JPS59155923A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59155923A
JPS59155923A JP58031113A JP3111383A JPS59155923A JP S59155923 A JPS59155923 A JP S59155923A JP 58031113 A JP58031113 A JP 58031113A JP 3111383 A JP3111383 A JP 3111383A JP S59155923 A JPS59155923 A JP S59155923A
Authority
JP
Japan
Prior art keywords
resin
layer
resin layer
film
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58031113A
Other languages
Japanese (ja)
Other versions
JPH0425694B2 (en
Inventor
Kazuhiko Tsuji
和彦 辻
Masaru Sasago
勝 笹子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58031113A priority Critical patent/JPS59155923A/en
Publication of JPS59155923A publication Critical patent/JPS59155923A/en
Publication of JPH0425694B2 publication Critical patent/JPH0425694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To obtain a minute pattern regardless of the kinds and presence of a stepped difference of a semiconductor substrate by coating the upper section of the substrate with a first resin layer, cooling the surface by using a solution, which does not dissolve the resin and the boiling point thereof is lower than a solvent for the resin, and laminating a second resin layer and patterning these laminated resins. CONSTITUTION:SiO2 17 and 18 of different thickness on a semiconductor substrate 11 are connected and formed, and a positive type photosensitive resin layer 12 thicker than a stepped difference between the SiO2 is applied onto the SiO2. Photosensitizing wavelength beams are irradiated to the whole surface to make the layer 12 alkali-soluble, and the surface of the layer 12 is cooled at 15 deg.C or less by using 1, 1, 2, trichlorotrifluoroethane, etc., which do not dissolve the resin in the layer 12 and do not dissolve cellosolve acetate as a solvent for the resin. Accordingly, a degenerated layer 13, solubility thereof reduces, is generated previously on the surface of the layer 12, a thin photosensitive resin film 14 not photosensitized is applied on the layer 13, and beams are irradiated to one parts 14a of the film 14 to make them alkali-soluble. openings 15 are bored to the laminated resins through etching.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法、とくに感光性樹脂膜を
用いた微細なパターン形成工程を有する半導体装置の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device that includes a step of forming a fine pattern using a photosensitive resin film.

従来例の構成とその問題点 半導体基板上に感光性樹脂膜パターンを形成する工程に
おいて、パターン巾が2〜3μm以下の微細加工では通
常ポジ型感光性樹脂膜が用いられている。このポジ型感
光性樹脂の露光方法として、歩留まり向上および半導体
基板の反9の補正が可能であるという理由により、ステ
ップアンドリピート方式の投影露光方法が用いられる。
Conventional Structure and Problems In the process of forming a photosensitive resin film pattern on a semiconductor substrate, a positive photosensitive resin film is usually used for microfabrication in which the pattern width is 2 to 3 μm or less. As an exposure method for this positive-type photosensitive resin, a step-and-repeat projection exposure method is used because it improves yield and allows correction of anti-9 of the semiconductor substrate.

この投影露光方法は第1図に示すように、マスク1を通
過した光線Xをレンズ2を介して半導体基鈑3上のレジ
スト(感光性樹脂)4上に結像するようにしたものであ
る。ただし、この方法はレンズ2を使用するため5通常
の光線を使用゛したのでは色収差を生じパターンの微細
化に支障をきたす°ので、その光線Xとしては単色光を
用いなければならない。しかしながら、単色光を用いた
ために一人射光Xとその基板3からの反射光により定在
波が発生する。
As shown in FIG. 1, this projection exposure method is such that a light beam X passing through a mask 1 is imaged onto a resist (photosensitive resin) 4 on a semiconductor substrate 3 via a lens 2. . However, since this method uses a lens 2, using a normal light beam would cause chromatic aberration and hinder pattern miniaturization, so the light beam X must be monochromatic. However, since monochromatic light is used, a standing wave is generated by the single incident light X and its reflected light from the substrate 3.

このことを第2図を用いて説明する。同図に示すように
一半導体基板6上に異なる膜厚を有する二酸化硅素膜6
.γを形成した後−この二酸化硅素膜6.了上に感光性
樹脂膜8を塗布する。このとき、二酸化硅素膜6,7と
感光性樹脂膜8の屈折率がほぼ等しいため、感光性樹脂
膜8上から光照射しても二酸化硅素膜6,7と感光性樹
脂膜8との界面での反射はおこらない。その代り入射光
は半導体基板5で反射した光と干渉し、二酸化硅素膜6
,7およびレジスト膜8内に定在波9ができる。定在波
の腹と節は入射光の波長が4358人とすると一743
人の周期でできる。従って、二酸化硅素膜6,7の膜厚
d1およびd2の差(d+−d2)か743人の奇数倍
のとき感光性樹脂膜8との界面での光強度差か大きくな
る。
This will be explained using FIG. 2. As shown in the figure, a silicon dioxide film 6 having different film thicknesses is formed on one semiconductor substrate 6.
.. After forming γ-this silicon dioxide film 6. A photosensitive resin film 8 is applied on the finished layer. At this time, since the refractive index of the silicon dioxide films 6, 7 and the photosensitive resin film 8 are almost equal, even if light is irradiated from above the photosensitive resin film 8, the interface between the silicon dioxide films 6, 7 and the photosensitive resin film 8 No reflection occurs. Instead, the incident light interferes with the light reflected by the semiconductor substrate 5, and the silicon dioxide film 6
, 7 and the resist film 8, a standing wave 9 is generated. If the wavelength of the incident light is 4358 people, the antinodes and nodes of the standing wave are 1743.
It can be done according to the human cycle. Therefore, when the difference (d+-d2) between the film thicknesses d1 and d2 of the silicon dioxide films 6 and 7 is an odd number multiple of 743 people, the difference in light intensity at the interface with the photosensitive resin film 8 becomes large.

この為1例えば二酸化硅素膜6の表面では定在波9の節
ができ、一方、二酸化硅素膜70表面では定在波9の腹
ができる。この様な場合−二酸化硅素膜7表面では入射
光の照射強度が弱くなり一現像、リンス後に感光性樹脂
膜8が充分除去できないということが発生する。1だ、
現像して樹脂膜8のパターンを形成すると二酸化硅素膜
6.Y上での感光性樹脂膜8のパターン巾が異なるとい
った問題も発生する。
For this reason, for example, nodes of the standing wave 9 are formed on the surface of the silicon dioxide film 6, while antinodes of the standing wave 9 are formed on the surface of the silicon dioxide film 70. In such a case, the irradiation intensity of the incident light becomes weak on the surface of the silicon dioxide film 7, and the photosensitive resin film 8 cannot be removed sufficiently after one development and rinsing. It's 1.
When developed to form a pattern of resin film 8, silicon dioxide film 6. There also arises a problem that the pattern width of the photosensitive resin film 8 on Y is different.

また、アルミニウムなどのように反射率の大きい金属膜
上に感光性樹脂膜を形成した場合、金属膜と感光性樹脂
膜界面付近に定在波の節ができるので薄い膜が残りゃす
く、寸法精度の良い樹脂膜パターン形成が困難であった
In addition, when a photosensitive resin film is formed on a metal film with high reflectance such as aluminum, standing wave nodes are formed near the interface between the metal film and the photosensitive resin film, resulting in a thin film remaining. It was difficult to form a resin film pattern with high precision.

以上の様なことは、特に段差を有する基板上においては
段差部で感光性樹脂膜厚の変化が大きく一微細パターン
が精度よく形成できないという欠点をもたらすことにな
る。
The above results in the disadvantage that, especially on a substrate having a step, the thickness of the photosensitive resin film varies greatly at the step, making it impossible to form a fine pattern with high precision.

発明の目的 本発明は上記欠点にがんがみなされたもので、微細パタ
ーンの必要な半導体装置−特に投影露光方法を用いてパ
ターン形成を行なう半導体装置の製造において、微細パ
ターンを基板の種類および段差に関係なく形成出来る方
法全提供せんとするものである。
Purpose of the Invention The present invention addresses the above-mentioned drawbacks as cancer, and provides a method for manufacturing semiconductor devices that require fine patterns, especially semiconductor devices in which patterns are formed using a projection exposure method. It is intended to provide all methods that can form the structure regardless of the difference in level.

発明の構成 本発明は一基板の段差および種類によるパターン巾変化
を少なくし、かつ樹脂膜厚の厚いパターンを得るため(
て、半導体基板上に第1の樹脂層を形成した後、前記第
1の樹脂層を溶解せずかつ前記第1の樹脂の溶剤より低
沸点の溶液で前記第1の樹脂層処理し、冷却した後、第
2の樹脂層を形成する。第1の樹脂層としては、たとえ
ば非感光のアルカリ可溶性の樹脂あるいは感光性樹脂を
塗 布したのち感光波長の光を全面に照射してアルカリ
可溶性としたものを用いる。第2の樹脂層としては−た
とえば感光性樹脂を用い5選択的に感光波長を照射した
後アルカリ可溶性とする。こうしたのち前記第2の樹脂
層と第1の樹脂層を同じアルカリ溶液で処理して所定の
パターンを形成する。
DESCRIPTION OF THE INVENTION The present invention aims to reduce differences in pattern width on one substrate and variations in pattern width depending on the type, and to obtain a pattern with a thick resin film (
After forming a first resin layer on a semiconductor substrate, the first resin layer is treated with a solution that does not dissolve the first resin layer and has a lower boiling point than the solvent for the first resin, and then cooled. After that, a second resin layer is formed. As the first resin layer, for example, a non-photosensitive alkali-soluble resin or a photosensitive resin is applied, and then the entire surface is irradiated with light of a photosensitive wavelength to make it alkali-soluble. As the second resin layer, for example, a photosensitive resin is used and is made alkali-soluble after being selectively irradiated with a photosensitive wavelength. After this, the second resin layer and the first resin layer are treated with the same alkaline solution to form a predetermined pattern.

実施例の説明 本発明の一実施例を第3図を用いて説明する。Description of examples An embodiment of the present invention will be described using FIG. 3.

半導体基板11上に形成した異なる膜厚を有する二酸化
硅素膜17.18上に第1の樹脂としてたとえばポジ型
感光性樹脂層12を前記二酸化硅素11g17.18の
段差より厚く形成する(A)。次に全面に感光波長の光
を照射して樹脂層12をアルカリ可溶性とした後、前記
第1の樹脂を溶解せずかつ前記第1の樹脂の溶剤たとえ
はセロンルブアセテートよシ低沸点の溶液、たとえば沸
点が100℃以下の1.1,2.)リクロロトリフロロ
エタン1石油エーテルあるいは正ペンタン中に基鈑を浸
漬するかあるいはこの液を基板上に塗布して感光性樹脂
層12の少なくとも表面をたとえば15゛C以下に冷却
する。このように低沸点溶液を前記感光性樹脂層12に
接触させることにより、樹脂の温度が下がり、樹脂の溶
剤に対する溶解度が減少し変質層13が形成される(B
)。また樹脂中の溶剤と低沸点溶液が溶解し、かつ低沸
点溶液とともに溶剤が蒸発し、第1の樹脂層12中の溶
剤の含有率が減少する。
For example, a positive photosensitive resin layer 12 is formed as a first resin on the silicon dioxide films 17 and 18 having different thicknesses formed on the semiconductor substrate 11 to be thicker than the steps of the silicon dioxide 11g and 17 and 18 (A). Next, the entire surface is irradiated with light at a photosensitive wavelength to make the resin layer 12 soluble in alkali, and then a solution that does not dissolve the first resin and has a low boiling point such as a solvent for the first resin, such as selonlube acetate, is applied. , for example, 1.1, 2. with a boiling point of 100°C or less. ) Lichlorotrifluoroethane 1 The substrate is immersed in petroleum ether or normal pentane, or this liquid is applied onto the substrate, and at least the surface of the photosensitive resin layer 12 is cooled to, for example, 15°C or less. By bringing the low boiling point solution into contact with the photosensitive resin layer 12 in this way, the temperature of the resin decreases, the solubility of the resin in the solvent decreases, and the altered layer 13 is formed (B
). Further, the solvent in the resin and the low boiling point solution are dissolved, and the solvent evaporates together with the low boiling point solution, so that the content of the solvent in the first resin layer 12 is reduced.

次に第2の樹脂たとえば未感光の感光性樹脂膜14を前
記第1の樹脂層12より薄く塗布する。
Next, a second resin, such as an unexposed photosensitive resin film 14, is applied thinner than the first resin layer 12.

このとき、第1の樹脂層12中の溶剤の含有率を前記工
程にて減少させて、あるため−第2の樹脂層14と第1
の樹脂層12の混合が生じに<<、樹脂層12と14の
全体の膜厚の減少が少ない均一な樹脂膜を得ることかで
きる。すなわち第1.第2の樹脂層12.14の混合が
多く生じると全体の膜厚が個々の樹脂層の和よりも小さ
、くなるが−上記変質層13を形す又しておくと混合か
生じにくく、膜厚の減少が生じにくい。
At this time, the content of the solvent in the first resin layer 12 is reduced in the step, so that the content of the solvent in the first resin layer 14 and the first resin layer 12 are reduced.
When the resin layers 12 are mixed, it is possible to obtain a uniform resin film with less reduction in the overall thickness of the resin layers 12 and 14. That is, the first. If the second resin layers 12 and 14 are mixed a lot, the total film thickness will be smaller than the sum of the individual resin layers, but if the altered layer 13 is shaped, mixing will be less likely to occur. Decreased film thickness is less likely to occur.

次に前記第2の樹脂層14にフォトマスク(図示せず)
等を用いて選択的に感光波長の光を照射し一一部14a
をアルカリ可溶性にした後(C)−アルカリ現像液によ
り前記第2の樹脂のアルカリ可溶性領域14&とその下
方の第1の樹脂層12を現像除去し、所定のパターン開
孔部16を形成する(D)0次に前記パターン開孔部1
6より半導体基板を加工口、半導体装置を製造する。な
お、残された樹脂層12,13.14からなるパターン
をリットオフ材として用いリフトオフ法によす開孔部1
6に金属配線層等を形成してもよい。
Next, a photomask (not shown) is applied to the second resin layer 14.
A portion 14a is selectively irradiated with light of a photosensitive wavelength using a
After making it alkali-soluble, (C) - the alkali-soluble region 14 & of the second resin and the first resin layer 12 below it are developed and removed using an alkaline developer to form a predetermined pattern of openings 16 ( D) 0th said pattern opening part 1
From step 6, the semiconductor substrate is processed and a semiconductor device is manufactured. Note that the opening 1 is formed by the lift-off method using the pattern made of the remaining resin layers 12, 13, and 14 as a lit-off material.
A metal wiring layer or the like may be formed on 6.

また、第1および第2の樹脂層とも未感光の感光性樹脂
を用いて、第1の樹脂層塗布後直ちに低沸点溶液処理を
し、第2の樹脂を塗布してもよい。
Alternatively, unsensitized photosensitive resin may be used for both the first and second resin layers, and a low boiling point solution treatment may be performed immediately after coating the first resin layer, and then the second resin may be coated.

第2の樹脂層は第1の樹脂層厚より厚くてもよいが、第
2の樹脂塗布時に第1の樹脂もある程度溶解して混合層
が生じるので、パターン端部を垂直にするには第2の樹
脂層を第1の樹脂層厚より薄くした方がよい。
The second resin layer may be thicker than the first resin layer, but when the second resin is applied, the first resin also dissolves to some extent to form a mixed layer, so in order to make the pattern edges vertical, it is necessary to It is better to make the second resin layer thinner than the first resin layer.

また、第1の樹脂層12として非感光のアルカリ可溶性
の樹脂を用いれば、全面感光は必要でなく一工程が簡単
となる。
Further, if a non-photosensitive alkali-soluble resin is used as the first resin layer 12, the entire surface is not required to be exposed to light, and one step becomes simple.

以上の第3図の方法では表面が平坦な第1の樹脂層上に
第2の樹脂層を形成することができるため、第3図(C
)に示すように、基板で生じた定在波19の節および腹
が、基板段差に関係なく第2の樹脂層1“4に均一に作
用し、第2図のごとき現象を生じることなく均一なパタ
ーンを有する樹脂膜パターンが形成できる。
In the method shown in Fig. 3 above, the second resin layer can be formed on the first resin layer with a flat surface, so the method shown in Fig. 3 (C
), the nodes and antinodes of the standing wave 19 generated on the substrate act uniformly on the second resin layer 1''4 regardless of the substrate level difference, and the phenomenon shown in FIG. 2 does not occur. A resin film pattern having a similar pattern can be formed.

また本発明は、第4図(A)に示すような段差物を有す
るsio 2膜17上に形成したアルミニウムなどの反
射係数の大きい金属層20の四部に樹脂パターン形成し
た場合%に効果が大きい。従来の1層レジスト法では段
差部からの反射光23によりフォトマスク21のじやへ
い領域22の下部の放射線感応性樹脂まで感応し、すな
わち放射線感応性樹脂膜厚2.4μmの場合第4図(B
)のIに示すように一段差部中心からの距離dが0.5
〜1,5μmの範囲にある樹脂膜も感光され、しやへい
領域22のパターン巾が2μm以下のとき、現像後横脂
膜は残存せず、残存するパターンの巾Whoになりパタ
ーン形成が不b」能となる。しかし本発明の方法では、
第1層の放射線感応性樹脂膜厚を段差部より厚く形成し
であるため、パターン形成のための第2層の放射線感応
樹脂膜への放射線照射時の段差部からの反射光23が第
2層の樹脂膜に達することがなく、第10図の■に示す
ように段差部の有無に関係なく一定なパターン巾を有す
る放射線感応性樹脂パターンを形成できる。なお、第1
0図(B)における本発明の特性■は第1.第2層樹脂
の合計膜厚ヲ3.4μm とした場合の例であるO 発明の効果 本発明の方法によれば低沸点溶液により二第1の樹脂層
が冷却されるため、第1の樹脂と第2の樹脂の溶剤が同
じ場合でも、第2の樹脂層形成時第1の樹脂との混合が
少なく、均一性のよい多層膜が形成できる。また、低沸
点溶液をノズルから塗布する場合にIrJ−第1の樹脂
の塗布、低沸点溶液塗布および第2の樹脂の塗布を連続
して同一の装置で処理できるため、工程および装置が簡
単で容易に多層膜が形成できる。また、本発明の方法で
は第1の樹脂層を基板段差より厚く形成しておき、第2
の樹脂層にパターン形成をし、第2の樹脂パターンをマ
スクに第1の樹脂を選択的に現像するため、第1および
第2の樹脂のパターンは基板の段差および種類に関係寸
法精度のよいパターンが形成できる。
Further, the present invention has a large effect when a resin pattern is formed on four parts of a metal layer 20 having a high reflection coefficient, such as aluminum, formed on a SIO 2 film 17 having a step as shown in FIG. 4(A). . In the conventional one-layer resist method, the reflected light 23 from the stepped portions sensitizes even the radiation-sensitive resin under the diagonal area 22 of the photomask 21, that is, in the case of a radiation-sensitive resin film thickness of 2.4 μm, as shown in FIG. (B
), the distance d from the center of the one-step difference is 0.5
A resin film in the range of ~1.5 μm is also exposed, and when the pattern width of the thin area 22 is 2 μm or less, no horizontal resin film remains after development, and the remaining pattern width becomes Who, resulting in no pattern formation. b” becomes Noh. However, in the method of the present invention,
Since the radiation-sensitive resin film of the first layer is formed thicker than the step portion, the reflected light 23 from the step portion when irradiating the radiation-sensitive resin film of the second layer for pattern formation is reflected from the step portion. The radiation-sensitive resin pattern does not reach the resin film of the layer, and can form a radiation-sensitive resin pattern having a constant pattern width regardless of the presence or absence of a stepped portion, as shown in (2) in FIG. In addition, the first
The characteristic (■) of the present invention in Figure 0 (B) is the first. This is an example when the total film thickness of the second layer resin is 3.4 μm. Effects of the Invention According to the method of the present invention, the second and first resin layers are cooled by a low boiling point solution, so that the first resin layer Even when the solvent of the first resin and the second resin are the same, there is little mixing with the first resin when forming the second resin layer, and a multilayer film with good uniformity can be formed. In addition, when applying a low boiling point solution from a nozzle, the application of the IrJ-first resin, the application of the low boiling point solution, and the application of the second resin can be sequentially performed using the same device, which simplifies the process and equipment. Multilayer films can be easily formed. Further, in the method of the present invention, the first resin layer is formed thicker than the substrate step, and the second resin layer is formed thicker than the substrate step.
A pattern is formed on the resin layer, and the first resin is selectively developed using the second resin pattern as a mask, so the first and second resin patterns have good dimensional accuracy in relation to the level difference and type of the substrate. Patterns can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来のパターン形成を説明するた
めの構造断面図、第3図(A)〜(D)は本発明の一実
施例のパターン形成方法を説明するための工程、断面図
、第4図(A)は本発明において反射光の存在する状態
の断面図、第4図(B)は反射光によるパターン巾の特
性図である。 11・・・・・・半導体基板、12.14・・・・・・
樹脂層、15・・・・・開孔部、17.18・・・・・
二酸化硅素膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
1 and 2 are structural sectional views for explaining conventional pattern formation, and FIGS. 3(A) to 3(D) are process and cross-sectional views for explaining a pattern forming method according to an embodiment of the present invention. 4(A) is a sectional view of the present invention in the presence of reflected light, and FIG. 4(B) is a characteristic diagram of the pattern width due to reflected light. 11... Semiconductor substrate, 12.14...
Resin layer, 15... Opening part, 17.18...
Silicon dioxide film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に形成した第1の樹脂層の表面を前
記第1の樹脂層が溶解せずかつ前記第1の樹脂層の溶剤
より低沸点の溶液で前記第1の樹脂層を処理した後、前
記第1の樹脂層上に第2の樹脂層を形成する工程と、前
記第1および第2の樹脂に所定のパターンを形成する工
程とを含む、ことを特徴とする半導体装置の製造方法。 Q)第1の樹脂層をアルカリ可溶性の樹脂、第2の樹脂
層を感光性樹脂とし、前記第2の樹脂層を感光させ選択
的にアルカリ可溶性とした後。 アルカリ性溶液により前記第2と第1の樹脂層に所定の
パターンを形成することを特徴とする特許請求の範囲第
1項に記載の半導体装置の製造方法。
(1) The surface of the first resin layer formed on the semiconductor substrate is treated with a solution that does not dissolve the first resin layer and has a lower boiling point than the solvent for the first resin layer. after that, forming a second resin layer on the first resin layer; and forming a predetermined pattern on the first and second resins. Production method. Q) The first resin layer is an alkali-soluble resin, the second resin layer is a photosensitive resin, and the second resin layer is exposed to light to selectively become alkali-soluble. 2. The method of manufacturing a semiconductor device according to claim 1, wherein a predetermined pattern is formed on the second and first resin layers using an alkaline solution.
JP58031113A 1983-02-25 1983-02-25 Manufacture of semiconductor device Granted JPS59155923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031113A JPS59155923A (en) 1983-02-25 1983-02-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031113A JPS59155923A (en) 1983-02-25 1983-02-25 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS59155923A true JPS59155923A (en) 1984-09-05
JPH0425694B2 JPH0425694B2 (en) 1992-05-01

Family

ID=12322342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031113A Granted JPS59155923A (en) 1983-02-25 1983-02-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59155923A (en)

Also Published As

Publication number Publication date
JPH0425694B2 (en) 1992-05-01

Similar Documents

Publication Publication Date Title
US5989788A (en) Method for forming resist patterns having two photoresist layers and an intermediate layer
US5902493A (en) Method for forming micro patterns of semiconductor devices
JPS59155923A (en) Manufacture of semiconductor device
JP2560773B2 (en) Pattern formation method
JPH0786127A (en) Formation of resist pattern
JPS58157135A (en) Forming method for pattern
JPS59155928A (en) Manufacture of semiconductor device
JPH0419697B2 (en)
JPS58132926A (en) Formation of pattern
JPS58103138A (en) Formation of pattern
JP2712407B2 (en) Method of forming fine pattern using two-layer photoresist
JPS60122933A (en) Pattern-forming water-soluble organic film and pattern formation
JPS63202025A (en) Manufacture or semiconductor device
JPH05241350A (en) Resist pattern forming method
JPH02971A (en) Formation of resist pattern
JPH01238659A (en) Pattern forming method
JPH01239928A (en) Formation of pattern
JPS61131446A (en) Formation of resist pattern
JPS61156125A (en) Pattern forming method
JPH028853A (en) Pattern forming method
JPS5968744A (en) Manufacture of photomask
JPS62269947A (en) Resist pattern forming method
JPS59152628A (en) Manufacture of semiconductor device
JPS62217241A (en) Method for forming thin film resist
JPH02101464A (en) Pattern forming method