JPS59156172A - Starting method of induction motor - Google Patents

Starting method of induction motor

Info

Publication number
JPS59156172A
JPS59156172A JP2761483A JP2761483A JPS59156172A JP S59156172 A JPS59156172 A JP S59156172A JP 2761483 A JP2761483 A JP 2761483A JP 2761483 A JP2761483 A JP 2761483A JP S59156172 A JPS59156172 A JP S59156172A
Authority
JP
Japan
Prior art keywords
command
magnetic flux
speed
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2761483A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagase
博 長瀬
Kazuo Onishi
和夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2761483A priority Critical patent/JPS59156172A/en
Publication of JPS59156172A publication Critical patent/JPS59156172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)

Abstract

PURPOSE:To obtain a starting method of an induction motor capable of operating by saving energy in high efficiency by flowing an exciting current larger than the prescribed value after inputting a start command. CONSTITUTION:When a start instruction is outputted from a start instructing circuit 11, a speed command N* and a manetic flux command PHI* are respectively outputted from a speed instructing circuit 12 and a magnetic flux instructing circuit 22. A speed controller 13 outputs a torque current command If* in response to the deviation between the speed command N* and a speed signal N and a magnetic flux controller 23 outputs an exciting current command Im* in response to the deviation between the command PHI* and a magnetic flux PHI. An oscillator 18 outputs 2-phase sinusoidal waves sin W1t, cos W1t oscillated by the primary angular frequency command W1* obtained by adding a slip angular frequency command Ws* obtained by dividing an exciting current command Im* by a torque current command It* and the speed signal N. The primary current calculator 19 outputs the primary current command i* of the AC of an induction motor 3 in response to Im*, It*, sin W1t, cos W1t.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導’+jj 4必衆の制イ卸方法1.特に、
その起動方云に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a method for controlling the 4-way crowd. especially,
Regarding how to start it.

〔従来J支術〕[Conventional J branch technique]

誘4電動・:・幾をベクトル制御すれば、直流電動1戊
の振合と同様に、高l芯答速度制;卸を行なうことがで
きる。とれは起!助時にも同様で、起動指令が入るとた
だちに指令された速度まで加速することができる。
If vector control is applied to the four induction motors, it is possible to perform a high l core response speed control; similar to the swinging of a DC motor. It's up! The same goes for emergency situations, and when a start command is received, the vehicle can immediately accelerate to the commanded speed.

起動特性を直流型・励機と同様に行なうようにするため
、ベクトル制御では起動指令に先立って電動機の一束が
確立するように制御を行なう。そのため、所定磁束を発
生させる励磁電流、すなわち直流電流を電動機に流す。
In order to make the starting characteristics similar to those of the DC type exciter, vector control is performed so that a single bundle of motors is established prior to the starting command. Therefore, an exciting current that generates a predetermined magnetic flux, that is, a direct current, is passed through the motor.

磁束を確立させ、起動指令が入った後、この磁束と二次
電流との積によ・つてトルクを発生させ、電@機を直ち
に起動させる。
After establishing magnetic flux and receiving a start command, torque is generated by the product of this magnetic flux and secondary current, and the electric machine is started immediately.

しかし、この方法には次の欠点がある。すなわち、起動
指令に先立って磁束確立のために直流電流を流すので、
電動機や変換器にロスが発生りそのためトータルの効率
が悪くなり、省エネルギーに反する。とくに、起動、停
止を〈シかえず用途、庭とえは、圧延機にはこの効率低
下が無視できなかった。
However, this method has the following drawbacks. In other words, since DC current is applied to establish magnetic flux prior to the startup command,
Loss occurs in the motor and converter, which reduces the overall efficiency and goes against energy conservation. This decrease in efficiency could not be ignored, especially for rolling mills that require constant starting and stopping.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、効率がよく、省エネルギー運転ができ
る誘導電動1機の始動方法を提供するにある。
An object of the present invention is to provide a method for starting a single induction motor that is efficient and capable of energy-saving operation.

〔発明の、慨要〕[Summary of the invention]

本発明の謁・徴は、起動指令が入った後に所定の値よシ
も大きな励磁電流を流すことにある。
The key feature of the present invention is that an excitation current larger than a predetermined value is caused to flow after a startup command is received.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示す。図において、交流電
源1ばPWMインバータ2に」妾続され?イカを供給す
る。i)WMインバータ2は交流市原1の交Mt電圧を
町変電圧、可変周波の交流に変換し、誘導電動機3に心
力を供給する。;遼導電こ励機3(はP’Vliインバ
ータ2に接続さ、ルて、所要のトルクを発生するような
電圧9周波数で定まる交流電流が流されて回転する。誘
導心動(・幾3の回転速度はその軸にとシつけられた速
度検出器4によって検出されるっその検出イ直をNとす
る。
FIG. 1 shows an embodiment of the invention. In the figure, is AC power supply 1 connected to PWM inverter 2? Feed squid. i) The WM inverter 2 converts the AC Mt voltage of the AC Ichihara 1 into a variable voltage, variable frequency AC, and supplies the induction motor 3 with power. The Liao conductive electric exciter 3 (is connected to the P'Vli inverter 2, and is rotated by an alternating current determined by the voltage and frequency that generates the required torque. The rotational speed is detected by a speed detector 4 attached to the shaft, and the detection value is N.

起動、停止の指令は起動指令回路11から1゜0の二1
直信号として出力される。、速度指令回路12と磁束指
令回路24は起動指令回路119出力に接続され、それ
ぞれ速度の指令N 、励磁電流の指令工□  を出力す
る。速度制御回路13は速度検出J34と速度指令回路
12の偏差が入力され、偏差に応じた信号を出力する。
Start and stop commands are sent from the start command circuit 11 to 1°0-21.
Output as a direct signal. , the speed command circuit 12 and the magnetic flux command circuit 24 are connected to the output of the start command circuit 119, and output a speed command N and an excitation current command □, respectively. The speed control circuit 13 receives the deviation between the speed detection J34 and the speed command circuit 12 as input, and outputs a signal according to the deviation.

その出力は誘導電動機3の一次電流の有効分、すなわち
トルク電流の指令1.  となる。
The output is the effective part of the primary current of the induction motor 3, that is, the torque current command 1. becomes.

一方、磁束制御回路23には磁束指令回路22からの磁
束指令の と、磁束演算回路24によって演Kiれた磁
束Φとが入力され、その出力は誘導ト硯動磯3の一次電
流の無効分、すなわち、励磁電流の指令■ゆ′となる。
On the other hand, the magnetic flux command Φ from the magnetic flux command circuit 22 and the magnetic flux Φ calculated by the magnetic flux calculation circuit 24 are input to the magnetic flux control circuit 23, and the output thereof is the reactive component of the primary current of the induced tomographic rock 3. In other words, the excitation current command becomes ``Y''.

そして、磁束制御回路23は一次′6流償算回路19と
磁束演算(9)路24に接続される。磁束演算回路24
は励磁電流指令■。から誘導電動機3の磁束を演算する
。磁束演算回路24は磁束制御回路23と割算r325
に接続される。
The magnetic flux control circuit 23 is connected to the primary '6 current computation circuit 19 and the magnetic flux computation (9) path 24. Magnetic flux calculation circuit 24
is the excitation current command ■. The magnetic flux of the induction motor 3 is calculated from . The magnetic flux calculation circuit 24 has a magnetic flux control circuit 23 and a division r325.
connected to.

別痺諾25には速度制御回路13と磁束演算回路14が
入力され、誘導電動機3のすベシ角周波数の指令Ws 
信号を出力する。加算器17は割算器25と速度検出器
4が入力され、−夾角周波数の指令W1  を出力する
。発振器18は加算器17に接続され、その指令周波数
■ヘ  で発振する二相正弦波5IIIWI t * 
CQS WHtを出力する。−次電流演算回路19は遠
度゛削1−qt回H:@ 13 、励磁電流指令回路1
4、発H,B器18にj妾続され、発唱器18の出力信
号を基準にして、1透6′II功機3の交流の一次電流
指令i を出力する。1E流検出器2oはP’WMイン
バータ2の出力′電流、ずなわち、iカ導電動・醗3の
一次゛電流を検出する。検出値を!とする。電流制御回
路21は一次電流演算回路19と′「征流険出器20の
偏差が入力され、偏差に応じて1動きp Av Mイン
バータ2を動作させる1g号をPWMインバータ2((
入力させる。
A speed control circuit 13 and a magnetic flux calculation circuit 14 are inputted to the detachment motor 25, and a command Ws for the total angular frequency of the induction motor 3 is inputted.
Output a signal. The adder 17 receives the divider 25 and the speed detector 4 as input, and outputs a command W1 of the -included angular frequency. The oscillator 18 is connected to the adder 17 and generates a two-phase sine wave 5IIIWI t * which oscillates at its command frequency .
Output CQS WHt. - The next current calculation circuit 19 is the distance cutting 1-qt times H: @ 13, the excitation current command circuit 1
4. It is connected to the generator H and B generator 18, and outputs the AC primary current command i of the output device 3 based on the output signal of the generator 18. The 1E current detector 2o detects the output current of the P'WM inverter 2, that is, the primary current of the i-conductor 3. Detection value! shall be. The current control circuit 21 inputs the deviation of the primary current arithmetic circuit 19 and the current surge generator 20, and operates the PWM inverter 2 ((
Let them input.

次に、化1図の回路の動作を具体的に説明する。Next, the operation of the circuit shown in FIG. 1 will be specifically explained.

起動−Jij令回路11から起動指令としてルベル′の
1a号が出されろと速度指令回路12および1眞未指令
回路22の出力信号N との は零からある値の〕*度
および、磁束の指令をとる。速度制御回路13はN、、
!:Nの偏差に応じ、トルク電流指令Itチを出力する
っ 一方、磁束制御回路23は磁束の指令Φにとf+a束Φ
の偏差に応じて働き、励1滋電流の指令Im”を出力す
る。、磁束演算回路24では信号L”にょの演算をイテ
なって誘4成動俵3の磁束Φと演算する。ここで、Tは
誘導1区励磯3の二次回路の時定数にほぼ等しい1直、
Mは同じく励嶽インタクタンスである。割d器25は の凛誹によって、すさシ角ノ4波威の指令Ws+を出力
する。加算器17は次の演算を行なう。
1a of Lebel' is issued as a start command from the start-Jij order circuit 11. The output signal N of the speed command circuit 12 and the 1-man command circuit 22 is from zero to a certain value]* degrees and the magnetic flux. Take orders. The speed control circuit 13 is N.
! :The magnetic flux control circuit 23 outputs the torque current command Itchi according to the deviation of
The magnetic flux calculation circuit 24 operates according to the deviation of the excitation current and outputs a command Im'' for the excitation current.The magnetic flux calculation circuit 24 calculates the magnetic flux Φ of the induced quadruple bale 3 by calculating the signal L''. Here, T is 1 shift, which is approximately equal to the time constant of the secondary circuit of the induction section 1 and the excitation section 3.
Similarly, M is the excitation intance. The splitter 25 outputs the command Ws+ of the four waves of Susashi angle according to the command. Adder 17 performs the following operation.

W1+=ws* 十N    ・・・・・・・・・・・
・・・・・・・(3)そして、元振器かりはsin w
口、にWltの正弦仮信号が出力される。こうして、誘
導、d励磁3の一次局波数が訳めらnる。
W1+=ws* 10N ・・・・・・・・・・・・
・・・・・・・・・(3) And the source oscillator is sin w
A sine temporary signal of Wlt is output at the port. In this way, the primary station wave number of induction and d-excitation 3 can be interpreted.

一力、−次屈流」1分回路19では三相の一次dU丁コ
の指令を演算するが、そのうちの−イも分?i蒼とす6
、・f デー    * i  =L  5ulWlt +Ir  cosw、 
t=1.5ill (WHL十〇) ・・・・・・・・
・−・・・・・・・・ (4)のベクトル演算全行なう
。こうして、電流の指令I が出力されると、ト=流匍
]御系のm(午によって、′「電流の芙際値lは1 と
一致するようになる。
The one-force, -order diversion circuit 19 calculates the three-phase primary dU-cho command, but -I is also a component. i blue 6
,・fday*i=L5ulWlt+Ircosw,
t=1.5ill (WHL10) ・・・・・・・・・
・−・・・・・・・・・ Perform all vector calculations in (4). In this way, when the current command I is output, the maximum value l of the current becomes equal to 1 due to the control system m.

以上のようにして動作させたときの動作波形を第2図に
示す。
FIG. 2 shows operating waveforms when operating as described above.

(a)は起動指令回路11の出力信号、すなわち、速度
制御回路12および磁束演算回路22の出力信号である
速度指情N“、オヨび磁束指令Φ を示す。(b)は速
度開側1回路13の出力信号であるトルク指令■、で、
t==t、  で起動Ji令印刀旧麦は速度指令回路1
3のリミッタにかかった信号が出力される。(C)は磁
束制御回路23の出力である励磁電流指令■。で、起動
指令が出さ肚た直淡は磁束演算回路23のリミッタにか
かった信号が出力される。(d)は磁束演算回路24の
出力信号である磁束Φを示す。(e)は割算器25の出
力信号であるすべり角周波数の指令Wε、(5)は速度
Nを示す。
(a) shows the output signal of the start command circuit 11, that is, the output signal of the speed control circuit 12 and the magnetic flux calculation circuit 22, which are the speed command N" and the magnetic flux command Φ. (b) shows the speed opening side 1 With the torque command ■, which is the output signal of the circuit 13,
Start at t = = t, Ji Command Into Old Mugi is speed command circuit 1
The signal applied to the limiter No. 3 is output. (C) is the excitation current command ■ which is the output of the magnetic flux control circuit 23. When the activation command is issued, a signal applied to the limiter of the magnetic flux calculation circuit 23 is output. (d) shows the magnetic flux Φ which is the output signal of the magnetic flux calculation circuit 24. (e) shows the slip angular frequency command Wε which is the output signal of the divider 25, and (5) shows the speed N.

第3図の実施例によれば、第4図(c) (23の出力
)からもわかるように、励磁電流指令■o”が起動匝後
に定常値よシ大きな値で与えられるため、第4図(d)
に示すように磁束Φの立上シが早まシ、トルクがすばや
く出るようになる。その結果、起動j言合が入った直後
の速度Nの立上シをよくすることができる。したがって
、速度Nが所定値まで立上る時間を短かくすることがで
きる。さらに、誘導戒励磯3の停止時には電流を流さな
いのでシステムの酩合効率を向上させることができる。
According to the embodiment shown in FIG. 3, as can be seen from FIG. Figure (d)
As shown in , the magnetic flux Φ rises quickly and torque is generated quickly. As a result, it is possible to improve the start-up of the speed N immediately after the starting command is entered. Therefore, the time required for the speed N to rise to a predetermined value can be shortened. Furthermore, since no current is passed when the guiding and exciting rock 3 is stopped, the coupling efficiency of the system can be improved.

第3図は本発明の変形例を示す。この実施例はPWΔ・
■インバータ2の出力電流に余裕がない場会に有効であ
る。lJミッタf151I御回路26には磁束側(af
1回路23の出力が接続され、励磁醒流の指令+  牙 1つ  に応じて速度制御回路13のリミッタ27の値
を変える。リミッタ27はリミッタ制御回路26に接続
され、その出力に応じて速度制御回路13の最大呟が定
まる。
FIG. 3 shows a modification of the invention. In this example, PWΔ・
■Effective when there is no margin for the output current of the inverter 2. The lJ mitter f151I control circuit 26 has a magnetic flux side (af
1 circuit 23 is connected, and the value of the limiter 27 of the speed control circuit 13 is changed in response to the excitation wake flow command + 1 fan. The limiter 27 is connected to the limiter control circuit 26, and the maximum limit of the speed control circuit 13 is determined according to its output.

第3図の回路は次のように動作する。リミッタ制御回路
26はトルク゛(流指令の最大値、すなわち、リミッタ
j’jj’j、 l t m II X +を次のよう
に定める。
The circuit of FIG. 3 operates as follows. The limiter control circuit 26 determines the maximum value of the torque (flow command), that is, the limiter j'jj'j, l t m II X + as follows.

ポ     ポ゛   ≠23 It□エ =メIIn、!−Iヨ ・・・・・・・・・
・・・・・・(6)ここで、■、□x UPWMインバ
ータ2のゆるされる最大電流である。)A!、度制御回
路13のリミッタ27ばそのリミッタ値がプラス、マイ
ナス■。8x  となるよう設定される。
Po゛ ≠23 It□E = Me IIn,! -Iyo ・・・・・・・・・
(6) Here, ■, □x are the maximum allowed currents of the UPWM inverter 2. )A! , the limiter value of the limiter 27 of the degree control circuit 13 is positive or negative ■. It is set to be 8x.

第4図(はその動作波形を示す。(a>は起動指令回路
11の出力信号、すなわち速度指令回路12の出力1a
号N 、磁束指令回路22の出力信号Φ”を示す。(b
)は速度指令回路13すなわちリミッタ27の出力信号
Iw”で、1=1.で起動指令印加後、t−13までは
速度fδU御回路13のリミッタ27にかかった信号が
出力される。そのリミッタ値は1.≦t≦t、では(6
)式から求められる■□8Iであシ、t2≦tit3で
は誘導′成励機3の定格値から定まるTt、、+a−と
なる。(C)は磁束制御回路23の出力信−ヴ■□ で
、起動指令が出された直後は磁束制御回路23のリミッ
タにかかった状態で動作している。(d)は(5)式で
演算される一次電流の大きさ■1餐を示す、、1=1.
〜t2の間は一次電流の最大値の指令■1゜68′が出
力される。
FIG. 4 shows its operating waveform. (a> is the output signal of the start command circuit 11, that is, the output 1a of the speed command circuit 12.
No. N indicates the output signal Φ'' of the magnetic flux command circuit 22. (b
) is the output signal Iw'' of the speed command circuit 13, that is, the limiter 27, and after applying the start command with 1=1, the signal applied to the limiter 27 of the speed fδU control circuit 13 is output until t-13. The value is 1.≦t≦t, then (6
) is obtained from the equation □8I, and when t2≦tit3, Tt, , +a- is determined from the rated value of the induction exciter 3. (C) is the output signal of the magnetic flux control circuit 23, which operates under the limiter of the magnetic flux control circuit 23 immediately after the start command is issued. (d) shows the magnitude of the primary current calculated by equation (5), 1=1.
During the period from t2 to t2, the command 1°68' for the maximum value of the primary current is output.

第4図(d)かられかるように、−次醒流の大きさはそ
の最大値1111+1;C”を越えることがないので、
PWMインバータ2の出力容量が増加することはない、
しかも、同図(9)に示すように起動指令が出された区
は定格時より大きな励磁電流指令が出されるので、磁束
の立上シも早くすることができる。
As can be seen from Fig. 4(d), the magnitude of the -order flow does not exceed its maximum value 1111+1;C'', so
The output capacity of PWM inverter 2 will not increase.
Furthermore, as shown in FIG. 9 (9), in the section where the start command is issued, an excitation current command larger than that at the rated time is issued, so that the magnetic flux can be built up quickly.

それに加え、誘導亀励機3の停止時には7次電流を流す
ことがないので、省エネルギー化を図るとと′ンバでき
る。
In addition, when the induction turtle exciter 3 is stopped, no 7th order current is passed, so it is possible to save energy.

なお、以上の例ではアナログ回路によって説明シiCカ
、マイクロコンピュータを用いてもよいのはいうまでも
ない。
Note that in the above example, an analog circuit was used for the explanation, but it goes without saying that a microcomputer may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によ扛ばベクトル制御において停止時にも励磁1
L流を流すという不経済さをなきすことができるので、
運転時の総合効率を上げることができる。さらに起動特
性も改善することができ、直流電動機とほとんど同じ過
渡特性が得られる。
According to the present invention, excitation 1 can be achieved even when stopped in vector control.
This eliminates the uneconomical nature of using the L flow.
It is possible to increase the overall efficiency during operation. Furthermore, starting characteristics can also be improved, and transient characteristics almost the same as DC motors can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実旅例のブロック図、第2図は第1
図の動作説明図、第3図は本発明の他の実=’m例のブ
ロック図、第・1図は第3図の動作説明図である。 fl 口 茎20 穿3図
Fig. 1 is a block diagram of one practical example of the present invention, and Fig. 2 is a block diagram of a practical example of the present invention.
3 is a block diagram of another example of the present invention, and FIG. 1 is an explanatory diagram of the operation of FIG. 3. fl Mouth 20 Perforation 3 figure

Claims (1)

【特許請求の範囲】[Claims] 1、可変電圧、四変周波敢て定まる交流電流を出力する
七カ変換器と、前記重力変換器によって1・駆動される
誘導fE電動機、前記誘導電動機の一次電流を磁束に平
行な・助磁疏流と磁束に垂直なトルク電流に分けて制御
Ajする方法において、前記誘導電動機の始動指令が出
された後、定格皿よす大きな励磁電流を流すことを特徴
とする誘導1d動機の始動方法。
1. An induction fE motor driven by a seven converter that outputs an alternating current with a variable voltage and four variable frequencies, and the gravity converter; A method for starting an induction 1D motor, which is characterized in that a large excitation current is passed through the rated plate after a starting command for the induction motor is issued, in a method in which control Aj is divided into a sluice current and a torque current perpendicular to the magnetic flux. .
JP2761483A 1983-02-23 1983-02-23 Starting method of induction motor Pending JPS59156172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2761483A JPS59156172A (en) 1983-02-23 1983-02-23 Starting method of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2761483A JPS59156172A (en) 1983-02-23 1983-02-23 Starting method of induction motor

Publications (1)

Publication Number Publication Date
JPS59156172A true JPS59156172A (en) 1984-09-05

Family

ID=12225808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2761483A Pending JPS59156172A (en) 1983-02-23 1983-02-23 Starting method of induction motor

Country Status (1)

Country Link
JP (1) JPS59156172A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441801A (en) * 1993-02-12 1995-08-15 Andersen Corporation Advanced polymer/wood composite pellet process
US5486553A (en) * 1992-08-31 1996-01-23 Andersen Corporation Advanced polymer/wood composite structural member
US5827607A (en) * 1992-08-31 1998-10-27 Andersen Corporation Advanced polymer wood composite
US5948524A (en) * 1996-01-08 1999-09-07 Andersen Corporation Advanced engineering resin and wood fiber composite
US6004668A (en) * 1992-08-31 1999-12-21 Andersen Corporation Advanced polymer wood composite
US6771040B2 (en) 2001-08-10 2004-08-03 Mitsubishi Electric Corporation Control apparatus and control method of on-vehicle dynamo-electric machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117476A (en) * 1979-02-28 1980-09-09 Fuji Electric Co Ltd Controlling device for induction machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117476A (en) * 1979-02-28 1980-09-09 Fuji Electric Co Ltd Controlling device for induction machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486553A (en) * 1992-08-31 1996-01-23 Andersen Corporation Advanced polymer/wood composite structural member
US5539027A (en) * 1992-08-31 1996-07-23 Andersen Corporation Advanced polymer/wood composite structural member
US5827607A (en) * 1992-08-31 1998-10-27 Andersen Corporation Advanced polymer wood composite
US5932334A (en) * 1992-08-31 1999-08-03 Andersen Corporation Advanced polymer wood composite
US6004668A (en) * 1992-08-31 1999-12-21 Andersen Corporation Advanced polymer wood composite
US6015612A (en) * 1992-08-31 2000-01-18 Andersen Corporation Polymer wood composite
US6015611A (en) * 1992-08-31 2000-01-18 Andersen Corporation Advanced polymer wood composite
US5441801A (en) * 1993-02-12 1995-08-15 Andersen Corporation Advanced polymer/wood composite pellet process
US5518677A (en) * 1993-02-12 1996-05-21 Andersen Corporation Advanced polymer/wood composite pellet process
US5695874A (en) * 1993-02-12 1997-12-09 Andersen Corporation Advanced polymer/wood composite pellet process
US5948524A (en) * 1996-01-08 1999-09-07 Andersen Corporation Advanced engineering resin and wood fiber composite
US6771040B2 (en) 2001-08-10 2004-08-03 Mitsubishi Electric Corporation Control apparatus and control method of on-vehicle dynamo-electric machine

Similar Documents

Publication Publication Date Title
JPS6024676B2 (en) Device that controls a permanent magnet synchronous motor
JPS58123394A (en) Controller for ac motor
JP2000278982A (en) Method for controlling permanent-magnet synchronous motor
JPS59156172A (en) Starting method of induction motor
JPS5949797B2 (en) AC machine current control method
JP3407492B2 (en) Inverter control device
JPS6032593A (en) Inverter phase control system in commutatorless motor
JPH07308100A (en) Control device for induction motor
Tanaka et al. Driving system incorporating vector control inverter for large-scale paper machine
JPS6110986A (en) Starting method of induction motor
JPS60219984A (en) Controller for induction motor
JPS60219983A (en) Drive controller of induction motor
RU2709098C1 (en) Device for matched control of electric drives with electronic reduction
JP2003244991A (en) Control method for induction motor
JPH0412698A (en) Control method for voltage type pwm inverter
JPS62181698A (en) Controlling device for variable-speed generating system
JP2644748B2 (en) Variable speed pumped storage power generation system
JPS59113784A (en) Controlling method for induction motor
JPH08275566A (en) Thyristor start controller for synchronous machine
JPH0223097A (en) Exciter for ac-excited generator motor
JPS5937894A (en) Variable speed driving system for synchronous machine
JPS59201690A (en) Controller of ac motor
JPS6166581A (en) Controller for induction motor
JPS61150692A (en) Torque control system of induction motor
JPH01227681A (en) Variable speed controller for induction motor