JPS59154062A - Amorphous silicon image sensor and manufacture thereof - Google Patents

Amorphous silicon image sensor and manufacture thereof

Info

Publication number
JPS59154062A
JPS59154062A JP58028009A JP2800983A JPS59154062A JP S59154062 A JPS59154062 A JP S59154062A JP 58028009 A JP58028009 A JP 58028009A JP 2800983 A JP2800983 A JP 2800983A JP S59154062 A JPS59154062 A JP S59154062A
Authority
JP
Japan
Prior art keywords
amorphous silicon
layer
transparent
hydrogenated amorphous
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58028009A
Other languages
Japanese (ja)
Inventor
Takeshi Saito
毅 斉藤
Setsuo Kaneko
節夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58028009A priority Critical patent/JPS59154062A/en
Publication of JPS59154062A publication Critical patent/JPS59154062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To reduce leakage current and thus improve charge retention by a method wherein a substance having a high resistance close to that of an insulator, a large coefficient of the absorption of a visible light, and no photosensitivity is used for a light shielding layer. CONSTITUTION:The titled device is constructed by including a transparent and insulator substrate 20, a stripe clear electrode 20 provided on this substrate, a fluorinated amorphous Si film 22 of a specific resistance at 10<9>OMEGAcm or more having a stripe window on the clear electrode, a transparent insulation film 23 which is provided by covering this Si film and said window and serves as a hole blocking layer, a hydrogenated amorphous Si layer 24 of a specific resistance at 10<9>OMEGAcm or more provided on this insulation film, a P type hydrogenated amorphous Si layer 25 which is provided on this hydrogenated layer and serves an electron blocking layer, and a plurality of metallic electrodes 26 provided on this P type layer. A signal light 27 is received on the undersurface of the substrate 20.

Description

【発明の詳細な説明】 本発明は非晶質シリコンを用いたイメージセンナとその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image sensor using amorphous silicon and a method for manufacturing the same.

近年、ファクシミIJを各家庭に普及させるために装置
の小型化が望まれている。このような装置の小型化にあ
たって最も障害となっているのが両像読取部における光
電変49′系の大きさである。′従来のファクシミリ 
)光電変換デバイス(以下イメージセンサと称す)はM
 OS i;:t、 、 CCl)型環半導体ICが用
いられてきた。しかしこの半導体ICイメージセンサは
チップの大きさが数十mm程度と小さく、例えば20C
m幅のA4判原稿を電気信号に変換するには原稿像を数
十mm幅に縮小するだめの光学系が必要であシ、そのだ
めの光路長(A4判幅で40〜6Qcm)の確保か装置
小型化のネックとされてきた。
In recent years, miniaturization of facsimile IJ devices has been desired in order to spread the use of facsimile IJs in households. The biggest obstacle to miniaturizing such an apparatus is the size of the photoelectric conversion system 49' in both image reading sections. ′Traditional fax
) Photoelectric conversion device (hereinafter referred to as image sensor) is M
OS i;:t, , CCl) type ring semiconductor ICs have been used. However, this semiconductor IC image sensor has a small chip size of several tens of millimeters, for example, 20C.
In order to convert a m-wide A4 size original into an electrical signal, an optical system is required to reduce the original image to a width of several tens of mm, and the required optical path length (40 to 6 Qcm for A4 size width) is required. This has been seen as a bottleneck in equipment miniaturization.

この問題解決法として密着型イメージセンサと呼はれる
イメージセンサが注目されている。これは原稿幅と同じ
寸法に多数の微小−な光a変換素子を一次元的に並べた
大型のイメージセンサであって、原稿に密着させて用い
るので原稿像を縮小するためのレンズ系を使用しなくて
も良いため装置の大幅な小型化が達成される。このよう
な密着型イメージセンサに使用される光センサ材料とし
ては優れた光電変換特性を有し、かつ大面積に一様に形
成できることが必要である。最近注目されている水素化
非晶質シリコンは上記目的にかなった優れた光導〜材料
であシ、密着型イメージセンサへの応用も検討され始め
た。この水素化非晶質シリコンは通常モノシランのグロ
ー放電分解法まだはシリコンの反応性スパッター法で形
成され、大面積で均一な薄膜が容易に得られること、壕
だ構成物質は無公害なシリコンと水素であること等の利
点を有する。水素化非晶質シリコンを密着型イメージセ
ンサに応用する場合には、水素化非晶質シリコンの暗時
の抵抗率が109〜1012Ω−cmと比較的高いこと
を利用して蓄積型で動作させるのが望ましい。このよう
な蓄積型センサの動作原理を図面を用いて説明する。
An image sensor called a contact image sensor is attracting attention as a solution to this problem. This is a large image sensor that has a large number of tiny optical a conversion elements arranged one-dimensionally in the same dimension as the width of the original.Since it is used in close contact with the original, a lens system is used to reduce the original image. Since there is no need to do this, the device can be significantly miniaturized. The optical sensor material used in such a contact image sensor must have excellent photoelectric conversion characteristics and be able to be formed uniformly over a large area. Hydrogenated amorphous silicon, which has recently attracted attention, is an excellent light-guiding material that meets the above objectives, and its application to contact image sensors has also begun to be considered. This hydrogenated amorphous silicon is usually formed by glow discharge decomposition of monosilane or reactive sputtering of silicon, and it is easy to obtain a uniform thin film over a large area, and the material forming the trench is non-polluting silicon. It has advantages such as being hydrogen. When applying hydrogenated amorphous silicon to a contact image sensor, it is operated in an accumulation type by taking advantage of the relatively high dark resistivity of hydrogenated amorphous silicon of 109 to 1012 Ω-cm. is desirable. The operating principle of such an accumulation type sensor will be explained using the drawings.

第1図は従来の蓄積型イメージセンサの一例の等価回路
図である。
FIG. 1 is an equivalent circuit diagram of an example of a conventional storage type image sensor.

1個のセンサ・エレメントは、電極間容量3、整流性接
触を表わすダイオード4、漏れ電流を表わす抵抗5、光
電流を表わす電陣源6で等測的に表わされる。尚、図で
1は電源、2は共通電極抵抗でアル。このようなセンサ
・エレメントが多数−次元的に配列されているものとす
る。
A sensor element is isometrically represented by an interelectrode capacitance 3, a diode 4 representing the rectifying contact, a resistor 5 representing the leakage current, and a voltage source 6 representing the photocurrent. In the figure, 1 is the power supply and 2 is the common electrode resistance. It is assumed that such sensor elements are arranged in multiple dimensions.

まず、個別センサスイッチ7を閉じてセンサ容量3に電
荷を蓄積し、次にスイッチ7を開き、原稿からの光が当
ることによって発生した光電流6で一定時間先にセンサ
容量3に蓄積した電荷を消去する。そして再びスイッチ
7を閉じれば、読取り抵抗8を流れる電流の大小を読取
り端子9から読取ることができる。以上の動作を一次元
的に配列すれたセンサ・エレメントが繰返すことによっ
て画像信号の読取りが行なわれる。
First, the individual sensor switch 7 is closed to accumulate charge in the sensor capacitor 3, and then the switch 7 is opened, and the photocurrent 6 generated by the light from the document causes the charge to be accumulated in the sensor capacitor 3 for a certain period of time. Erase. Then, when the switch 7 is closed again, the magnitude of the current flowing through the read resistor 8 can be read from the read terminal 9. Image signals are read by repeating the above-mentioned operations using the sensor elements arranged one-dimensionally.

上記動作原理から明らかなように、蓄積型のセンサの場
合、電荷保持のために、非常に高い抵抗率が要求される
。この抵抗率は実用的には10〜lo i 4Ω−cm
であるとされている。従って、109〜1012Ω−c
mの抵抗率を持つ水素化非晶質シリコンをイメージセン
サとして使うためには、更に見掛は上の抵抗率を大きく
するために、電極からの電荷の注入を阻止することが必
要で、本発明者らは電子に対するブロッキング層として
P環水素化非晶質シリコン、正孔に対するブロッキング
層として5iaN4,5iOz等の透明誘電膜を用いる
ことを先に考案した。
As is clear from the above operating principle, in the case of an accumulation type sensor, a very high resistivity is required in order to retain charge. This resistivity is practically 10~lo i 4Ω-cm
It is said that Therefore, 109~1012Ω-c
In order to use hydrogenated amorphous silicon with a resistivity of m as an image sensor, it is necessary to prevent charge injection from the electrode in order to further increase the apparent resistivity. The inventors previously devised the use of P-ring hydrogenated amorphous silicon as a blocking layer for electrons and a transparent dielectric film such as 5iaN4, 5iOz as a blocking layer for holes.

また、上記センサ・エレメントで画像信号を読取るにあ
たっては、分解能とS/Nを向上させるために、各セン
サ・エレメントの光照射時の漏れ電流を小さくすること
及び隣接センサエレメントからの漏れ電流を小さくする
ことが必要である。
In addition, when reading image signals with the above sensor elements, in order to improve resolution and S/N, it is necessary to reduce the leakage current of each sensor element when it is irradiated with light, and to reduce the leakage current from adjacent sensor elements. It is necessary to.

このため各センサエレメントの受光部以外に光が当たら
ないようにストライプ状に窓を開けた金属遮光膜を用い
ること及び各センサエレメント間のP型非晶質シリコン
層を取除くことを先に考案した。
For this reason, we first devised the use of a metal light-shielding film with striped windows to prevent light from hitting anything other than the light-receiving area of each sensor element, and the removal of the P-type amorphous silicon layer between each sensor element. did.

第2図は従来のイメージセンサの素子の一例の断面図で
ある。
FIG. 2 is a cross-sectional view of an example of a conventional image sensor element.

このイメージセンサの菓子は本発明者らが先に考案した
ものである。第2図において、10はガラス等の透明絶
縁基板、11は透明電極、12は遮光層となる金属電袷
、13は透明絶縁層、14は高抵抗水素化非晶質シリコ
ン、15はP環水素化非晶質シリコン、16は上部個別
鴇、極″:Cある。
This image sensor confectionery was previously devised by the present inventors. In FIG. 2, 10 is a transparent insulating substrate such as glass, 11 is a transparent electrode, 12 is a metal liner that serves as a light-shielding layer, 13 is a transparent insulating layer, 14 is high-resistance hydrogenated amorphous silicon, and 15 is a P ring. Hydrogenated amorphous silicon, 16 is the upper individual hole, pole ″:C.

信号光は透明絶縁基板10側から入射し、センサ受光部
は透明電極13である。光電流は高抵抗非晶質シリコン
14内を実線の矢印で示した経路を流れ、暗電流は実線
の矢印と点線の矢印の一分を通って流れる。従って、受
光に必要なlj分以外からの漏れ電流が大きく電荷保持
が充分でなくなるという欠点があった。
The signal light enters from the transparent insulating substrate 10 side, and the sensor light receiving section is the transparent electrode 13. The photocurrent flows in the high-resistance amorphous silicon 14 along a path indicated by a solid arrow, and the dark current flows through a portion of the solid arrow and the dotted arrow. Therefore, there is a drawback that leakage current from sources other than lj required for light reception is large and charge retention is not sufficient.

本発明の目的は、上記欠点を除去し、漏れ霜;流を低減
し、電荷保持を良好にした非晶質シリコンイメージセン
サとその製造方法を提供することにある。
An object of the present invention is to provide an amorphous silicon image sensor that eliminates the above-mentioned drawbacks, reduces frost leakage and improves charge retention, and a method for manufacturing the same.

本発明者らは、漏れ電流が大きい原因が、遮光1輔12
に金属を用いたことにあることを発見し。
The present inventors have discovered that the cause of large leakage current is light shielding.
He discovered that the use of metals.

遮光層には絶縁物に近い高抵抗で、可視光の吸収係数が
大きく、かつ、光感度のない物質を用いると良いことを
見出した。このような要求を濶す物質としてフッ素化非
晶質シリコンがある。フッ素化非晶質シリコンは、比抵
抗が101OΩ−α以上の高抵抗で、可視光の吸収係数
は105と大きく光感度は殆んど零である。そこで本発
明は次のよ。
We have found that it is best to use a material for the light-shielding layer that has high resistance similar to that of an insulator, has a large absorption coefficient for visible light, and is insensitive to light. Fluorinated amorphous silicon is a material that meets these requirements. Fluorinated amorphous silicon has a high resistivity with a specific resistance of 101 OΩ-α or more, a visible light absorption coefficient of 105, and a photosensitivity of almost zero. Therefore, the present invention is as follows.

うに構成した。It was composed of sea urchins.

本発明の非晶質シリコンイメージセンサは、透明で絶縁
体の基板と該基板の上に設けられたストライプ状の透明
電極と、該透明電極の側面と上面を榛い、かつ該透明電
極上面にストライプ状の窓を有する比抵抗109Ω−α
以上のフッ′素化非晶質シリコン膜と、該フッ素化非晶
質シリコン膜と前記窓とを擦って設けられ正孔の阻止層
となる透明絶縁膜と、該透明絶縁膜の上に設けられ比抵
抗109Ω−α以上の水素化非晶質シリコン層と、該水
素化非晶質シリコン層の上に設けられ電子の阻止層とな
るP糖水素化非晶質シリコン層と、該P糖水素化非晶質
シリコン層の上に設けられた複数個の全域電極とを含ん
で構成される。  □本発明の非晶質シリコンイメージ
センサの製造方法は、透明で絶縁性の基板上に透明′を
稜をストライプ状に形成する工程と、金属マスクとグロ
ー放電分解法を用いて前記透明電極上にストライプ状の
窓を設け、それ以外を高抵抗のフッ素化非晶質シリコン
膜で覆う工程と、前記フッ素化非晶質シリコン膜の上に
透明絶縁膜を被着する工程と、前記透明絶縁膜の上に高
抵抗の水素化非晶質シリコン層を被着する工程と、前記
高抵抗の水素化非晶質シリコン層の上にP糖水素化非晶
質シリコン層を被着する工程と、前記P糖水素化非晶質
シリコン層に複数個の金属電極を形成する工程とを含ん
で構成される。
The amorphous silicon image sensor of the present invention includes a transparent insulating substrate, a striped transparent electrode provided on the substrate, a side surface and a top surface of the transparent electrode exposed, and a striped transparent electrode provided on the substrate. Specific resistance 109Ω-α with striped windows
The above fluorinated amorphous silicon film, a transparent insulating film that is provided by rubbing the fluorinated amorphous silicon film and the window and serves as a hole blocking layer, and a transparent insulating film that is provided on the transparent insulating film. a hydrogenated amorphous silicon layer having a specific resistance of 109 Ω-α or more; a P-sugar hydrogenated amorphous silicon layer provided on the hydrogenated amorphous silicon layer and serving as an electron blocking layer; and a plurality of full area electrodes provided on the hydrogenated amorphous silicon layer. □The method for manufacturing an amorphous silicon image sensor of the present invention includes a step of forming a transparent layer with striped edges on a transparent insulating substrate, and a step of forming a transparent layer on the transparent electrode using a metal mask and a glow discharge decomposition method. a step of providing a striped window in the window and covering the rest with a high resistance fluorinated amorphous silicon film; a step of depositing a transparent insulating film on the fluorinated amorphous silicon film; and a step of depositing a transparent insulating film on the fluorinated amorphous silicon film; depositing a high resistance hydrogenated amorphous silicon layer over the membrane; and depositing a P-sugar hydrogenated amorphous silicon layer over the high resistance hydrogenated amorphous silicon layer. , forming a plurality of metal electrodes on the P-sugar hydrogenated amorphous silicon layer.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

まず、本発明の非晶質シリコンイメージセンサの実施例
について説明する。
First, an example of an amorphous silicon image sensor of the present invention will be described.

第3図は本発明の非晶質シリコンイメージセンサの一実
施fljの一部切欠き斜視図である。
FIG. 3 is a partially cutaway perspective view of an embodiment flj of the amorphous silicon image sensor of the present invention.

この実施例は、透明で絶縁体の基板20と、牟この基板
の上に設けられたストライプ状の透明電極21と、この
透明電極の側面と上面を覆い、かつ透明電極上面にスト
ライプ状の窓を有する比抵抗109Ω−α以上のフッ素
化非晶質シリコン膜22と、このフッ素化非晶質シリコ
ン膜と前記窓とを覆って設けられ正孔の阻止層となる透
明絶脈膜23と、この透明絶縁膜の上に設けられ比抵抗
109Ω−α以上の水素化非晶質シリコン層24と、こ
の水素化非晶質シリコン層の上に設けられ電子の阻止層
となるP型水素化非晶質シリコン層25と、このP糖水
素化非晶質シリコン層の上に設けられた複数個の金属電
@126とをんで構成される。信号光27は基板20の
下面で受ける。
This embodiment includes a transparent insulating substrate 20, a striped transparent electrode 21 provided on the substrate, and a striped window covering the side and top surfaces of the transparent electrode and on the top surface of the transparent electrode. a fluorinated amorphous silicon film 22 having a specific resistance of 109Ω-α or more; a transparent barrier film 23 that is provided to cover the fluorinated amorphous silicon film and the window and serves as a hole blocking layer; A hydrogenated amorphous silicon layer 24 with a specific resistance of 109Ω-α or more is provided on the transparent insulating film, and a P-type hydrogenated amorphous silicon layer 24 is provided on the hydrogenated amorphous silicon layer and serves as an electron blocking layer. It is composed of a crystalline silicon layer 25 and a plurality of metal electrodes 126 provided on the P sugar hydrogenated amorphous silicon layer. The signal light 27 is received on the lower surface of the substrate 20.

このような構造にすると、光電流、暗電流ともに、第2
図に示した実線の矢印部分だけを流れることになり、電
荷の保持特性が大幅に改善される。
With this structure, both the photocurrent and the dark current are
Since the current flows only in the solid arrow portion shown in the figure, the charge retention characteristics are greatly improved.

次に、本発明の非晶質シリコンイメージセンサの製造方
法について説明する。
Next, a method for manufacturing an amorphous silicon image sensor according to the present invention will be explained.

透明絶縁体基板20としてガラス板を選ひ、この上に透
明電極21として酸化錫を500人の厚さにつけ、パタ
ーニングしてストライク状にする。
A glass plate is selected as the transparent insulator substrate 20, and tin oxide is applied thereon to a thickness of 500 mm as the transparent electrode 21, and patterned into a strike shape.

次に、遮光層としてフッ素化非晶質シリコン層22を6
00 OA  の厚さに形成する。このフッ素化非晶質
シリコン層22は、例えばSiF4とS i H4との
混合気体のグロー放電分解法で形成される。このとき、
金属マスクを用い、ファクシミリの分解能を考慮して1
00μmのストライプ状の窓をあける。
Next, a fluorinated amorphous silicon layer 22 is formed as a light shielding layer.
Formed to a thickness of 0.00 OA. This fluorinated amorphous silicon layer 22 is formed, for example, by glow discharge decomposition of a mixed gas of SiF4 and SiH4. At this time,
Using a metal mask, considering the resolution of facsimile,
A striped window of 00 μm is opened.

次に、正孔の阻止層となる透明絶縁膜23としてSi 
s N aまたはSiO2を200Aの厚さに形成する
Next, Si is used as a transparent insulating film 23 which becomes a hole blocking layer.
s Na or SiO2 is formed to a thickness of 200A.

次に、ジボラン(B2H6)  ガスを用いてホウ紫を
20 ppm  ドープした高抵抗の水素化非晶質シリ
コン層24を2.5μmの厚さに被着する。続いて、ホ
ウ素を250ppmドープしたP型水素化非晶質シリコ
ン層25を0.3μmの厚さに被着する。
A high resistance hydrogenated amorphous silicon layer 24 doped with 20 ppm boron using diborane (B2H6) gas is then deposited to a thickness of 2.5 .mu.m. Subsequently, a P-type hydrogenated amorphous silicon layer 25 doped with 250 ppm of boron is deposited to a thickness of 0.3 μm.

そして、素子間の分離を行うために、不必要なP型水素
化非晶質シリコンをメサエッチにより除去する。
Then, in order to isolate the elements, unnecessary P-type hydrogenated amorphous silicon is removed by mesa etching.

最後に、AAを0.5μmの厚さに蒸着し、100μm
の幅にエツチングして全編電極26を形成する。ビット
密度が8本/朋の場合、′電極間隔は25μmとなる。
Finally, AA was deposited to a thickness of 0.5 μm, and 100 μm thick.
The entire electrode 26 is formed by etching to a width of . When the bit density is 8 bits/tomo, the 'electrode spacing is 25 μm.

    ′ 上記の透明絶縁膜23としてのSigNt膜または5i
02膜、高抵抗及びP型の水素化非晶質シリコン素24
 、25 、フッ素化非晶質シリコン層22は、原料ガ
スの切換えだけで同一薄膜形成装置で形成することがで
き、金属膜を用いた従来法と比べて大幅な製造工程の短
縮が行われる。
' SigNt film or 5i as the above transparent insulating film 23
02 film, high resistance and P-type hydrogenated amorphous silicon element 24
, 25, the fluorinated amorphous silicon layer 22 can be formed using the same thin film forming apparatus by simply switching the raw material gas, and the manufacturing process is significantly shortened compared to the conventional method using a metal film.

上記方法によって製造した本発明のイメージセンサは、
印加電圧10■において、−累子当りの漏れ電流は2x
lO”A  であった。これは従来品の漏れ電流値2 
X 10−”Aに比べて1/10である。また、550
nm、100LxにおけるS/N値は、従来品の400
に対して、1200へと大幅に改善された。更にまた、
蓄積時間10葎Eの読取り特性も良好であった。
The image sensor of the present invention manufactured by the above method includes:
At an applied voltage of 10μ, the leakage current per negative element is 2x
lO”A. This is the leakage current value 2 of the conventional product.
It is 1/10 compared to X 10-”A. Also, 550
The S/N value at 100Lx is 400 nm for the conventional product.
However, it has been significantly improved to 1200. Furthermore,
The reading characteristics at an accumulation time of 10 E were also good.

以上詳細に説明したように、本発明によれば、漏れ電流
が低減し、電荷保持が改善され、しかも容易に製造でき
る非晶質シリコンイメージセンサが製造できるのでその
効果は太きい。
As described in detail above, according to the present invention, it is possible to manufacture an amorphous silicon image sensor that reduces leakage current, improves charge retention, and is easy to manufacture, so the effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の蓄積型イメージセンサの一例の等価回路
図、第2図は従来のイメージセンサの素子の一例の断面
図、第3図は本発明の一実施例の一部切欠き斜視図であ
る。 1・・・・・・電源、2・・・・・・共通電極抵抗、3
・・・・・・素子電極間容量、4・・・・・・整流性接
触′を表わすダイオード、5・・・・・・暗抵抗、6・
・・・・・光電流を表わす電流源。
FIG. 1 is an equivalent circuit diagram of an example of a conventional storage type image sensor, FIG. 2 is a cross-sectional view of an example of the elements of a conventional image sensor, and FIG. 3 is a partially cutaway perspective view of an embodiment of the present invention. It is. 1...Power supply, 2...Common electrode resistance, 3
... Capacitance between element electrodes, 4 ... Diode representing rectifying contact', 5 ... Dark resistance, 6.
...A current source that represents photocurrent.

Claims (2)

【特許請求の範囲】[Claims] (1)透明で絶縁体の基板と、該基板の上に設けられた
ストライプ状の透明電極と、該透明電極の側面と上面を
覆い、かつ該透明電極上面にストライプ状の窓を有する
比抵抗109Ω−crn坂殿フッ素化非晶質シリコン膜
と、該フッ素化非晶質シリコン膜と前記窓とを覆って設
けられ正孔の阻止層となる透明絶縁膜と、該透明絶縁膜
の上に設けられた比抵抗109Ω−cm以上の水素化非
晶質シリコン層と、該水素化非晶質シリコン層の上に設
けられ電子の阻止層となるP型水素化非晶質シリコン層
と、該P型水素化非晶質シリコン層の上に設けられた複
数個の金属電極とを含むことを特徴とする非晶質シリコ
ンイメージセンサ。
(1) A specific resistance comprising a transparent insulating substrate, a striped transparent electrode provided on the substrate, and a striped window covering the side and top surfaces of the transparent electrode and on the top surface of the transparent electrode. a 109Ω-crn Sakadono fluorinated amorphous silicon film, a transparent insulating film provided to cover the fluorinated amorphous silicon film and the window and serve as a hole blocking layer, and a transparent insulating film provided on the transparent insulating film. a hydrogenated amorphous silicon layer having a specific resistance of 109 Ω-cm or more; a P-type hydrogenated amorphous silicon layer provided on the hydrogenated amorphous silicon layer and serving as an electron blocking layer; An amorphous silicon image sensor comprising a plurality of metal electrodes provided on a P-type hydrogenated amorphous silicon layer.
(2)透明で絶縁性の基板上に透明電極をストライプ状
に形成する工程と、金属マスクとグロー放電分解法を用
いて前記透明電極上にストライプ状の窓を設け、それ以
外を高抵抗のフッ素化非晶質シリコン膜で覆う工程と、
前記フッ素化非晶質シリコン膜の上に透明絶縁膜をJJ
LInする工程と、前記透明絶縁膜の上に高抵抗の水素
化非晶質シリコン層を被着する工程と、前記高抵抗の水
緊化非晶質シリコン層の上にP型水素化非晶質シリコン
′屓を被〃1する工程と、前記P型水素化非晶質シリコ
ン層に複数個の金属電極を形成する工程とを含むことを
特徴とする非晶質シリコンイメージセンサの製造方法。
(2) A process of forming transparent electrodes in stripes on a transparent insulating substrate, forming striped windows on the transparent electrodes using a metal mask and glow discharge decomposition method, and forming windows in the form of high resistance on the other transparent electrodes. a step of covering with a fluorinated amorphous silicon film;
A transparent insulating film is placed on the fluorinated amorphous silicon film.
a step of depositing a high resistance hydrogenated amorphous silicon layer on the transparent insulating film; and a step of depositing a p-type hydrogenated amorphous silicon layer on the high resistance water-strengthened amorphous silicon layer. 1. A method for manufacturing an amorphous silicon image sensor, comprising the steps of: (1) covering the P-type hydrogenated amorphous silicon layer with a layer of pure silicon; and forming a plurality of metal electrodes on the P-type hydrogenated amorphous silicon layer.
JP58028009A 1983-02-22 1983-02-22 Amorphous silicon image sensor and manufacture thereof Pending JPS59154062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58028009A JPS59154062A (en) 1983-02-22 1983-02-22 Amorphous silicon image sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58028009A JPS59154062A (en) 1983-02-22 1983-02-22 Amorphous silicon image sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59154062A true JPS59154062A (en) 1984-09-03

Family

ID=12236785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58028009A Pending JPS59154062A (en) 1983-02-22 1983-02-22 Amorphous silicon image sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59154062A (en)

Similar Documents

Publication Publication Date Title
US6288435B1 (en) Continuous amorphous silicon layer sensors using doped poly-silicon back contact
US4360821A (en) Solid-state imaging device
US4412900A (en) Method of manufacturing photosensors
US20030218116A1 (en) Image sensor with photosensitive thin film transistors
EP0005543B1 (en) Photosensor
JPH05283664A (en) Manufacture of solid-state circuit radiation detector
US6300648B1 (en) Continuous amorphous silicon layer sensors using sealed metal back contact
EP0029679B1 (en) Photoelectric device
US4499654A (en) Method for fabricating semiconductor photodetector
JPS5897862A (en) Close adhesion type image sensor
JPS59154062A (en) Amorphous silicon image sensor and manufacture thereof
JPH0221664B2 (en)
US4502203A (en) Method for fabricating semiconductor photodetector
JPS6211792B2 (en)
EP0070682B1 (en) Method of producing a semiconductor layer of amorphous silicon and a device including such a layer
JP2509592B2 (en) Stacked solid-state imaging device
JPS6341227B2 (en)
JPH0652428B2 (en) Photoconductor
JPS58201356A (en) Amorphous silicon image sensor
KR970004494B1 (en) A method for manufacture for image sensor
JPS6322465B2 (en)
JP2856774B2 (en) Solid-state imaging device
Tao et al. Large Area Digital X‐ray Imaging
JPS59155957A (en) Amorphous silicon image sensor
KR840002185B1 (en) Photo device