JPS59154807A - Overload preventing circuit for high frequency amplifier or the like - Google Patents

Overload preventing circuit for high frequency amplifier or the like

Info

Publication number
JPS59154807A
JPS59154807A JP58029676A JP2967683A JPS59154807A JP S59154807 A JPS59154807 A JP S59154807A JP 58029676 A JP58029676 A JP 58029676A JP 2967683 A JP2967683 A JP 2967683A JP S59154807 A JPS59154807 A JP S59154807A
Authority
JP
Japan
Prior art keywords
power
high frequency
circuit
power supply
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58029676A
Other languages
Japanese (ja)
Other versions
JPH0158885B2 (en
Inventor
Mihazu Shinohara
篠原 巳抜
Hiroshi Hoshi
星 弘
Toshiya Kono
俊哉 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP58029676A priority Critical patent/JPS59154807A/en
Publication of JPS59154807A publication Critical patent/JPS59154807A/en
Publication of JPH0158885B2 publication Critical patent/JPH0158885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To obtain a stable overload preventing circuit by interrupting a power supply circuit when a power value extracted by a progressive wave component extracting circuit and a reflected wave component extracting circuit and a high frequency power calculated by a supply power exceed a set value. CONSTITUTION:The high frequency power 2 applied from an exciting device of a pre-stage is amplified by a trnasistor (TR) 1 and reaches an output terminal 5 through a tuning circuit 4. The high frequency output of the progressive power extracting device 6 and the reflected wave power extracting device 7 is converted into a DC voltage at detectors 8, 9 and applied to an adder 12 via a coupling resistor 11. The DC voltage drop of a resistor 10 corresponding to the power supply input power is applied to the adder 12 via the coupler 11. A value adding the reflected wave power to the power supply input power and subtrated by the propressive wave power therefrom is outputted from the adder 12. This value is the power loss in the TR1, and when the loss exceeds the set value of a voltage adjuster 14, a relay 15 is operated and the power supply circuit is interrupted.

Description

【発明の詳細な説明】 本発明は高周波増幅器もしくは高周波発振器の真実の過
負荷動作を保護するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention protects against true overload operation of high frequency amplifiers or high frequency oscillators.

一般にこのような場合に、該当する入力電力(電源電圧
が一定の場合には入力電流)と負荷からの反射電力が設
定値よりも超過した際に、電源を遮断したり、励振高周
波電力を低下させるなどの保護回路を採用してきた。
Generally, in such cases, when the corresponding input power (input current if the power supply voltage is constant) and reflected power from the load exceed set values, the power supply is shut off or the excitation high-frequency power is reduced. We have adopted protection circuits such as

然し実際に該当する高周波増幅器や高周波発振器に損傷
を与える電力は、電源入力電力から高周波出力電力を減
じたものであって、印加電源電圧や電流に余裕のある範
囲内では、電源入力電力が増加しても高周波出力電力が
それ以上上昇すれば、損傷を与えるべき電力は反って減
少して安全である。
However, the power that actually damages the high-frequency amplifier or high-frequency oscillator is the power supply input power minus the high-frequency output power, and within the range where the applied power supply voltage and current have enough margin, the power supply input power increases. However, if the high frequency output power increases further, the amount of power that would cause damage will decrease and it will be safe.

然るに従来の保護回路では、電源電圧、電源電流(陽極
電流またはコレクタ電流等)と反射波電力に各個単独の
設定値を設け、いずれかが設定値を超過した所で動作を
停止させるようにしていた。この際に電源電圧、電源電
流等を、規格の最大値に設定すればそれらが安全圏内に
あっても高周波出力電力の減少によって危険電力を超過
する事態が発生する。これを保護するために、電源関係
の設定値を低くすれば、高周波出力電力の増加による安
全動作範囲内にあっても、動作を遮断させるような過保
護状態になってしまう。
However, in conventional protection circuits, individual set values are set for the power supply voltage, power supply current (anode current or collector current, etc.), and reflected wave power, and the operation is stopped when any of them exceeds the set value. Ta. At this time, if the power supply voltage, power supply current, etc. are set to the maximum values of the standard, even if they are within the safe range, a situation will occur in which the dangerous power is exceeded due to a decrease in the high frequency output power. In order to protect against this, if the set values related to the power supply are lowered, an overprotection state will occur where the operation will be cut off even if the high frequency output power is within the safe operating range due to the increase.

通信機などの□ように負荷が安定な場合はとも角、工業
用の用途においては一般に負荷の変動が激しいために、
安全にしかもできるだけ多くの高周波電力が出力できる
ような適切な過負荷防止回路が望まれる。
This is true in cases where the load is stable, such as in communication equipment, but in industrial applications, the load generally fluctuates rapidly, so
An appropriate overload prevention circuit that can safely output as much high-frequency power as possible is desired.

高周波増幅器などの高周波出力電力は負荷回路との間に
流れる進行波高周波電力と負荷回路からの反射波電力と
の差である。従って電源入力電力Wpから負荷への進行
波高周波電力Wfを減じ、負荷からの反射波高周波電力
Wrを加えた電力が増幅器内で損失となる電力讐1であ
る。
The high frequency output power of a high frequency amplifier or the like is the difference between the traveling high frequency power flowing between the high frequency amplifier and the load circuit and the reflected wave power from the load circuit. Therefore, the power obtained by subtracting the traveling wave high frequency power Wf to the load from the power supply input power Wp and adding the reflected wave high frequency power Wr from the load is the power loss 1 in the amplifier.

Wl=Wp−(Wf−Wr)’=Wp−Wf+Wr、 
、 、  (1)本発明はこの原理によって高周波増幅
器もしくは高周波発振器の真実損失となる電力が設定値
を超過したときに、回路を遮断して、安全を計るもので
ある。
Wl=Wp-(Wf-Wr)'=Wp-Wf+Wr,
(1) Based on this principle, the present invention measures safety by interrupting the circuit when the actual power loss of the high-frequency amplifier or high-frequency oscillator exceeds a set value.

第1図は本発明の一実施例の概略図を示している。この
例では出力段にトランジスタを使用しているので、電源
電圧は安定化したものを採用した。従って出力トランジ
スタの電源入力電力はコレクタ電流またはエミッタ電流
に比例する。
FIG. 1 shows a schematic diagram of one embodiment of the invention. In this example, a transistor is used in the output stage, so a stabilized power supply voltage is used. Therefore, the power input power of the output transistor is proportional to the collector current or emitter current.

トランジスタ1のベースには前段の励振器から高周波電
力2が印加されており定電圧電源ライン3から電源電圧
を受けている。
A high frequency power 2 is applied to the base of the transistor 1 from an exciter in the previous stage, and a power supply voltage is received from a constant voltage power supply line 3.

トランジスタ1で増幅された高周波出力電力は同調回路
4を通して出力端子5に達し、負荷に加えられるが、そ
の間には進行波電力抽出器6と反射波電力抽出器7が挿
入されており、それぞれ進行波成分および負荷からの反
射波成分を抽出している。これらの抽出器には通常の方
向性結合器を使用すればよい。この両抽出器の高周波出
力は検波器8と同9で直流電圧に変換され、結合抵抗器
11を経て加算器12に加えられるが、この際に、進行
波成分用の検波器のみは極性を逆にして負電圧を加算器
に加えている。
The high frequency output power amplified by the transistor 1 reaches the output terminal 5 through the tuning circuit 4 and is applied to the load, but a traveling wave power extractor 6 and a reflected wave power extractor 7 are inserted between them. Wave components and reflected wave components from the load are extracted. Ordinary directional couplers may be used for these extractors. The high-frequency outputs of both extractors are converted into DC voltage by detectors 8 and 9, and then added to adder 12 via coupling resistor 11. At this time, only the detector for the traveling wave component changes the polarity. This is reversed and a negative voltage is applied to the adder.

一方、トランジスタ1への電源入力電力は前述の如く、
コレクタまたはエミッタ電流に比例するようになってい
るから、この回路に挿入された抵抗器10の直流電圧降
下が電源入力電力に相当することになる。この電圧も結
合抵抗器11を経て加算器12に印加される。加算器1
2に印加される電圧は結合抵抗器11の値を適当にすれ
ば、それぞれ電源入力電力wp、出力高周波信号の進行
波成分Wfおよび反射波成分Wrに同一比率を乗じたも
のに相当させられるから、前記(1)式の如く、加算器
12の出力電圧は出力トランジスタl内の電圧損失W1
に相当することになる。
On the other hand, the power input to transistor 1 is as described above.
Since it is proportional to the collector or emitter current, the DC voltage drop across the resistor 10 inserted into this circuit corresponds to the power input to the power supply. This voltage is also applied to the adder 12 via the coupling resistor 11. Adder 1
If the value of the coupling resistor 11 is set appropriately, the voltage applied to 2 can be made to correspond to the power supply input power wp, the traveling wave component Wf of the output high-frequency signal, and the reflected wave component Wr multiplied by the same ratio. , as in equation (1) above, the output voltage of the adder 12 is determined by the voltage loss W1 in the output transistor l.
It will be equivalent to .

加算器12の出力電圧は差動増幅器13の一方の入力端
子に加えられるが、差動増幅器の他方の入力端子には電
圧調整器14の出力可変電圧が印加される。従って、こ
の電圧調整器14の出力電圧レベルを変化させれば、差
動増幅器13の出力に接続されているリレー15を動作
させる電力損失−1のレベルを調整できる。
The output voltage of the adder 12 is applied to one input terminal of the differential amplifier 13, while the output variable voltage of the voltage regulator 14 is applied to the other input terminal of the differential amplifier. Therefore, by changing the output voltage level of the voltage regulator 14, the level of power loss -1 for operating the relay 15 connected to the output of the differential amplifier 13 can be adjusted.

リレー15が動作すると、その接点16が開放される。When the relay 15 operates, its contacts 16 are opened.

第1図の回路ではこの際に出力トランジスタlの電源電
圧Vccがリレー接点16の開放によって遮断されるよ
うに保護しているが、このリレー接点16によって前段
からの高周波励振電力を遮断するようにしてもよい。或
いは両者共完全に遮断はせずに、低く制御することによ
って再起動し易くすることもできる。
In the circuit shown in FIG. 1, the power supply voltage Vcc of the output transistor l is protected at this time by being cut off by opening the relay contact 16, but the high frequency excitation power from the previous stage is cut off by the relay contact 16. It's okay. Alternatively, it is possible to make it easier to restart by controlling both of them to a low level without completely shutting them off.

尚、第1図中で、17は高周波バイパス用コンデンサ、
18は電源電圧供給端子である。
In Fig. 1, 17 is a high frequency bypass capacitor;
18 is a power supply voltage supply terminal.

次に本発明の方式を採用した場合に、どの程度の改善が
行われるか一例について説明する。今終段のトランジス
タのコレクタに電源電圧100Vが加わり、コレクタ電
流の制限を1.5Aとし、また反射波電力を10Wと設
定した従来の方式を考える。コノとき入力電力は100
X 1.5= 150Wで能率を50%とすると、高周
波出力電力Wo= 150 X  0.5= 75W−
t’ある。反射波電力Wrを10Wとすると、進行波電
力Wfは Wf= Wo+ Wr= 85 W となり、反射係数1 r l =Iア肛=バ下/ 85
 ’=<0.343−7’?It圧定在波比VSWR=
 (1+ l r I)/ (1−1r I) =  
2.oaaトナル。
Next, an example of how much improvement can be achieved when the method of the present invention is adopted will be described. Now consider a conventional system in which a power supply voltage of 100V is applied to the collector of the final stage transistor, the collector current is limited to 1.5A, and the reflected wave power is set to 10W. The input power is 100 when
If X 1.5 = 150W and efficiency is 50%, high frequency output power Wo = 150 X 0.5 = 75W-
There is t'. When the reflected wave power Wr is 10 W, the traveling wave power Wf is Wf = Wo + Wr = 85 W, and the reflection coefficient is 1 r l = Ia = B / 85
'=<0.343-7'? It pressure standing wave ratio VSWR=
(1+lrI)/(1-1rI)=
2. oaa tonal.

このとき負荷回路を調整してVSWRを 1.2まで改
善したとする。VSWRの改善に伴い、当然能率も60
%にまで上Aしたとすると、コレクタ電流が1.5Aの
ままとして高周波出力讐0は75×(0,6/ 0.5
) = 90Wになる。このとき反射波電力Wrは反射
係数1rlがVSWR=  1.2から1r l = 
 (1,2−1) / (1,2+1) ’、 o、0
91;j:テ低下し、またl r l 2=Wr/Wf
=Wr/ (Wo+Wr) =0.0083だから、W
r=Wo/ (1/ l r I2−1) =90 /
 (110,0083−1) = 0.75W即ち、I
OWの制限に対して十分小さくなったが、Ic= 1.
5Aの制限のために高周波出力Woは90Wであり、コ
レクタ損失W+は W+= 150−90=60W で、VSWR=  2.044の場合に比べて、75W
−60W= 15Wと15Wだけ軽くなったが、その分
だけ実力を発揮できない状態におくことになる。
At this time, assume that the load circuit is adjusted to improve the VSWR to 1.2. With the improvement of VSWR, the efficiency has naturally increased to 60.
%, the collector current remains at 1.5 A, and the high frequency output is 75 x (0,6/0.5
) = 90W. At this time, the reflected wave power Wr has a reflection coefficient 1rl of VSWR = 1.2 to 1r l =
(1,2-1) / (1,2+1)', o, 0
91;j: Te decreases, and l r l 2=Wr/Wf
=Wr/ (Wo+Wr) =0.0083, so W
r=Wo/ (1/ l r I2-1) =90/
(110,0083-1) = 0.75W, i.e. I
Although it is sufficiently small compared to the OW limit, Ic=1.
Due to the 5A limit, the high frequency output Wo is 90W, and the collector loss W+ is W+ = 150-90 = 60W, which is 75W compared to the case of VSWR = 2.044.
-60W = 15W Although the weight has been reduced by 15W, it means that you will not be able to demonstrate your full potential by that much.

このような場合に本発明の方式を採用すると、電源入力
電力150Wに相当する電圧Epを 1.5V、進行波
電力100Wに相当する電圧Efを−IV、また反射波
電力1OOWに相当する電圧Erを1vとなるように加
算器デバイダの倍率を調整して、第2図の如く加えると
、加算器の出力電圧Eaは Ea=Ep+Er−Ef、  、  、   (2)と
なる。前述の計算例では電源入力電力111p= 15
OW、反射波電力Wr=10W、進行波電力11if8
5Wで高周波出力電力−o= Wf −Wr= 75 
Wであるから、これらに相当する各電圧はEp=  1
.5V、 Er−0、IV 、 Ef= 0.85Vで
Ea=  1.5+ 0.1−0.85= 0゜?5V
となる。これは (1)式によって、トランジスタの損
失電力に相当する電圧である。
If the method of the present invention is adopted in such a case, the voltage Ep corresponding to 150 W of input power of the power supply is set to 1.5 V, the voltage Ef corresponding to 100 W of traveling wave power is set to -IV, and the voltage Er corresponding to reflected wave power of 100 W is set to 1.5 V. When the magnification of the adder divider is adjusted so that the voltage becomes 1V and the voltage is added as shown in FIG. 2, the output voltage Ea of the adder becomes Ea=Ep+Er-Ef, (2). In the above calculation example, power supply input power 111p = 15
OW, reflected wave power Wr=10W, traveling wave power 11if8
High frequency output power at 5W -o = Wf -Wr = 75
W, the corresponding voltages are Ep=1
.. 5V, Er-0, IV, Ef = 0.85V, Ea = 1.5 + 0.1-0.85 = 0°? 5V
becomes. This is the voltage corresponding to the power loss of the transistor according to equation (1).

一応、このトランジスタの最大損失を75Wとすると、
この値に相当する電圧は0.?5Vとなる。
Assuming that the maximum loss of this transistor is 75W,
The voltage corresponding to this value is 0. ? It becomes 5V.

そこで、差動増幅器13に加える基準電圧即ち調整器1
4の出力電圧レベルEbを同一レベルに設定しておくと
、トランジスタの損失電圧が75Wを超過したときに差
動増幅器の出力電流が流れ、リレー15を動作させて、
トランジスタの動作を停止させて保護するようになる。
Therefore, the reference voltage applied to the differential amplifier 13, that is, the regulator 1
If the output voltage level Eb of 4 is set to the same level, when the loss voltage of the transistor exceeds 75W, the output current of the differential amplifier will flow, operating the relay 15,
This protects the transistor by stopping its operation.

この状態で、負荷のVSWRを1.2まで整合させると
、前述のように能率が50%から60%に」−Mする。
In this state, if the VSWR of the load is matched to 1.2, the efficiency increases from 50% to 60% as described above.

このときトランジスタ内の損失電力−1を一定とすると
、改善された場合の電源入力電力を−p′とし、Wf−
Wr−Woに対応する高周波出力型カー〇′−−f’−
Wr’は次の関係がある。
At this time, assuming that the power loss in the transistor -1 is constant, the power supply input power in the case of improvement is -p', and Wf-
High frequency output type car compatible with Wr-Wo 〇'--f'-
Wr' has the following relationship.

w+=wp−一〇二wp’−−〇′ 然るにWo/Wp=  0.5、Wo’/Wp’−0,
8となっているから、 WI=Wp (1−Wo/Wp)  −0,5Wp=W
p’(1−Wo’/Wp’)  −0,4Wp’ 故に Wp’=WpX  0.510.4 =WpX1.25
即ち°トランジスタ内の損失を等しくすれば、本発明の
方式では、電源入力を25%増加させ、必然的に高周波
出力電力も25%増加させることができる。このとき、
電源入力は150WX 1.25=  187.5Wで
あり、高周波出力電力は187.5W X  0.6=
  112.5Wとなり、従来の方式に比して 112
.5−90 = 22.5Wの増加が得られる。即ち本
発明の過負荷防止回路では真実に保護を必要とするトラ
ンジスタの内部損失を対象として制限を計るので、負荷
の変化に対し、常に充分な力を発揮させることができる
w+=wp-102 wp'--0' However, Wo/Wp= 0.5, Wo'/Wp'-0,
8, so WI=Wp (1-Wo/Wp) -0,5Wp=W
p'(1-Wo'/Wp') -0,4Wp' Therefore, Wp'=WpX 0.510.4 =WpX1.25
That is, if the losses in the transistors are made equal, the system of the present invention can increase the power input by 25% and, as a result, the high frequency output power can also be increased by 25%. At this time,
The power input is 150W x 1.25 = 187.5W, and the high frequency output power is 187.5W x 0.6 =
112.5W, which is 112.5W compared to the conventional method.
.. An increase of 5-90 = 22.5W is obtained. That is, since the overload prevention circuit of the present invention limits the internal loss of the transistor that really requires protection, it is possible to always exert sufficient power against changes in load.

トランジスタは電子管に比して、過負荷に対する耐力が
弱いので、本発明は特に半導体回路に有利であるとはい
え、電子管回路にも有効なことは論をまたない。また負
荷の変動の著しい工業的応用に対しては特に本発明が効
果的である。
Since transistors have weaker overload resistance than electron tubes, the present invention is particularly advantageous for semiconductor circuits, but it goes without saying that it is also effective for electron tube circuits. Further, the present invention is particularly effective for industrial applications where load fluctuations are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略を示す回路図、第2図
はその加算器動作説明図である。 ■は出力トランジスタ、2は高周波電力、3は電源供給
ライン、4は同調回路、5は出力端子、6は進行波成分
抽出回路、7は反射波成分抽出回路、8・9は検波器、
10はトランジスタ電流検出用抵抗器、11は結合抵抗
器、12は加算器、13は差動増幅器、14は電圧調整
器、15はリレー、16はリレー接点、17は高周波バ
イパスコンデンサ、18は電源供給端子。
FIG. 1 is a circuit diagram schematically showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the adder operation thereof. ■ is an output transistor, 2 is a high frequency power, 3 is a power supply line, 4 is a tuning circuit, 5 is an output terminal, 6 is a traveling wave component extraction circuit, 7 is a reflected wave component extraction circuit, 8 and 9 are detectors,
10 is a transistor current detection resistor, 11 is a coupling resistor, 12 is an adder, 13 is a differential amplifier, 14 is a voltage regulator, 15 is a relay, 16 is a relay contact, 17 is a high frequency bypass capacitor, 18 is a power supply supply terminal.

Claims (1)

【特許請求の範囲】[Claims] (1)高周波増幅器もしくは高周波発振器と負荷回路と
の間に、進行波成分抽出回路と反射波成分抽出回路を置
き、前記高周波増幅器もしくは高周波発振器の入力電源
電力に相当する電圧から、上記進行波成分抽出回路で抽
出した進行波電力に相当する電圧を減じ、かつ上記反射
波成分抽出回路で抽出した反射波電力に相当する電圧を
加え、その合計値が、予め設定した値を超過したとき、
該当する電源回路または高周波励振電力を遮断または制
御する如く構成することを特徴とする高周波増幅器等の
過負荷防止回路。
(1) A traveling wave component extraction circuit and a reflected wave component extraction circuit are placed between the high frequency amplifier or high frequency oscillator and the load circuit, and the traveling wave component is extracted from the voltage corresponding to the input power supply power of the high frequency amplifier or high frequency oscillator. When the voltage corresponding to the traveling wave power extracted by the extraction circuit is subtracted, and the voltage corresponding to the reflected wave power extracted by the reflected wave component extraction circuit is added, and the total value exceeds a preset value,
An overload prevention circuit for a high frequency amplifier or the like, characterized in that it is configured to cut off or control the corresponding power supply circuit or high frequency excitation power.
JP58029676A 1983-02-24 1983-02-24 Overload preventing circuit for high frequency amplifier or the like Granted JPS59154807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029676A JPS59154807A (en) 1983-02-24 1983-02-24 Overload preventing circuit for high frequency amplifier or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029676A JPS59154807A (en) 1983-02-24 1983-02-24 Overload preventing circuit for high frequency amplifier or the like

Publications (2)

Publication Number Publication Date
JPS59154807A true JPS59154807A (en) 1984-09-03
JPH0158885B2 JPH0158885B2 (en) 1989-12-14

Family

ID=12282711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029676A Granted JPS59154807A (en) 1983-02-24 1983-02-24 Overload preventing circuit for high frequency amplifier or the like

Country Status (1)

Country Link
JP (1) JPS59154807A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223243A (en) * 1975-08-16 1977-02-22 Nippon Telegr & Teleph Corp <Ntt> Protective circuit for power amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223243A (en) * 1975-08-16 1977-02-22 Nippon Telegr & Teleph Corp <Ntt> Protective circuit for power amplifier

Also Published As

Publication number Publication date
JPH0158885B2 (en) 1989-12-14

Similar Documents

Publication Publication Date Title
US4363064A (en) Overcurrent protection system
JP4411282B2 (en) High frequency power supply system
JP4256432B2 (en) Laser equipment
JP4257770B2 (en) Arc interruption circuit, power supply for sputtering and sputtering equipment
JPS59154807A (en) Overload preventing circuit for high frequency amplifier or the like
EP1548931A1 (en) Protection circuit for power amplifier
JPH1198679A (en) Converter device
JP2009238516A (en) High-frequency power supply device
JP4115618B2 (en) Magnetron output control method and apparatus
JPH04271225A (en) Leakage protection system and leakage circuit breaker
JP2004071269A (en) Microwave power supply system
JP2001035699A (en) Protection method for plasma generating high frequency power supply and power supply
US10847334B2 (en) Apparatus and method for controlling current
JPH06188660A (en) Power amplifier circuit
JP4129950B2 (en) DC power supply having sudden current interruption function, power supply for sputtering, and sputtering apparatus
JPS5962225A (en) Control circuit of transmission output
US2858378A (en) Amplifier protective circuit
JPH11233294A (en) High-frequency power source
JP2003188697A (en) Semiconductor switch having overheat protection function
JPS6126425A (en) Device for protecting transformer
JP2000278865A (en) Higher harmonic suppressing circuit
KR970002094Y1 (en) Pump system of etcher and interlock apparatus thereof
JP3388278B2 (en) Converter device
JPH11113261A (en) Converter device
JPH0261220B2 (en)