JPS59154108A - Dissociation method of dissolved component in cooling water for treating combustible gas - Google Patents

Dissociation method of dissolved component in cooling water for treating combustible gas

Info

Publication number
JPS59154108A
JPS59154108A JP2748383A JP2748383A JPS59154108A JP S59154108 A JPS59154108 A JP S59154108A JP 2748383 A JP2748383 A JP 2748383A JP 2748383 A JP2748383 A JP 2748383A JP S59154108 A JPS59154108 A JP S59154108A
Authority
JP
Japan
Prior art keywords
cooling water
gas
cooling
water
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2748383A
Other languages
Japanese (ja)
Inventor
Kiyoshi Morimoto
清 森本
Tadatoshi Ishiguro
忠利 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2748383A priority Critical patent/JPS59154108A/en
Publication of JPS59154108A publication Critical patent/JPS59154108A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances

Abstract

PURPOSE:To dissociate and remove dissolved components in cooling water, to prevent an atmospheric component from penetrating into the water, and to blow off the components into a safe place, by injecting an inert gas into a storage pit storing circulating water for scrubbing and cooling combustible gases. CONSTITUTION:The high-temp. blast furnace gas is sent into a cooling apparatus 3 from a lower part through a line 1. The sent-in blast furnace gas is sucked up by a circulating water pump 9 from a circulating water pit 5, cooled by cooling water sprayed from a cooling water nozzle 4 provided in a gas cooling apparatus 3, and sent to the succeeding stage through an upper main pipe 2. Nitrogen is supplied into a suction pipe 6 through a line 7, and injected into the cooling water to dissociate oxygen from the cooling water stored in the storage pit, and the atmosphere in the upper space of the pit is made to consist mainly of nitrogen. The oxygen etc. mixed with nitrogen is discharged from a discharge port 8 into a safe place, and the danger of an explosion can be completely eliminated.

Description

【発明の詳細な説明】 本発明は可燃成分を有する高温ガス、例えば高炉ガスを
冷却水で直接冷却すること罠より、又該冷却水を循環使
用することによ多発生するおそれがある引火、爆発を防
止する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to solve the problem of ignition, which is often caused by directly cooling high-temperature gas containing combustible components, such as blast furnace gas, with cooling water, or by circulating the cooling water. It concerns how to prevent explosions.

可燃成分を有するガス中の酸素濃度が増加して爆発限界
に達した時に、何らかの着火源と接触すると引火や爆発
を起こすことはよく知らnている。
It is well known that when the oxygen concentration in a gas containing combustible components increases and reaches an explosive limit, contact with some kind of ignition source will cause ignition or explosion.

例えば、水噴射直冷式のガス冷却器で可燃成分を有する
高温ガスを冷却すると、冷却水が該高温ガスと接触して
冷却水中の溶存酸素が解離作用を起こし該高温ガスに含
″!!れている成分と置換される。
For example, when a high-temperature gas containing combustible components is cooled with a water injection direct cooling type gas cooler, the cooling water comes into contact with the high-temperature gas, and dissolved oxygen in the cooling water dissociates and is contained in the high-temperature gas. is replaced with the component that is present.

このため冷却後の高温ガス中の酸素濃度が増加する。一
方前記置換によって冷却水には冷却水のその時の温度に
おいて許容さnる溶解度まで高温ガス成分が溶解してい
るが、この冷却水を循環使用するために冷却水貯祷圓貯
蔵ビット内に戻すと、戻り冷却水は新しい冷却水や空気
によって温度が下けら几ることも作用して戻り冷却水に
溶解しているガス成分が解離してピット上部の空間に溜
り、空気と混合し、該混合ガスが爆発限界に達すると引
火し、爆発する危険がある。
Therefore, the oxygen concentration in the high temperature gas after cooling increases. On the other hand, as a result of the above-mentioned substitution, high-temperature gas components are dissolved in the cooling water to a solubility that is permissible at the current temperature of the cooling water, but this cooling water is returned to the cooling water storage circle storage bit for circulation use. Then, the temperature of the return cooling water is lowered by the new cooling water and air, and the gas components dissolved in the return cooling water dissociate and accumulate in the space above the pit, mixing with the air and causing If the mixed gas reaches the explosive limit, there is a risk of ignition and explosion.

特に解離ガス成分がCOのような場合には中毒の危険性
もある。
Particularly when the dissociated gas component is CO, there is a risk of poisoning.

本発明は上記危険に対する対策として、貯蔵ピット内の
冷却水に不活性ガス(例:N2)を噴気して冷却水中に
溶存している酸素を解離放出し、この溶存沈床全解離放
出した冷却水で高温ガス全冷却することによって冷却水
から畠温ガス中への酸素の解離放出全激減し、また高温
ガス中に含まれる00等全溶解した循環冷却水が貯蔵ビ
ットに戻されたとき、上記不活性ガスの吹気によって、
該溶解しているCO等のガス成分全該不活住ガスと置換
して戻、り冷却水から放出し、この放出されたガス成分
全不活性ガス混合気体として大気又は処理装置等の安全
な場所に放出するところの冷却中溶存成分解離法であり
、本発明の吸上は可燃性ガスの洗滌又(徒冷却用循環水
全貯蔵した貯蔵ビット円にN2等の不活性ガス?噴気す
ることにより、冷却水中の溶存成分子fij%離除去す
るとともに大気成分の水中への侵入全防ぎ、戻り冷却水
から解離さオしてくるガス成分全前記不活性ガスとの混
合体とし本発明においてf’bk不活性ガスの好ましい
例としたのは、次の理由による。
As a countermeasure against the above-mentioned danger, the present invention dissociates and releases oxygen dissolved in the cooling water by blowing an inert gas (e.g. N2) into the cooling water in the storage pit, and dissociates and releases all of the dissolved sediment in the cooling water. By completely cooling the high-temperature gas, the dissociation and release of oxygen from the cooling water into the Hatane gas is completely reduced, and when the circulating cooling water containing all dissolved 00 etc. contained in the high-temperature gas is returned to the storage bit, the above-mentioned By blowing inert gas,
All of the dissolved gas components such as CO are replaced with the inert gas and released from the cooling water, and the released gas components are released into the atmosphere or into a safe environment such as processing equipment as an inert gas mixture. This is a method of dissociating dissolved components during cooling, and the suction of the present invention is for cleaning flammable gases or for blowing inert gas such as N2 into the storage bit circle where all the circulating water for side cooling is stored. In the present invention, fij% of dissolved components in the cooling water are separated and removed, and atmospheric components are completely prevented from entering the water, and all gas components dissociated from the returned cooling water are made into a mixture with the inert gas. The reason why the 'bk inert gas was selected as a preferable example is as follows.

従来、水中の溶存成分、特に酸素全除去する方法として
は、例えばボイラの給水処理における亜硫酸ソーダ、ヒ
ドラジン等の添加による化学処理法と脱気器あるいは窒
素ガスによる脱酸6素法のような機械的処理法がある。
Conventionally, the methods for completely removing dissolved components in water, especially oxygen, include chemical treatment methods by adding sodium sulfite, hydrazine, etc. in boiler feed water treatment, and mechanical deoxidation methods such as deoxidation methods using deaerators or nitrogen gas. There is a method to deal with it.

又、本系BFG (高炉ガス)ラインへの適用が考えら
几る常温脱酸素法としては、鉄屑による方法、常温真空
脱気、−集品添加、窒素ガスによる脱酸素法等がある。
In addition, room-temperature deoxidation methods that can be considered for application to the present BFG (blast furnace gas) line include methods using iron scraps, room-temperature vacuum deaeration, addition of aggregates, and deoxidation methods using nitrogen gas.

而して、上記の何nの場合にも使用さ几ている窒素ガス
による脱酸素法はヘンリーの法則の概念を利用したもの
である。
The deoxidation method using nitrogen gas, which is used in the above cases, utilizes the concept of Henry's law.

CO2,02,N2の如く溶解度の小さいものには、C
!=H−P(0:水中のガス濃度、P:被吸収成分の分
圧、H:溶解度係数)の関係があり、ヘンリーの法則と
して知られている。すなわち液体中のガスの溶解度は液
面上にかかるそのガスの分圧に比例し、液体の温度上昇
とともに減少する。したがって、溶存酸素を含有する水
に純窒素ガスを接触させると、純窒素は酸素分圧が零で
あるから上記ヘンリーの法則により水中の溶存酸素が純
窒素ガス中に移行し、溶存酸素はを減少する。こn−が
窒素による脱酸素法の原理である。
For substances with low solubility such as CO2, 02, and N2, C
! =H-P (0: gas concentration in water, P: partial pressure of absorbed component, H: solubility coefficient), which is known as Henry's law. That is, the solubility of a gas in a liquid is proportional to the partial pressure of that gas on the liquid surface, and decreases as the temperature of the liquid increases. Therefore, when pure nitrogen gas is brought into contact with water containing dissolved oxygen, the oxygen partial pressure of pure nitrogen is zero, so according to Henry's law, the dissolved oxygen in the water will migrate into pure nitrogen gas, and the dissolved oxygen will be Decrease. This n- is the principle of the deoxygenation method using nitrogen.

この窒素ガスによる脱酸素法は、純窒素を容易に得らj
、る製鉄所等では、最も経済的であり、性能的にも満足
できる方法であることがN2を好ましい不活性ガスとす
る理由+ある。
This deoxidation method using nitrogen gas makes it easy to obtain pure nitrogen.
The reason why N2 is preferred as an inert gas is that it is the most economical and satisfactory method in terms of performance in steel mills and the like.

次に本発明の実施例を第1図のフローシートを用いて詳
細に説明する。
Next, an embodiment of the present invention will be described in detail using the flow sheet shown in FIG.

本実施例はCOを多量に含む高炉ガスBFGの冷却に本
発明方法を適用した例であり、ガス冷却器3でBFGを
冷却後次工程へ送る系に適用した実施例である。高温の
BFGはBFGライン1から5,000〜100,00
0 N’/Hの通過量でガス冷却器3内に、その下部か
ら送り込まnる。送り込まf′した該BFGは容量22
0m’の循環水ビット5から循環水ポンプ9により吸い
上げら九、ガス冷却器3内に設けた冷却水ノズル4から
スプレ、(150”/H)された冷却水により、冷却さ
几、ガス冷却器の上部本管2より次工程へ送ら几る。
This example is an example in which the method of the present invention is applied to cooling blast furnace gas BFG containing a large amount of CO, and is an example in which the method is applied to a system in which BFG is cooled in a gas cooler 3 and then sent to the next process. High temperature BFG is 5,000~100,000 from BFG line 1
It is fed into the gas cooler 3 from the lower part at a passing rate of 0 N'/H. The BFG fed f' has a capacity of 22
The circulating water is sucked up by the circulating water pump 9 from the circulating water bit 5 at 0 m' and sprayed from the cooling water nozzle 4 provided in the gas cooler 3 (150"/H) to cool the gas cooling. It is sent to the next process from the upper main pipe 2 of the vessel.

上記冷却水貯蔵ビット5に連通ずるライン11′は補給
水ライイで補給水量は75rrl/Hとした。又、10
は貯蔵ビット5に開口するオーバーフローラインであシ
、冷却水の温度バランスの保持が主目的のものである。
The line 11' communicating with the cooling water storage bit 5 was filled with makeup water, and the amount of makeup water was 75 rrl/H. Also, 10
is an overflow line that opens into the storage bit 5, and its main purpose is to maintain the temperature balance of the cooling water.

以上の構成のみであると、ガス冷却器内でBFGは冷却
水と接触して温度が降下し、BP、G中のco。
With only the above configuration, the BFG comes into contact with the cooling water in the gas cooler and its temperature drops, causing the cobalt in the BP and G to drop.

Co2.N2等の各成分は冷却水中の02等と置換し。Co2. Each component such as N2 is replaced with 02 etc. in the cooling water.

冷却後のBFG中には冷却水中の溶存成分(02等)が
混入するのでBFG中の02濃度が増加し、爆発限界に
達するおそ九がある。
Dissolved components (02, etc.) in the cooling water mix into the BFG after cooling, so the concentration of 02 in the BFG increases and is likely to reach the explosive limit.

一方、冷却水貯蔵ビット5内では戻り冷却水沈混入した
CO等が冷却水から放出さnl、貯蔵ビット5の上部に
溜シ、ビット周辺でも爆発限界に達するおそnがある。
On the other hand, in the cooling water storage bit 5, CO and the like mixed with the returned cooling water are released from the cooling water, and there is a possibility that the CO and the like that have settled in the returning cooling water will reach the explosion limit in the upper part of the storage bit 5 and around the bit.

上記の冷却後のBFG中の02の濃度の増加による爆発
限界に達するおそ几と、貯蔵ビット周辺でのCo Kよ
る爆発限界に達するおそn、の、2つの問題を解決する
ために、不活性ガス吹込管、本実施例では窒素ガス吹込
管6を貯蔵ビット5内に浸漬させ、かつ、貯蔵ビット5
を、放出口8をもつ蓋12で覆った。そしてN2ライン
7より該吹込管6VCN2を0.1’/H供給して冷却
水中に噴気させて貯蔵ビット内にある冷却水から02を
解離し、かつ、ビット内の上部空間’fr N2主体の
雰囲気とした。前記の冷却水中の02の解離により、B
FG中の02の濃度の増加は実質的に解決さn、又貯蔵
ビットの上部空間がN2主体の雰囲気であるので冷却水
中への大気成分(02)の溶解を防止でき、かつ貯蔵ビ
ット周辺での爆発の危険性の問題も解決できた。さらに
放出口8よ#)02及びCO等をN2との混合体として
安全な場所へ放出するときは、爆発のおそnは全くない
In order to solve two problems: the risk of reaching the explosion limit due to the increase in the concentration of 02 in the BFG after cooling, and the risk of reaching the explosion limit due to Co K around the storage bit, A gas blowing pipe, in this embodiment a nitrogen gas blowing pipe 6, is immersed in the storage bit 5, and the storage bit 5 is
was covered with a lid 12 having an outlet 8. Then, the blowing pipe 6VCN2 is supplied at 0.1'/H from the N2 line 7, and is blown into the cooling water to dissociate 02 from the cooling water in the storage bit. It was the atmosphere. Due to the dissociation of 02 in the cooling water, B
The increase in the concentration of 02 in the FG is virtually eliminated, and since the upper space of the storage bit has an atmosphere mainly composed of N2, dissolution of atmospheric components (02) into the cooling water can be prevented, and the atmosphere around the storage bit can be prevented. The problem of explosion risk was also resolved. Furthermore, when releasing 02, CO, etc. from the outlet 8 as a mixture with N2 to a safe place, there is no possibility of an explosion.

従って本発明によ九ば冷却水中への02の溶解とそnに
伴なうガス中への02等の混入増大、00等の大気への
不安全な放散が防止され、爆発事故を未然に防ぐという
環境面、工場災害予防の面でも大きな効果がある。
Therefore, the present invention prevents the dissolution of 02 into the cooling water, the resulting increase in the contamination of 02, etc. into the gas, and the unsafe release of 00, etc. into the atmosphere, thereby preventing explosion accidents. It has great effects in terms of the environment and the prevention of factory disasters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例のフローシートを示すもので
ある。 1・・・BFGライン、2・・・冷却器上部本管、3・
・・ガス冷却器、4・・−冷却水ノズル、5・・・冷却
水貯蔵ビット、6・・・窒素吹込管、7・・・N2ライ
ン、8・・・放出口、9・・・循環水ボンゾ、10・・
・オーバーフローライン、11・・・補給水ライン、1
2・・・蓋代理人 弁理士 秋 沢 政 光 外2名
FIG. 1 shows a flow sheet of an embodiment of the present invention. 1... BFG line, 2... Cooler upper main pipe, 3...
...Gas cooler, 4...-cooling water nozzle, 5...cooling water storage bit, 6...nitrogen blowing pipe, 7...N2 line, 8...discharge port, 9...circulation Water Bonzo, 10...
・Overflow line, 11... Makeup water line, 1
2... Lid agent Patent attorney Masa Akizawa Mitsugai 2 people

Claims (1)

【特許請求の範囲】[Claims] (1)可燃性ガスの洗滌又は冷却用循環水を貯蔵した貯
蔵ピット内にN2等の不活性ガスを噴気することにより
、冷却水中の溶存成分を解離除去するとともに大気成分
の水中への侵入を防ぎ、戻シ冷却水から解離さnてくる
ガス成分を前記不活性ガスとの混合体として安全な場所
へ放出することを特徴とする可燃性ガス処理用冷却水中
溶存成分解離法。
(1) By blowing inert gas such as N2 into the storage pit where circulating water for cleaning flammable gas or cooling is stored, dissolved components in the cooling water are dissociated and removed, and atmospheric components are prevented from entering the water. A method for dissociating dissolved components in cooling water for treating flammable gases, characterized in that the gas components dissociated from the returned cooling water are released as a mixture with the inert gas to a safe place.
JP2748383A 1983-02-21 1983-02-21 Dissociation method of dissolved component in cooling water for treating combustible gas Pending JPS59154108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2748383A JPS59154108A (en) 1983-02-21 1983-02-21 Dissociation method of dissolved component in cooling water for treating combustible gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2748383A JPS59154108A (en) 1983-02-21 1983-02-21 Dissociation method of dissolved component in cooling water for treating combustible gas

Publications (1)

Publication Number Publication Date
JPS59154108A true JPS59154108A (en) 1984-09-03

Family

ID=12222373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2748383A Pending JPS59154108A (en) 1983-02-21 1983-02-21 Dissociation method of dissolved component in cooling water for treating combustible gas

Country Status (1)

Country Link
JP (1) JPS59154108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187782A1 (en) * 2018-03-30 2019-10-03 三菱日立パワーシステムズ株式会社 Fuel gas cooling system, and gas turbine plant
US11330870B2 (en) 2013-10-16 2022-05-17 Adidas Ag Three-dimensional shoe manufacturing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730509A (en) * 1980-07-31 1982-02-18 Mitsubishi Heavy Ind Ltd Degassing device for dissolved gas in liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730509A (en) * 1980-07-31 1982-02-18 Mitsubishi Heavy Ind Ltd Degassing device for dissolved gas in liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330870B2 (en) 2013-10-16 2022-05-17 Adidas Ag Three-dimensional shoe manufacturing
WO2019187782A1 (en) * 2018-03-30 2019-10-03 三菱日立パワーシステムズ株式会社 Fuel gas cooling system, and gas turbine plant
JP2019178624A (en) * 2018-03-30 2019-10-17 三菱日立パワーシステムズ株式会社 Fuel gas cooling system and gas turbine plant
CN111902620A (en) * 2018-03-30 2020-11-06 三菱动力株式会社 Cooling system for gas fuel and gas turbine plant

Similar Documents

Publication Publication Date Title
US3788039A (en) Fuel tank inerting system with means to improve thermal stability of fuel
GB1361086A (en) Removal of gas from a container containing the same
US3929434A (en) Corrosion reduction of tanker vessel cargo compartments
JPS59154108A (en) Dissociation method of dissolved component in cooling water for treating combustible gas
EP0478625A1 (en) Methods, apparatus and substances for extinguishing fires
US3279198A (en) Method for reducing gas concentrations in cargo tanks
US3061403A (en) Method of purifying monatomic inert gases
US2543362A (en) Method of inerting enclosed spaces to prevent or extinguish fires
US3236635A (en) Method for degassing molten metal
US3844772A (en) Deoxidation of copper
US4395339A (en) Method of operating pure oxygen wet oxidation systems
CN112031737B (en) Air blowing type foaming agent for removing hydrogen sulfide in foam isolation of oil extraction well head
JPH10122539A (en) Discharged gas processing device
KR100229701B1 (en) Apparatus for flame- and explosion-proofing an inflammable and explosive liquid in a tank, and for cleaning the tank when empty
PL122283B1 (en) Method of manufacture of the steel
US6527826B1 (en) Operation method of furnace equipment for magnesium alloys
JPH0254124B2 (en)
JPS60118216A (en) Exhaust gas treating apparatus
ES479407A1 (en) Apparatus for the Treatment of Combustion Gas Used as an Inert Gas in an Anti-Explosive System
FI88680B (en) Method and substance for extinguishing fires
JP2869110B2 (en) Laser processing machine cooling device
JPH0124607Y2 (en)
JPH0551626A (en) Smelting method for steel containing extremely low carbon and extremely low nitrogen by vacuum degassing equipment
JPS57135024A (en) Apparatus for removing carbon dioxide and oxygen
JPH0421651Y2 (en)