JPS6211792B2 - - Google Patents

Info

Publication number
JPS6211792B2
JPS6211792B2 JP56178054A JP17805481A JPS6211792B2 JP S6211792 B2 JPS6211792 B2 JP S6211792B2 JP 56178054 A JP56178054 A JP 56178054A JP 17805481 A JP17805481 A JP 17805481A JP S6211792 B2 JPS6211792 B2 JP S6211792B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
image sensor
sensor
thickness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56178054A
Other languages
Japanese (ja)
Other versions
JPS5879756A (en
Inventor
Setsuo Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56178054A priority Critical patent/JPS5879756A/en
Publication of JPS5879756A publication Critical patent/JPS5879756A/en
Publication of JPS6211792B2 publication Critical patent/JPS6211792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Description

【発明の詳細な説明】 本発明は非晶質シリコンを用いたイメージセン
サーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image sensor using amorphous silicon.

フアクシミリを家庭内に普及するために装置の
小型化が望まれている。このような装置の小型化
にあたつて最も障害となつているのが光電変換系
の大きさである。
In order to popularize facsimile machines in homes, it is desired that the devices be made smaller. The biggest obstacle to miniaturizing such devices is the size of the photoelectric conversion system.

従来のフアクシミリの光電変換デバイス(以下
イメージセンサーと略す)はMOS形あるいは
CCD形等の半導体ICが用いられてきた。しかし
この半導体イメージセンサーはチツプの大きさが
数mm角と小さく、例えば20cm幅のA4版原稿を電
気信号に変換するには原稿像を数mm幅に縮少する
ための光学系が必要であり、そのための光路長
(A4版幅で50〜60cm)の確保が装置小型化のネツ
クとされてきた。
Conventional facsimile photoelectric conversion devices (hereinafter referred to as image sensors) are MOS type or
Semiconductor ICs such as CCD type have been used. However, the chip size of this semiconductor image sensor is small, a few millimeters square, and in order to convert, for example, a 20 cm wide A4 document into an electrical signal, an optical system is required to reduce the document image to a few millimeters wide. , securing the optical path length (50 to 60 cm in A4 size) has been considered the key to miniaturizing the device.

この問題解決法として密着型イメージセンサー
とよばれるイメージセンサーが注目されている。
これは原稿幅と同じ寸法の光電変換領域をもつた
大型のイメージセンサーで原稿に密着させて用い
るので、原稿像を縮少するためのレンズ光学系を
使用しなくても良いため装置の大幅な小型化が達
成される。このような密着型イメージセンサーに
使用される光電変換材料としてはすぐれた光電変
換特性を有し、かつ大面積に一様に形成できるこ
とが必要である。このような材料として、砒素―
セレン―テルル系アモルフアス半導体や硫化カド
ミウム,セレン化カドミウム等を使用したものが
現在研究開発中であるがこれらの材料は砒素,カ
ドミウム,セレンのような公害物質が含まれてい
たり、熱的安定性が悪いなどの問題点があつた。
An image sensor called a contact image sensor is attracting attention as a solution to this problem.
This is a large image sensor with a photoelectric conversion area that is the same size as the document width, and is used in close contact with the document, so there is no need to use a lens optical system to reduce the document image, so the device size is significantly reduced. Miniaturization is achieved. The photoelectric conversion material used in such a contact type image sensor must have excellent photoelectric conversion characteristics and be able to be formed uniformly over a large area. As such a material, arsenic
Products using selenium-tellurium amorphous semiconductors, cadmium sulfide, cadmium selenide, etc. are currently under research and development, but these materials contain pollutants such as arsenic, cadmium, and selenium, and have poor thermal stability. There were some problems, such as poor performance.

一方、低価格太陽電池用材料として最近注目さ
れている非晶質シリコンはすぐれた光導電材料で
あり、すでに太陽電池の他、電子写真や撮像用ビ
デイコンへの応用研究が開始されている。この非
晶質シリコンは通常モノシランのグロー放電分解
またはシリコンの反応性スパツターで形成され、
大面績で均一な薄膜が容易に得られること、また
構成物質は無公害なシリコンと水素であることな
どの特長を有する。非晶質シリコンを密着型イメ
ージセンサーに応用する場合には非晶質シリコン
の暗時の抵抗率が109〜1012Ω―cmと比較的大き
いことを利用し、かつ光導電率が硫化カドミウム
等に比べて小さいことから蓄積型で動作させるよ
うにする。この蓄積型の動作は走査時間内に光に
よつて発生した電荷によつてセンサー表面に保持
されていた電荷を消去する方法がとられている。
このため暗時には走査時間中にセンサー表面に与
えられた電荷を保持する必要がある。したがつて
109〜1012Ω―cmの抵抗率をもつ非晶質シリコン
をイメージセンサーとして使うには更に見かけ上
の抵抗率を大きくするために電極からの電荷の注
入を阻止したブロツキング構造にすることが望ま
しい。この電極からの電荷の注入を阻止するため
に電子に対するブロツキング層としてP型非晶質
シリコン,正孔に対するブロツキング層として
Si3N4,SiO2等の透明誘電膜を用いる。ところが
この透明誘電膜の膜厚は光によつて生成したキヤ
リアを電極に輸送する必要があることから約200
Å程度と非常に薄くしなければならない。このた
め複数個(A4版の原稿用のイメージセンサーで
1700個)の島状透明導電膜を含む電極が付いた基
板(前述の砒素―セレン―テルル系アモリフアス
半導体密着型イメージセンサーで実際に用いられ
ている)の上に約200Åの透明誘電膜ブロツキン
グ層のある非晶質シリコンセンサーを形成すると
電極の段差(透明導電膜の厚さと取出し電極の厚
さを加えた段着で1500Å以上)のためにブロツキ
ング効果が不完全になり暗時の電荷保持特性が悪
くなることがあつた。
On the other hand, amorphous silicon, which has recently been attracting attention as a material for low-cost solar cells, is an excellent photoconductive material, and research has already begun on its application to not only solar cells but also to vidicons for electrophotography and imaging. This amorphous silicon is usually formed by glow discharge decomposition of monosilane or reactive sputtering of silicon;
It has the advantage of being able to easily obtain a uniform thin film over a large area, and its constituent materials are non-polluting silicon and hydrogen. When amorphous silicon is applied to a contact image sensor, the dark resistivity of amorphous silicon is relatively high at 10 9 to 10 12 Ω-cm, and the photoconductivity is compared to cadmium sulfide. Because it is small compared to etc., it should be operated as an accumulation type. This accumulation-type operation uses a method in which charges held on the sensor surface are erased by charges generated by light during the scanning time.
Therefore, when it is dark, it is necessary to maintain the charge applied to the sensor surface during the scanning time. Therefore
In order to use amorphous silicon, which has a resistivity of 10 9 to 10 12 Ω-cm, as an image sensor, it is necessary to create a blocking structure that prevents charge injection from the electrodes in order to further increase the apparent resistivity. desirable. To prevent charge injection from this electrode, P-type amorphous silicon is used as a blocking layer for electrons, and P-type amorphous silicon is used as a blocking layer for holes.
A transparent dielectric film such as Si 3 N 4 or SiO 2 is used. However, the thickness of this transparent dielectric film is approximately 200 mm due to the need to transport carriers generated by light to the electrodes.
It must be made extremely thin, about 100 Å thick. For this reason, multiple image sensors (for A4 size documents)
A transparent dielectric blocking layer of approximately 200 Å is placed on a substrate (actually used in the arsenic-selenium-tellurium-based amorphous semiconductor image sensor mentioned above) with electrodes containing 1,700 islands of transparent conductive films. When an amorphous silicon sensor is formed, the blocking effect becomes incomplete due to the step difference in the electrodes (the step height including the thickness of the transparent conductive film and the thickness of the extraction electrode is 1500 Å or more), resulting in poor charge retention characteristics in the dark. Sometimes things got worse.

第1図は従来型基板上に非晶質シリコンイメー
ジセンサーを形成した時の概略図であり、本図に
基づいて、ブロツキング効果の不完全性を説明す
る。第1図において、透明基板11上に透明導電
膜12として酸化スズ又は酸化インヂウムスズを
膜厚500Å、庶光層および取出し電極13として
クロムを1000Å、コンタクトパツド14として金
を1μm形成し、島状の電極群をエツチング加工
してセンサー基板を形成する。この島状電極の寸
法はセンサー解像度によつて決定づけられるが通
常8ドツト/mmのセンサーでは100μm幅の寸法
をもち島状電極間隙は25μmである。このような
島状電極群の付いた基板上に正孔のブロツキング
層15としてSi3N4を200Å、ボロンを20ppmドー
プした高抵抗非晶質シリコン16を2.5μm、ボ
ロンを250ppmドープしたP型非晶質シリコン層
17を0.3μm形成する。この非晶質シリコンお
よびSi3N4はシランあるいはシランと窒素、アン
モニア等の気体を0.05〜5Torrの真空度に保つた
装置内でグロー放電分解法で形成するが、シリコ
ンの反応性スパツタ法でも形成可能である。また
高抵抗非晶質シリコン層には酸素又は酸素とボロ
ンをドープした非晶質シリコン層を用いてもセン
サーとしての機能をそなえていることが確認され
ている。このようにして最後に共通電極18とし
てアルミニウムを長さ20cm厚さ0.5μm形成して
密着型イメージセンサーを形成する。このときブ
ロツキング効果を低減させる電極部段差は主に膜
厚のうすいSi3N4層15のところに存在し、その
厚さは図からあきらかなように透明導電膜12と
庶光膜13の膜厚の和で1500Åである。またこの
段差は各個別電極間毎に生じており、この電極間
は25μmと非常に狭く、Si3N4を形成するときの
グロー放電が電極のシールド効果により侵入しに
くくSi3N4が段差に付着しにくい。
FIG. 1 is a schematic diagram when an amorphous silicon image sensor is formed on a conventional substrate, and the incompleteness of the blocking effect will be explained based on this diagram. In FIG. 1, tin oxide or indium tin oxide is formed to a thickness of 500 Å as a transparent conductive film 12 on a transparent substrate 11, chromium is formed to a thickness of 1000 Å as a common optical layer and an extraction electrode 13, and gold is formed as a contact pad 14 to a thickness of 1 μm. A sensor substrate is formed by etching the electrode group. The dimensions of this island-shaped electrode are determined by the sensor resolution, but a sensor of 8 dots/mm usually has a width of 100 μm and a gap between the island-shaped electrodes of 25 μm. On the substrate with such an island-like electrode group, a hole blocking layer 15 is made of high resistance amorphous silicon 16 doped with 200 Å of Si 3 N 4 and 20 ppm of boron, and a P-type layer doped with 250 ppm of boron. An amorphous silicon layer 17 is formed to a thickness of 0.3 μm. This amorphous silicon and Si 3 N 4 are formed by a glow discharge decomposition method in a device that maintains silane or a gas such as nitrogen or ammonia at a vacuum of 0.05 to 5 Torr, but it can also be formed by a silicon reactive sputtering method. Formable. Furthermore, it has been confirmed that the high-resistance amorphous silicon layer can function as a sensor even when an amorphous silicon layer doped with oxygen or oxygen and boron is used. In this manner, aluminum is finally formed as a common electrode 18 with a length of 20 cm and a thickness of 0.5 μm to form a contact type image sensor. At this time, the electrode level difference that reduces the blocking effect mainly exists in the thin Si 3 N 4 layer 15, and as is clear from the figure, the thickness is the same as that of the transparent conductive film 12 and the common optical film 13. The total thickness is 1500 Å. In addition , this step occurs between each individual electrode, and the gap between these electrodes is extremely narrow at 25 μm, making it difficult for glow discharge when forming Si 3 N 4 to penetrate due to the shielding effect of the electrodes . hard to adhere to.

本発明は非晶質シリコン密着型イメージセンサ
ーのこのようなブロツキング効果の不完全性を軽
減し、暗時の電荷保持特性を改善するものであ
る。
The present invention aims to reduce the imperfection of such blocking effect in an amorphous silicon-contact image sensor and improve charge retention characteristics in the dark.

本発明によれば電極の段差を小さくし、なおか
つ段差部分の有効長を短かくすることによつて電
極段差の影響を小さくしたイメージセンサーが得
られる。センサーの構造は下部透明誘電膜と1010
Ω―cm以上の高抵抗非晶質シリコン層,106Ω―
cm以上1011Ω―cm以下のP型非晶質シリコンおよ
び複数個の分離された金属電極群が、細長く島状
(A4版用のセンサーのときは約22cm)に形成され
た透明導電膜上のストライプ状に窓を開けて形成
された金属電極の付いた基板上に、順次形成され
ていることを特徴とする。
According to the present invention, it is possible to obtain an image sensor in which the influence of the electrode step is reduced by reducing the step of the electrode and shortening the effective length of the step portion. The structure of the sensor is a lower transparent dielectric film and 10 10
High resistance amorphous silicon layer of Ω-cm or more, 10 6 Ω-
P-type amorphous silicon with a resistance of 10 cm or more and 10 11 Ω-cm or less and a group of separated metal electrodes are formed on a transparent conductive film formed into a long and thin island shape (approximately 22 cm for an A4 size sensor). They are characterized in that they are sequentially formed on a substrate with metal electrodes formed by opening windows in the form of stripes.

次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.

ところが本発明による第2図の実施例ではガラ
ス基板上21に幅100μmの窓をあけた幅3mm長
さ20cm厚さ1000Åのクロムの庶光膜22と幅2mm
長さ20cm厚さ500Åの透明導電膜(例えば酸化ス
ズ)23を付けてセンサー基板とする。この基板
上に正孔のブロツキング層24としてSi3N4を約
200Å、高抵抗非晶質シリコン層25を2.5μm,
P型非晶質シリコン層26を0.3μm順次形成
し、最後に個別電極27としてアルミニウムを
0.5μm蒸着し、100μm幅にエツチング加工して
イメージセンサーを形成する。このように形成さ
れたイメージセンサーにおいては、膜厚のうすい
Si3N4ブロツキング層24に生ずる段差はそれぞ
れ500Åと1000Åになり第1図の1500Åよりも軽
減される。しかも第1図のような各個別電極間の
段差溝がないため、ブロツキング層24が段差壁
につきやすくなるという利点を持ち、第1図と比
べると、段差の実質長さも短かくなり、ブロツキ
ング効果が改善できる。実際にブロツキング効果
の評価として、センサーの暗時における信号出力
を測定したところ蓄積時間を20mseeとした時の
第1図の構造のセンサーの暗時における出力が
50mVに対し本発明による第2図の構造のセンサ
ーは8mVと小さくなり光照射時の信号とのS/
N比は6.25倍改善された。
However, in the embodiment of the present invention shown in FIG. 2, a chromium general film 22 with a width of 3 mm, a length of 20 cm, and a thickness of 1000 Å is formed by opening a window of 100 μm in width on a glass substrate 21 and a chromium film 22 with a width of 2 mm.
A transparent conductive film (for example, tin oxide) 23 with a length of 20 cm and a thickness of 500 Å is attached to form a sensor substrate. Approximately Si 3 N 4 is deposited on this substrate as a hole blocking layer 24.
200 Å, high resistance amorphous silicon layer 25 of 2.5 μm,
P-type amorphous silicon layers 26 are sequentially formed to a thickness of 0.3 μm, and finally aluminum is formed as individual electrodes 27.
The film is deposited to a thickness of 0.5 μm and etched to a width of 100 μm to form an image sensor. In the image sensor formed in this way, the film thickness is thin.
The steps formed in the Si 3 N 4 blocking layer 24 are 500 Å and 1000 Å, respectively, which are smaller than the 1500 Å shown in FIG. Moreover, since there is no step groove between each individual electrode as shown in FIG. 1, the blocking layer 24 has the advantage of easily adhering to the step wall, and compared to FIG. can be improved. To actually evaluate the blocking effect, we measured the signal output of the sensor in the dark, and when the accumulation time was 20msee, the output of the sensor with the structure shown in Figure 1 in the dark was
Compared to 50mV, the sensor with the structure shown in Fig. 2 according to the present invention has a small voltage of 8mV, and the S/R of the signal when irradiated with light is small.
The N ratio was improved by 6.25 times.

以上のように本発明は、非晶質シリコンを用い
た密着型イメージセンサーの実用化にとつて非常
に有用であることは明らかである。
As described above, it is clear that the present invention is very useful for the practical application of contact type image sensors using amorphous silicon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来型基板上に形成した非晶質シリコ
ンイメージセンサーの概略図であり、図中11は
透明ガラス基板、12は酸化スズ導電膜、13は
庶光および取出電極、14は金のコンタクトパツ
ド、15はSi3N4ブロツキング層、16は高抵抗
非晶質シリコン層、17はP型非晶質シリコン
層、18は共通アルミニウム電極、19は入射光
をそれぞれ示す。 第2図は本発明による非晶質シリコンイメージ
センサーの概略図であり、図中21は透明ガラス
基板、22はクロムの庶光膜、23は酸化スズ透
明導電膜、24はSi3N4ブロツキング層、25は
高抵抗非晶質シリコン層、26はP型非晶質シリ
コン層、27はアルミニウム個別電極をそれぞれ
示す。
FIG. 1 is a schematic diagram of an amorphous silicon image sensor formed on a conventional substrate, in which 11 is a transparent glass substrate, 12 is a tin oxide conductive film, 13 is a general light and extraction electrode, and 14 is a gold plate. 15 is a contact pad, 15 is a Si 3 N 4 blocking layer, 16 is a high resistance amorphous silicon layer, 17 is a P-type amorphous silicon layer, 18 is a common aluminum electrode, and 19 is an incident light. FIG. 2 is a schematic diagram of an amorphous silicon image sensor according to the present invention, in which 21 is a transparent glass substrate, 22 is a chromium light film, 23 is a tin oxide transparent conductive film, and 24 is a Si 3 N 4 blocking film. 25 is a high-resistance amorphous silicon layer, 26 is a P-type amorphous silicon layer, and 27 is an aluminum individual electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 直線状に窓があけられた金属電極を透明導電
膜が該直線状の窓をおおうように形成された透明
基板上に、透明誘電膜1010Ω―cm以上の高抵抗非
晶質シリコン、106Ω―cm以上1011Ωcm以下のP
型非晶質シリコンおよび分離された複数好金属電
極群が順次積層して形成されたことを特徴とする
非晶質シリコンイメージセンサー。
1. A transparent dielectric film of high resistance amorphous silicon with a resistance of 10 Ω-cm or more, P of 10 6 Ω-cm or more and 10 11 Ωcm or less
An amorphous silicon image sensor characterized in that it is formed by sequentially stacking amorphous silicon and a group of separated metal-friendly electrodes.
JP56178054A 1981-11-06 1981-11-06 Amorphous si image sensor Granted JPS5879756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56178054A JPS5879756A (en) 1981-11-06 1981-11-06 Amorphous si image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56178054A JPS5879756A (en) 1981-11-06 1981-11-06 Amorphous si image sensor

Publications (2)

Publication Number Publication Date
JPS5879756A JPS5879756A (en) 1983-05-13
JPS6211792B2 true JPS6211792B2 (en) 1987-03-14

Family

ID=16041789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56178054A Granted JPS5879756A (en) 1981-11-06 1981-11-06 Amorphous si image sensor

Country Status (1)

Country Link
JP (1) JPS5879756A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887862A (en) * 1981-11-20 1983-05-25 Fuji Xerox Co Ltd Long-sized one-dimensional thin film sensor
JPS60161664A (en) * 1984-02-01 1985-08-23 Sharp Corp Tightly adhered two-dimensional image readout device
JPH07118525B2 (en) * 1984-07-23 1995-12-18 日本電気株式会社 Photoelectric conversion element array
JPH065726B2 (en) * 1986-07-24 1994-01-19 日本電気株式会社 Photoelectric conversion element array
JP7155499B2 (en) * 2017-04-26 2022-10-19 Tdk株式会社 LAMINATED ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JPS5879756A (en) 1983-05-13

Similar Documents

Publication Publication Date Title
EP1113499B1 (en) High fill factor image array having a continuous amorphous silicon sensor layer and a doped poly-silicon back contact and fabrication method
EP0165764B1 (en) Depletion mode thin film semiconductor photodetectors
US4969025A (en) Amorphous silicon photosensor with oxygen doped layer
US4412900A (en) Method of manufacturing photosensors
US4405915A (en) Photoelectric transducing element
US7554092B2 (en) X-ray detector
US6300648B1 (en) Continuous amorphous silicon layer sensors using sealed metal back contact
EP0029679B1 (en) Photoelectric device
EP0283699A2 (en) Photoelectric conversion device
EP0428050B1 (en) Photosensor having an amorphous silicon photoabsorption layer
JPS6211792B2 (en)
US4499654A (en) Method for fabricating semiconductor photodetector
EP0211720A1 (en) Method for making a light image sensor, and bidimensional sensor array made by this method
JPS5897862A (en) Close adhesion type image sensor
US5942788A (en) Solid state image sensing device
JPS6322074B2 (en)
JPH0523072B2 (en)
JPS6322465B2 (en)
JPS59143379A (en) Photoconductor and manufacture thereof
JPS6152581B2 (en)
JPH04261070A (en) Photoelectric converter
JPH0334666B2 (en)
JPS62252968A (en) Amorphous silicon image sensor
JP2782984B2 (en) Amplification type photoelectric conversion element
JPH0380574A (en) Photodetector