー七混線してスラリーを作シ、このスラリーをシー
ト状に成形してから、空気中において15oo〜160
0’Cの範囲内の温度で加熱焼成することを特徴とする
アルミナ焼結基板の製造方法。
Aluminum oxide powder particles having a spherical shape are mixed with an organic binder to form a slurry, this slurry is formed into a sheet shape, and then heated in air for 150 to 160 mm.
A method for manufacturing an alumina sintered substrate, characterized by heating and firing at a temperature within a range of 0'C.
JP58029685A 1983-02-24 1983-02-24 Manufacture of alumina sintered substrate Pending JPS59156962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029685A JPS59156962A (en) 1983-02-24 1983-02-24 Manufacture of alumina sintered substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029685A JPS59156962A (en) 1983-02-24 1983-02-24 Manufacture of alumina sintered substrate

Publications (1)

Publication Number Publication Date
JPS59156962A true JPS59156962A (en) 1984-09-06

Family

ID=12282960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029685A Pending JPS59156962A (en) 1983-02-24 1983-02-24 Manufacture of alumina sintered substrate

Country Status (1)

Country Link
JP (1) JPS59156962A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127660A (en) * 1984-11-26 1986-06-14 旭化成株式会社 Alumina thin plate sintered body
US5672554A (en) * 1993-07-27 1997-09-30 Sumitomo Chemical Company, Limited Alumina composition, alumina molded article, alumina ceramics, and process for producing ceramics
US6162413A (en) * 1995-02-21 2000-12-19 Sumitomo Chemical Company, Limited Alpha-alumina and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127660A (en) * 1984-11-26 1986-06-14 旭化成株式会社 Alumina thin plate sintered body
US5672554A (en) * 1993-07-27 1997-09-30 Sumitomo Chemical Company, Limited Alumina composition, alumina molded article, alumina ceramics, and process for producing ceramics
US6162413A (en) * 1995-02-21 2000-12-19 Sumitomo Chemical Company, Limited Alpha-alumina and method for producing same

Similar Documents

Publication Publication Date Title
JP2968539B2 (en) Method for manufacturing aluminum nitride structure
JPS59156962A (en) Manufacture of alumina sintered substrate
JPS59156961A (en) Manufacture of alumina sintered substrate
JP2797372B2 (en) Manufacturing method of aluminum nitride substrate
JPS59156960A (en) Manufacture of alumina sintered substrate
KR101559243B1 (en) Ceramic composition, ceramic sinter and manufacturing method thereof
JPS61117161A (en) Manufacture of aluminium nitride ceramics
JP3340171B2 (en) Manufacturing method of aluminum nitride sintered body
JP2791407B2 (en) Method for producing target material for forming oxide superconducting thin film
JPH0251868B2 (en)
JP3129046B2 (en) Sputtered sintered target material with excellent thermal shock resistance
JPH03126658A (en) Production of alumina base plate
JP2800030B2 (en) Manufacturing method of ceramic substrate
JP2730941B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6128629B2 (en)
JPS59207883A (en) Manufacture of aluminum nitride sintered body
JP3001941B2 (en) Manufacturing method of aluminum nitride sintered body
JP3053949B2 (en) Manufacturing method of aluminum nitride multilayer substrate
JP2720199B2 (en) Ceramic substrate firing method
JPS63222043A (en) Low-temperature sintering ceramic
JP2001003164A (en) Sputtering target for forming high dielectric film free from generation of cracking even in the case of high speed film formation
JP3914635B2 (en) Manufacturing method of ceramic electronic component
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPH11292648A (en) Boron nitride-aluminum nitride laminate and its use
JPH0251867B2 (en)