JPS59152226A - Treatment of magnetic powder - Google Patents

Treatment of magnetic powder

Info

Publication number
JPS59152226A
JPS59152226A JP58024451A JP2445183A JPS59152226A JP S59152226 A JPS59152226 A JP S59152226A JP 58024451 A JP58024451 A JP 58024451A JP 2445183 A JP2445183 A JP 2445183A JP S59152226 A JPS59152226 A JP S59152226A
Authority
JP
Japan
Prior art keywords
iron oxide
cobalt
magnetic powder
oxide layer
acicular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024451A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
幹雄 岸本
Susumu Kitaoka
北岡 進
Shinichi Kitahata
北畑 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58024451A priority Critical patent/JPS59152226A/en
Publication of JPS59152226A publication Critical patent/JPS59152226A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Co-containing iron oxide magnetic powder having excellent mangentic characteristics, age stability and thermal stability, by covering the surface of an acicular iron oxide magnetic particle with a layer of a bivalent iron oxide and with a Co-containing iron oxide layer, and heating the laminated powder under specific condition. CONSTITUTION:An iron oxide layer is applied to the surface of an acicular iron oxide magnetic particles such as gamma-Fe2O3 by using ferrous sulfate etc. containing bivalent iron ion. The coated surface is further coated with a Co-containing iron oxide layer using cobalt sulfate and ferrous sulfate. The laminated iron oxide particle is heat-treated at 200-400 deg.C in an inert gas atmosphere or in vacuum. A high-quality iron oxide layer uniformly containing bivalent iron ion and cobalt is formed by the treatment. The cobalt ion is oriented along the surface magnetic field of the acicular iron oxide magnetic particle, and magnetic particles having large uniaxial anisotropy along the direction of long axis and having improved coercivity can be obtained by this process.

Description

【発明の詳細な説明】 この発明は磁気記録媒体用として好適なコバルト含有酸
化鉄磁性粉末の処理方法に関し、その目的とするところ
は磁気特性に優れかつ経時的安定性および熱的安定性に
優れた前記のコバルト含有酸化鉄磁性粉末を提供するこ
とにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for processing cobalt-containing iron oxide magnetic powder suitable for use in magnetic recording media. Another object of the present invention is to provide the above cobalt-containing iron oxide magnetic powder.

コバルトを含有する酸化鉄磁性粉末は、従来の磁気記録
媒体の記録素子として汎用されている酸化鉄磁性粉末に
比べて高保磁力を有するため、高性能磁気記録媒体の記
録素子として有用である。
Iron oxide magnetic powder containing cobalt has a higher coercive force than iron oxide magnetic powder commonly used as a recording element in conventional magnetic recording media, and is therefore useful as a recording element in high-performance magnetic recording media.

このようなコバルト含有酸化鉄磁性粉末はこれまで種々
のものが提案されており、たとえば、酸化鉄磁性粉末を
、コバルト塩またはコバルト塩と鉄塩とを含有する水溶
液中に分散させ、これにアルカリ水溶液を加え、前記酸
化鉄磁性粉末の粒子表面にコバルトを含有する酸化鉄層
を形成して得られるもの、および酸化鉄磁性粉末をコバ
ルトを含有するアルカリ水溶液中に分散させ水熱処理を
してコバルトを酸化鉄磁性粉末内に固溶させたものなど
がある。
Various cobalt-containing iron oxide magnetic powders have been proposed. For example, iron oxide magnetic powder is dispersed in an aqueous solution containing a cobalt salt or a cobalt salt and an iron salt, and then an alkali is added to the powder. Those obtained by adding an aqueous solution to form an iron oxide layer containing cobalt on the particle surface of the iron oxide magnetic powder, and those obtained by dispersing the iron oxide magnetic powder in an alkaline aqueous solution containing cobalt and hydrothermally treating it to form cobalt. There are products in which iron oxide magnetic powder is dissolved as a solid solution.

ところが、これらの方法で得られる従来のコバルト含有
酸化鉄磁性粉末は、高保磁力を有するものの未だ充分に
満足できるものではなく、特に酸化鉄磁性粉末内にコバ
ルトを固溶して得られるものは経時的安定性および熱的
安定性に劣る。
However, although the conventional cobalt-containing iron oxide magnetic powder obtained by these methods has a high coercive force, it is still not fully satisfactory, and in particular, those obtained by solid dissolving cobalt in iron oxide magnetic powder have a high coercivity over time. Poor physical and thermal stability.

この発明者らはかかる現状に鑑み鋭意研究を重ねた結果
、針状の酸化鉄磁性粉末の粒子表面に、まず2価の鉄イ
オンを含有する酸化鉄層を形成し、さらにその酸化鉄層
上にコバルトを含有する酸化鉄層を形成して、これを不
活性ガス雰囲気中または真空中で200〜400℃の温
度で加熱処理すると、酸化鉄磁性粉末の粒子表面に形成
された2層の酸化鉄層の組成が同一になるとともに均一
になり、多量に存在する2価の鉄イオンによりコバルト
イオンが動き易くなって針状の酸化鉄磁性粉末が有する
表面磁界によりその磁界の方向にコバルトイオンが配向
され、保磁力が一段と高くかつ経時的安定性および熱的
安定性に優れた一軸異方性を有するコバルト含有酸化鉄
磁性粉末が得られることを見いだし、この発明をなすに
至った。
As a result of extensive research in view of the current situation, the inventors first formed an iron oxide layer containing divalent iron ions on the particle surface of acicular iron oxide magnetic powder, and then formed a layer on the iron oxide layer. When an iron oxide layer containing cobalt is formed on the iron oxide magnetic powder and this is heat-treated at a temperature of 200 to 400°C in an inert gas atmosphere or vacuum, two layers of oxidation formed on the particle surface of the iron oxide magnetic powder are formed. As the composition of the iron layer becomes the same, it becomes uniform, and the large amount of divalent iron ions makes it easier for cobalt ions to move, and the surface magnetic field of the acicular iron oxide magnetic powder causes cobalt ions to move in the direction of the magnetic field. The inventors have discovered that it is possible to obtain a cobalt-containing iron oxide magnetic powder that is oriented, has a higher coercive force, and has uniaxial anisotropy with excellent stability over time and thermal stability, leading to the present invention.

この発明において、針状の酸化鉄磁性粉末の表面に形成
される酸化鉄層は、下層に2価の鉄イオンを含有する酸
化鉄層を形成し、その上にコバルトを含有する酸化鉄層
を重層して形成するのが好ましく、このように下層に2
価の鉄イオンを含有する酸化鉄層が介在されると、この
多量に存在する21i11iの鉄イオンによって上層の
酸化鉄層に含有されるコバルトイオンが動き易くなる。
In this invention, the iron oxide layer formed on the surface of the acicular iron oxide magnetic powder includes an iron oxide layer containing divalent iron ions as the lower layer, and an iron oxide layer containing cobalt on top of the iron oxide layer containing divalent iron ions. It is preferable to form the layer in layers, and in this way, two layers are formed in the lower layer.
When an iron oxide layer containing valent iron ions is interposed, the cobalt ions contained in the upper iron oxide layer become more mobile due to the large amount of 21i11i iron ions.

従って、400℃以下の比較的低い温度の加熱処理で、
コバルトイオンが針状の酸化鉄磁性粉末内にまで拡散さ
れることもなく下層の酸化鉄層内に容易かつ均一に固溶
されて上下両酸化鉄層の組成が同一となり、2価の鉄イ
オンとコバルトとを均一に含有する良好な酸化鉄層が形
成されて保磁力の高いコバルト含有酸化鉄磁性粉末が得
られる。さらに表面の酸化鉄層内に多量に存在する2価
の鉄イオンによって動き易くなったコバルトイオンは針
状の酸化鉄磁性粉末が有する表面磁界により、その磁界
の方向に配向され、磁化容易方向が針状の酸化鉄磁性粉
末と同じ方向になるため、針状方向に大きな一軸異方性
が生じて保磁力が一段と向上し、経時的安定性および熱
的安定性も良好になる。
Therefore, by heat treatment at a relatively low temperature of 400°C or less,
Cobalt ions are not diffused into the needle-shaped iron oxide magnetic powder and are easily and uniformly dissolved in the lower iron oxide layer, making the composition of both the upper and lower iron oxide layers the same, and divalent iron ions. A good iron oxide layer uniformly containing cobalt and cobalt is formed, and a cobalt-containing iron oxide magnetic powder with high coercive force is obtained. Furthermore, the cobalt ions, which have become more mobile due to the large amount of divalent iron ions present in the iron oxide layer on the surface, are oriented in the direction of the magnetic field by the surface magnetic field of the acicular iron oxide magnetic powder, and the direction of easy magnetization is changed. Since it is in the same direction as the acicular iron oxide magnetic powder, large uniaxial anisotropy occurs in the acicular direction, further improving coercive force and improving stability over time and thermal stability.

このように、粒子表面にまず2価の鉄イオンを含有する
酸化鉄層を形成し、さらにその上にコバルトを含有する
酸化鉄層を形成した針状の酸化鉄磁性粉末の加熱処理は
、窒素ガス、ヘリウムガス、アルゴンガスなどの不活性
ガス雰囲気中または真空中で200〜400℃の温度で
行うのが好ましく、酸化性ガス雰囲気中では、粉末表面
の下層に含まれる2価の鉄イオンが酸化されて3価の鉄
イオンになってしまうため、この層内へのコバルトイオ
ンの拡散が困難になり、゛高い保磁力が得られなくなる
。また還元性ガス雰囲気中では還元と同時に下層の酸化
鉄層中に存在する2価の鉄イオンが酸化鉄磁性粉末の内
部にまで拡散されるおそれがあるため好ましくない。ま
た熱処理温度は200°C以下になると上層の酸化鉄層
に含有されるコバルトイオンが動きにくくなるため、コ
バルトイオンが下層の酸化鉄層内にまで均一に拡散した
り針状の酸化鉄磁性粉末の表面磁界によって針状方向に
配向することもなくなって保磁力を充分に向上すること
ができず、また400℃以上の温度で行うとコバルトイ
オンが針状の酸化鉄磁性粉末の内部にまで拡散して保磁
力が低下し、経時的安定性および熱的安定性も劣化する
ため200〜400℃の温度で加熱処理するのが好まし
く、250〜350℃の温度で行うのがより好ましい。
In this way, heat treatment of acicular iron oxide magnetic powder, in which an iron oxide layer containing divalent iron ions is first formed on the particle surface, and then an iron oxide layer containing cobalt is further formed on the particle surface, is performed using nitrogen. It is preferable to conduct the reaction at a temperature of 200 to 400°C in an inert gas atmosphere such as gas, helium gas, or argon gas, or in vacuum. In an oxidizing gas atmosphere, divalent iron ions contained in the lower layer of the powder surface are Since it is oxidized into trivalent iron ions, it becomes difficult for cobalt ions to diffuse into this layer, making it impossible to obtain a high coercive force. Further, in a reducing gas atmosphere, divalent iron ions present in the underlying iron oxide layer may be diffused into the interior of the iron oxide magnetic powder at the same time as the reduction, which is not preferable. In addition, if the heat treatment temperature is below 200°C, the cobalt ions contained in the upper iron oxide layer become difficult to move, so the cobalt ions may diffuse evenly into the lower iron oxide layer or become acicular iron oxide magnetic powder. Due to the surface magnetic field, the cobalt ions are no longer oriented in the acicular direction, making it impossible to sufficiently improve the coercive force, and when carried out at temperatures above 400°C, cobalt ions diffuse into the acicular iron oxide magnetic powder. Since the coercive force decreases and the stability over time and thermal stability also deteriorate, the heat treatment is preferably carried out at a temperature of 200 to 400°C, more preferably 250 to 350°C.

第一図は、針状のγ−Fe、03粉末の表面に2価の鉄
イオンを含有する酸化鉄層とコバルトを含有する酸化鉄
層とを順次に積層形成し、コバルトの含有量が5重量%
で、Co / F e = 1 / 2となるようにし
た磁性粉末(保磁力611エルステツド、角型0.47
)を、窒素ガス中で3時間加熱処理したときの熱処理温
度と保磁力および角型の関係をグラフで表したものであ
り、第2図は、同様に針状のγ−Fe203粉末の表面
に2Nの酸化鉄層を積層形成して、コバルト含有量が7
重量%でCo / F e = 1 / 2となるよう
にした磁性粉末(保磁力814エルステツド、角型0.
50)を、窒素ガス中で3時間加熱処理したときの熱処
理温度と保磁力および角型の関係をグラフで表したもの
で、いずれの図においてもグラフAは保磁力と熱処理温
度との関係を示し、グラフBは角型と熱処理温度との関
係を示す。
Figure 1 shows that an iron oxide layer containing divalent iron ions and an iron oxide layer containing cobalt are sequentially laminated on the surface of acicular γ-Fe, 03 powder, and the cobalt content is 5. weight%
Magnetic powder (coercive force 611 oersted, square shape 0.47
) is heat-treated in nitrogen gas for 3 hours, and the relationship between heat treatment temperature, coercive force, and square shape is shown in graph form. Laminated 2N iron oxide layer with cobalt content of 7
Magnetic powder (coercive force: 814 Oersted, square shape: 0.05 Oe, coercive force: Co/F e = 1/2 in weight%)
50) is heat treated in nitrogen gas for 3 hours, and the relationship between heat treatment temperature, coercive force, and square shape is shown in graph form. In both figures, graph A shows the relationship between coercive force and heat treatment temperature. Graph B shows the relationship between the square shape and the heat treatment temperature.

これらのグラフから明らかなように、いずれの磁性粉末
も熱処理温度が200℃以下になったり400°C以上
になると保磁力が大きく低下するが、200〜400℃
の温度では良好な保磁力および角型が得られており、熱
処理温度は200〜400℃の温度で行うのが好ましい
ことがわかる。
As is clear from these graphs, the coercive force of any magnetic powder decreases significantly when the heat treatment temperature is below 200°C or above 400°C, but at temperatures between 200 and 400°C
It can be seen that good coercive force and square shape were obtained at a temperature of 200 to 400°C, and that the heat treatment temperature is preferably 200 to 400°C.

また、両者とも保磁力は熱処理温度300〜350°C
で極大値を示し、角型′はコバルトイオンが酸化鉄磁性
粉末の内部に拡散し始める300〜350°C付近から
急激に高くなっており、このことから加熱処理はコバル
トの酸化鉄磁性粉末内部への拡散が始まる直前の温度で
行うのが最適であることがわかる。さらに、この加熱処
理により得られた磁性粉末は角型が0.5に近いか0.
5より大きく、このことがら−軸異方性を有しているこ
とがわかる。
In addition, the coercive force of both is at a heat treatment temperature of 300 to 350°C.
The square shape ' increases rapidly from around 300 to 350°C, where cobalt ions begin to diffuse inside the iron oxide magnetic powder. It can be seen that the optimum temperature is just before diffusion begins. Furthermore, the magnetic powder obtained by this heat treatment has a square shape close to 0.5 or 0.5.
5, indicating that this has axial anisotropy.

また、第3図はγ−Fe203粉末をコバルトを含むア
ルカリ水溶液中で処理して、粉末粒子表面に2価の鉄イ
オンやコバルト等を含有する酸化鉄層を形成することな
く、コバルトを固溶させて得られたコバルト含有量が5
重量%の磁性粉末(保磁力446エルステソド角型0.
45)を、窒素ガス中で3時間加熱処理したときの熱処
理温度と保磁力との関係(グラフA)および熱処理温度
と角型との関係(グラフB)をグラフで表したものであ
る。このグラフから明らかなように、この種のコバルト
固溶酸化鉄磁性粉末では熱処理により保磁力は向上する
ものの極めて小さく、このことから酸化鉄磁性粉末の粒
子表面に2価の鉄イオンやコバルトを含有する酸化鉄層
が形成されていないものでは加熱処理を行っても著しい
効果が得られないことがわかる。
Figure 3 shows that γ-Fe203 powder is treated in an alkaline aqueous solution containing cobalt to dissolve cobalt into a solid solution without forming an iron oxide layer containing divalent iron ions or cobalt on the powder particle surface. The cobalt content obtained by
% by weight of magnetic powder (coercive force 446 oerstesod rectangular 0.
45) is heat treated in nitrogen gas for 3 hours, and the relationship between heat treatment temperature and coercive force (graph A) and the relationship between heat treatment temperature and square shape (graph B) are graphed. As is clear from this graph, although the coercive force of this type of cobalt solid solution iron oxide magnetic powder is improved by heat treatment, it is extremely small, which indicates that the particle surface of the iron oxide magnetic powder contains divalent iron ions and cobalt. It can be seen that if the iron oxide layer is not formed, no significant effect can be obtained even if heat treatment is performed.

針状の酸化鉄磁性粉末の表面に形成される2価の鉄イオ
ンを含有する酸化鉄層およびコバルトを含有する酸化鉄
層は、γ−Fe203粉末などの針状の酸化鉄磁性粉末
を、まず第一鉄塩水溶液のように2価の鉄イオンを含む
溶液中で加熱処理し、次いでコバルト塩またはコバルト
塩と鉄塩とを含有する水溶液中に分散させ、これにアル
カリ水溶液を加えて反応させるか、あるいは針状の酸化
鉄磁性粉末を水に分散させた後、これに鉄塩およびコバ
ルト塩を加えて混合熔解し、次いでアルカリ水溶液を加
えて反応させるなどの方法で形成される。
The iron oxide layer containing divalent iron ions and the iron oxide layer containing cobalt that are formed on the surface of the acicular iron oxide magnetic powder are formed by first applying the acicular iron oxide magnetic powder such as γ-Fe203 powder. Heat-treated in a solution containing divalent iron ions such as a ferrous salt aqueous solution, then dispersed in an aqueous solution containing cobalt salt or cobalt salt and iron salt, and reacted by adding an alkaline aqueous solution to this. Alternatively, it can be formed by dispersing acicular iron oxide magnetic powder in water, adding iron salt and cobalt salt thereto, mixing and melting the powder, and then adding an aqueous alkali solution to cause a reaction.

ここに使用される針状の酸化鉄磁性粉末としては、γ−
Ffl1203粉末、Fe50牛粉末およびγ−Fe2
O3を水素気流中で部分還元することによって得られる
7−Fe、03とFe3O4との中間の酸化状態の酸化
鉄磁性粉末等が好適なものとして使用される。
The acicular iron oxide magnetic powder used here is γ-
Ffl1203 powder, Fe50 cow powder and γ-Fe2
Iron oxide magnetic powder having an oxidation state intermediate between 7-Fe, 03, and Fe3O4, which is obtained by partially reducing O3 in a hydrogen stream, is preferably used.

また、鉄塩としては塩化第一鉄、硫酸第一鉄、硝酸第一
鉄などが好適なものとして使用され、コバルト塩として
は塩化コバルト、硫酸コバルト、硝酸コバルトなどが好
ましく使用される。
Further, as the iron salt, ferrous chloride, ferrous sulfate, ferrous nitrate, etc. are preferably used, and as the cobalt salt, cobalt chloride, cobalt sulfate, cobalt nitrate, etc. are preferably used.

アルカリとしては、通常、苛性ソーダが用いられ、その
好適な配合量は鉄塩とコバルト塩との総量に対して当量
以上とするのが好ましい。
As the alkali, caustic soda is usually used, and its suitable amount is preferably at least equivalent to the total amount of iron salt and cobalt salt.

実施例1 長軸径0.3μ、軸比(長軸径/短軸径)8の針状r 
 Fe2O3粉末1000gを水5β中に分0 散させた後、これに硫酸第一鉄350gと苛性ソーダ5
00gを加えて混合溶解し、40℃の温度で2時間加熱
して反応させた。次いでこれに硫酸コバルト330gと
硫酸第一鉄320gとを加えて混合溶解し、さらに苛性
ソーダ1100gを溶解した苛性ソーダ水溶液51を加
えて45℃で8時間反応させた。反応終了後、水洗、ろ
過、乾燥した。この乾燥後の磁性粉末の保磁力は670
エルステツドで、飽和磁化量は77.4emu /g 
、角型は0.49であった。
Example 1 Acicular r with a major axis diameter of 0.3μ and an axial ratio (major axis diameter/minor axis diameter) of 8
After dispersing 1000g of Fe2O3 powder in 5β of water, 350g of ferrous sulfate and 55% of caustic soda were added to it.
00g was added and mixed and dissolved, and the mixture was heated at a temperature of 40°C for 2 hours to react. Next, 330 g of cobalt sulfate and 320 g of ferrous sulfate were added thereto and mixed and dissolved. Further, an aqueous solution 51 of caustic soda in which 1100 g of caustic soda was dissolved was added and reacted at 45° C. for 8 hours. After the reaction was completed, it was washed with water, filtered, and dried. The coercive force of this magnetic powder after drying is 670
At Oersted, the saturation magnetization is 77.4 emu/g
, the square shape was 0.49.

次に、この磁性粉末を窒素ガス中、300℃で3時間加
熱処理を行って、−軸異方性を有するコバルト含有酸化
鉄磁性粉末を得た。
Next, this magnetic powder was heat-treated at 300° C. for 3 hours in nitrogen gas to obtain a cobalt-containing iron oxide magnetic powder having −axis anisotropy.

実施例2 実施例1で使用したのと同じ針状r−Fe203粉末1
000gを水51中に分散させた後、これに硫酸コバル
)330gおよび硫酸第一鉄650gを加えて混合熔解
し、次いで苛性ソーダ1100gを溶解した苛性ソーダ
水溶液51を加えて45℃で8時間反応させた。反応終
了後、水洗、濾11 過、乾燥した。この乾燥後の磁性粉末の保磁力は650
エルステツドで飽和磁化量は77.2emu 7g、角
型は0.49であった。
Example 2 The same acicular r-Fe203 powder 1 used in Example 1
After dispersing 000g in water 51, 330g of cobal sulfate) and 650g of ferrous sulfate were added and mixed and melted, and then a caustic soda aqueous solution 51 in which 1100g of caustic soda was dissolved was added and reacted at 45°C for 8 hours. . After the reaction was completed, it was washed with water, filtered, and dried. The coercive force of this magnetic powder after drying is 650
The saturation magnetization amount was 77.2 emu 7g in Oersted, and 0.49 in the square shape.

次に、この磁性粉末を窒素ガス中、300°Cで3時間
加熱処理を行って、−軸異方性を有するコバルト含有酸
化鉄磁性粉末を得た。
Next, this magnetic powder was heat-treated at 300° C. for 3 hours in nitrogen gas to obtain a cobalt-containing iron oxide magnetic powder having −axis anisotropy.

比較例1 実施例1で使用したのと同じ針状γ−Fe203粉末1
000gを水51中に分散させた後、これに硫酸コバル
)330gを加えて、混合溶解し、さらに苛性ソーダ1
100gを溶解した苛性ソーダ水溶液5℃を加えて45
゛Cで8時間反応させた。
Comparative Example 1 The same acicular γ-Fe203 powder 1 as used in Example 1
After dispersing 000g in water 51, add 330g of cobal sulfate, mix and dissolve, and then add 11g of caustic soda.
Add 100g of caustic soda aqueous solution at 5℃ to 45℃.
The reaction was carried out at ゛C for 8 hours.

反応終了後、水洗、濾過、乾燥した。この乾燥後の磁性
粉末の保磁力は390エルステツドで飽和磁化量は69
.4emu 7g 、角型0.48はであった。
After the reaction was completed, it was washed with water, filtered, and dried. The coercive force of this magnetic powder after drying is 390 oersted, and the saturation magnetization is 69
.. 4emu 7g, square shape 0.48.

次に、この磁性粉末を窒素ガス中、300°Cで3時間
加熱処理を行ってコバルト含有酸化鉄磁性粉末を得た。
Next, this magnetic powder was heat-treated at 300° C. for 3 hours in nitrogen gas to obtain a cobalt-containing iron oxide magnetic powder.

比較例2 比較例1において、γ−Fe2O3のかわりにFe3O
4を用い、加熱処理温度を300℃から450°Cとし
た以外は、比較例1と同様にして、コバルト含有酸化鉄
磁性粉末を得た。
Comparative Example 2 In Comparative Example 1, Fe3O was used instead of γ-Fe2O3.
A cobalt-containing iron oxide magnetic powder was obtained in the same manner as in Comparative Example 1, except that Comparative Example 1 was used and the heat treatment temperature was changed from 300°C to 450°C.

各実施例および各比較例で得られたコバルト含有酸化鉄
磁性粉末について、保磁力、飽和磁化量および角型を測
定し、また経時的安定性を調べるため保磁力の経時変化
を測定し、さらに熱的安定性を調べるため加熱減磁を測
定した。保磁力の経時変化は得られた磁性粉末を150
°Cに加熱した後急冷し、60℃で一週間保持した後の
保磁力を測定してその保磁力の変化量を百分率で求めた
For the cobalt-containing iron oxide magnetic powder obtained in each example and each comparative example, the coercive force, saturation magnetization amount, and square shape were measured, and the change in coercive force over time was measured to examine the stability over time. To investigate thermal stability, heating demagnetization was measured. The change in coercive force over time shows that the obtained magnetic powder is 150
The coercive force was measured after being heated to 60° C., then rapidly cooled, and held at 60° C. for one week, and the amount of change in coercive force was determined as a percentage.

また加熱減磁は得られた磁性粉末を飽和磁化して飽和残
留磁化量を測定し、次いでこの磁性粉末を60℃で2時
間加熱した後、残留磁化を測定してこのときの残留磁化
量の減少量を百分率で求めた。
In addition, thermal demagnetization is performed by saturated magnetizing the obtained magnetic powder and measuring the saturated residual magnetization, then heating this magnetic powder at 60°C for 2 hours, measuring the residual magnetization, and calculating the residual magnetization at this time. The amount of decrease was determined as a percentage.

下表はその結果である。The table below shows the results.

3 表 上表から明らかなように、実施例1および2で得られた
コバルト含有酸化鉄磁性粉末は比較例1で得られたコバ
ルト含有酸化鉄磁性粉末に比し、保磁力が一段と高くて
保磁力の変化率および加熱減磁が少なく、このことから
この発明の処理方法によれば磁気特性に優れかつ経時的
安定性および4 熱的安定性に優れたコバルト含有酸化鉄磁性粉末が得ら
れるのがわかる。また実施例1で得られたものは角型が
0.51で実施例2で得られたものは角型が0.50で
あり、この角型の値からこの発明の処理方法で得られる
コバルト含有酸化鉄磁性粉末は一軸異方性を有している
ことがわかる。
3 As is clear from the above table, the cobalt-containing iron oxide magnetic powders obtained in Examples 1 and 2 have a much higher coercive force than the cobalt-containing iron oxide magnetic powder obtained in Comparative Example 1. The rate of change in magnetic force and heating demagnetization are small, which means that the processing method of the present invention provides cobalt-containing iron oxide magnetic powder that has excellent magnetic properties, stability over time, and thermal stability. I understand. Furthermore, the square shape of the product obtained in Example 1 was 0.51, and the square shape of the product obtained in Example 2 was 0.50. It can be seen that the iron oxide magnetic powder contained has uniaxial anisotropy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は、この発明の処理方法およびその他
の処理方法で得られる磁性粉末の熱処理時間と保磁力お
よび角型の関係図である。 砥  旧 く OOO 2 匹 防 4Rz  。 砥   財 く O00 叫甜R仝点
1 to 3 are diagrams showing the relationship between heat treatment time, coercive force, and square shape of magnetic powder obtained by the treatment method of the present invention and other treatment methods. To old KuOOO 2 animals defense 4Rz.熥蔜蔜 KUO00

Claims (1)

【特許請求の範囲】[Claims] 1、針状の酸化鉄磁性粉末の粒子表面に2価の鉄イオン
を含有する酸化鉄層を形成し、さらにその酸化鉄層上に
コバルトを含有する酸化鉄層を形成したものを、不活性
ガス雰囲気中または真空中で200〜400℃の温度で
加熱し、2価の鉄イオンを含有する酸化鉄層とコバルト
を含有する酸化鉄屑の組成を同一かつ均一にするととも
に、針状の酸化鉄磁性粉末が有する表面磁界によりその
磁界の方向にコバルトイオンを配向させて一軸異方性を
有するコバルト含有酸化鉄磁性粉末とすることを特徴と
する磁性粉末の処理方法
1. An iron oxide layer containing divalent iron ions is formed on the particle surface of acicular iron oxide magnetic powder, and an iron oxide layer containing cobalt is further formed on the iron oxide layer. It is heated at a temperature of 200 to 400°C in a gas atmosphere or vacuum to make the composition of the iron oxide layer containing divalent iron ions and the iron oxide scrap containing cobalt the same and uniform, and to form acicular oxides. A method for processing magnetic powder, which comprises orienting cobalt ions in the direction of the magnetic field using a surface magnetic field of the iron magnetic powder to produce a cobalt-containing iron oxide magnetic powder having uniaxial anisotropy.
JP58024451A 1983-02-16 1983-02-16 Treatment of magnetic powder Pending JPS59152226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024451A JPS59152226A (en) 1983-02-16 1983-02-16 Treatment of magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024451A JPS59152226A (en) 1983-02-16 1983-02-16 Treatment of magnetic powder

Publications (1)

Publication Number Publication Date
JPS59152226A true JPS59152226A (en) 1984-08-30

Family

ID=12138516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024451A Pending JPS59152226A (en) 1983-02-16 1983-02-16 Treatment of magnetic powder

Country Status (1)

Country Link
JP (1) JPS59152226A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274605A (en) * 1986-05-13 1987-11-28 バスフ アクチェン ゲゼルシャフト Manufacture of needle shape magnetic iron oxide containing cobalt
JPS6374921A (en) * 1986-09-13 1988-04-05 戸田工業株式会社 Magnetic iron oxide pigment and manufacture
JPS6374920A (en) * 1986-09-13 1988-04-05 戸田工業株式会社 Magnetic iron oxide pigment and manufacture
JPH02222464A (en) * 1988-12-24 1990-09-05 Bayer Ag Manufacture of magnetic iron oxide, and pigment obtained therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274605A (en) * 1986-05-13 1987-11-28 バスフ アクチェン ゲゼルシャフト Manufacture of needle shape magnetic iron oxide containing cobalt
JPS6374921A (en) * 1986-09-13 1988-04-05 戸田工業株式会社 Magnetic iron oxide pigment and manufacture
JPS6374920A (en) * 1986-09-13 1988-04-05 戸田工業株式会社 Magnetic iron oxide pigment and manufacture
JPH02222464A (en) * 1988-12-24 1990-09-05 Bayer Ag Manufacture of magnetic iron oxide, and pigment obtained therefrom

Similar Documents

Publication Publication Date Title
JPS62183025A (en) Tape for magnetic signal recording
GB1594654A (en) Manufacture of acicular cobalt-modified magnetic iron oxide
JPS5853493B2 (en) Kiyoji Seifun Matsuno Seiho
JPS59152226A (en) Treatment of magnetic powder
US4303699A (en) Method of manufacturing magnetic powder
JPH0122204B2 (en)
US1881711A (en) Magnetic structure
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPS6242858B2 (en)
JPS62274605A (en) Manufacture of needle shape magnetic iron oxide containing cobalt
JPS5931961B2 (en) Manufacturing method of ferromagnetic powder
JPS61216306A (en) Magnetic metal powder and manufacture thereof
JP3246943B2 (en) Stabilization method of acicular ferromagnetic metal powder consisting essentially of iron
JPS61111508A (en) Manufacturing method for magnetic powder used in magnetic recording
JPS5976402A (en) Manufacture of magnetic iron oxide powder for magnetic recording medium
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JPS607105A (en) Manufacture of magnetic powder
JPS6310094B2 (en)
JPS58199726A (en) Manufacture of cobalt modified ferromagnetic iron oxide
JPS5853494B2 (en) Method for producing ferromagnetic powder for magnetic recording
JPS59145706A (en) Production of magnetic metallic powder
JPS6364920A (en) Production of magnetic powder for magnetic recording
JPH0545529B2 (en)
JPH0529662B2 (en)
JPS6047723B2 (en) Manufacturing method of ferromagnetic powder