JPS58199726A - Manufacture of cobalt modified ferromagnetic iron oxide - Google Patents

Manufacture of cobalt modified ferromagnetic iron oxide

Info

Publication number
JPS58199726A
JPS58199726A JP57080601A JP8060182A JPS58199726A JP S58199726 A JPS58199726 A JP S58199726A JP 57080601 A JP57080601 A JP 57080601A JP 8060182 A JP8060182 A JP 8060182A JP S58199726 A JPS58199726 A JP S58199726A
Authority
JP
Japan
Prior art keywords
iron oxide
cobalt
temperature
temp
fe2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57080601A
Other languages
Japanese (ja)
Other versions
JPS6215490B2 (en
Inventor
Shinichiro Idesawa
出沢 伸一郎
Hideaki Kosha
秀明 古謝
Tatsuji Kitamoto
北本 達治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP57080601A priority Critical patent/JPS58199726A/en
Publication of JPS58199726A publication Critical patent/JPS58199726A/en
Publication of JPS6215490B2 publication Critical patent/JPS6215490B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture ferromagnetic iron oxide for magnetic recording with high transfer characteristics and high saturation magnetizability by heat treating gamma-Fe2O3 at a specified temp. and by modifying it with Co. CONSTITUTION:In the manufacture of Co modified ferromagnetic iron oxide by modifying ferromagnetic gamma-Fe2O3 particles with Co combined optionally with one or more among Fe<2+>, Fe<3+>, Ni<2+>, Zn<2+>, Cu<2+>, Al<3+>, Mn<2+> and Mg<2+>, the fer romagnetic gamma-Fe2O3 is heat treated at a temp. by 200 deg.C below the critical temp. to a temp. by 30 deg.C above the critical temp. prior to the Co modification. The critical temp. of ferromagnetic gamma-Fe2O3 is defined as a heat treatment temp. at which partial transition from the gamma-FE2O3 to alpha-Fe2O3 is caused and the saturation magnetizability is reduced to 99% of the original value before heat treatment. Thus, ferromagnetic iron oxide for magnetic recording with superior magnetic characteristics, especially high transfer characteristics and high saturation magnetizability is obtd.

Description

【発明の詳細な説明】 本発明は強磁性酸化鉄の製造方法に関し、更に詳細には
、すぐれた磁気特性、特に高い転与特性及び高い飽和磁
化(σS)含有する磁気記録用強磁性酸什鉄の製造方法
酸化鉄る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ferromagnetic iron oxide, and more particularly to a method for producing ferromagnetic iron oxide for magnetic recording, which has excellent magnetic properties, particularly high transfer properties and high saturation magnetization (σS). Iron oxide production method.

近年、より′?R,密度の磁気記録媒体が要求されてい
る。この要求を満足する磁性材料の特性は、高いPj磁
力(Hc )と高い飽和磁化(σS)及び磁性体自体が
低ノイズ性ケ有することである。
In recent years, more′? A magnetic recording medium with a density of R, is required. The characteristics of a magnetic material that satisfies this requirement are that it has a high Pj magnetic force (Hc), a high saturation magnetization (σS), and that the magnetic material itself has low noise.

上記の条件を達成するため、従来拘々の方法が提案され
てきた。例えは、高い悔砲力(Hc )を得るために、
磁性酸化鉄の原料であるα−Fo00Hの針状比音大き
くする方法、その針状性會崩さない焼成の方法、あるい
は磁性酸化鉄ICCoを含有させる方法などが広く使用
されている。
In order to achieve the above conditions, conventional methods have been proposed. For example, in order to obtain a high consolation power (Hc),
Widely used methods include a method of increasing the acicular specific sound of α-Fo00H, which is a raw material for magnetic iron oxide, a method of firing without destroying the acicular nature, and a method of incorporating magnetic iron oxide ICCo.

−力、磁性体自体ケ低ノイズ化する最も効果的方法に磁
性体粒子ケ微粒子化する方法である。し〃・12ながら
、粒子が微小化していくに伴って、磁化単位が小さくな
り、磁化が熱的に不安定になる1こめに、磁気テープと
した際の転写特性(8/P)trj悪くなる。氾1図は
結晶子サイズと転与特性の関保ヤ示すグラフであるが、
従来技術により得られたコバルト変性酸化鉄(Of:l
i)は結晶子サイズが小づくなるにしたがって転与特性
(S/P )が悪化し、破線で示される限界を越えるこ
とが不可能であった。
-The most effective way to reduce the noise of the magnetic material itself is to make the magnetic material particles into fine particles. However, as the particles become smaller, the magnetization unit becomes smaller and the magnetization becomes thermally unstable.At the same time, the transfer characteristics (8/P) when used as a magnetic tape become worse. Become. Figure 1 is a graph showing the relationship between crystallite size and transfer characteristics.
Cobalt-modified iron oxide (Of:l) obtained by conventional technology
In i), the transfer characteristics (S/P) worsened as the crystallite size decreased, and it was impossible to exceed the limit shown by the broken line.

更に、磁性体を微粒子化することによって飽和出仕(σ
S)が低)する欠点もある。
Furthermore, by making the magnetic material fine particles, the saturation distribution (σ
There is also the disadvantage that S) is low).

従来、神々のコバルト変性強研性酸化鉄の製法が知られ
ている。
Conventionally, a method for producing divine cobalt-modified highly abrasive iron oxide has been known.

枦−+’:I m化鉄にコパル)k固溶させる15法で
、米fiJ特許3.//7,933号、特公昭グー−6
331号、特開昭≠8−10/jタタ号、釉公昭ゲター
参26v号、特公昭μ/−277/り号(対応特許:米
国特許3.!73.デ10号)、特公昭ダざ一/j7!
り号、特公昭lll−10タタ4A号、米国特許3.4
7/ 、μ3j号、特公昭μ2−61/3号などに記載
いる。これらの方法によって得られたコバルト含有酸化
鉄を磁気テーラ臀の、磁気記録体を作成した場合、これ
らの磁気記録体は、加圧、加熱に対して不安定であり、
記録された磁気俳号が弱くなる欠点や、転与が大1゜ きい欠β會、持っていた。)□ 第二の方法は、コバルトをき!(固溶ンしていない磁性
酸化鉄粉末の多面に、コバルト化合物、あるいに、コバ
ルトフェライト層管被着、あるい扛成長させる方法があ
り、%開昭参ター1011タタ号、特開昭!0−374
47号、特開18t。
枦-+': 15 method of solid dissolving copal in iron oxide, US fiJ patent 3. //No. 7,933, Special Public Shogu-6
No. 331, JP Sho≠8-10/j Tata No., Glaze Sho Geter San 26v, Sho μ/-277/ri (corresponding patent: U.S. Patent No. 3.!73.De10), Sho Da Zaichi/j7!
RI No., Special Public Sholl-10 Tata No. 4A, U.S. Patent No. 3.4
7/, μ3j issue, and Tokuko Sho μ2-61/3. When magnetic recording bodies are created using cobalt-containing iron oxide obtained by these methods, these magnetic recording bodies are unstable to pressure and heating;
It had the disadvantage that the recorded magnetic haiku name was weakened, and the transfer was greatly reduced by 1 degree. )□ The second method is to use cobalt! (There is a method of depositing a cobalt compound, cobalt ferrite layer tube, or growing it on many surfaces of magnetic iron oxide powder that is not solid solution. !0-374
No. 47, JP18T.

−376z1号、特公昭びターリ2弘7!、特開昭Cタ
ー10r!タタ号、同70−774≦7号、PlrO−
37461号、同10−12074号、同!λ−!≠2
7号、同タλ−!参り1号、同jj−/コタlり参考、
西独特許出1t(OL8)λ。
-376z1, Tokuko Shobi Tari 2hiro 7! , Tokukai Showa Cter 10r! Tata, No. 70-774≦7, PlrO-
No. 37461, No. 10-12074, Same! λ-! ≠2
No. 7, same λ-! Mairi No. 1, same jj-/Kotali reference,
West German patent 1t (OL8) λ.

り01,312号などに記載されている。01,312, etc.

これらの方法で得られる磁性酸化鉄粉末はコバルトに固
溶させる方法によるものに比較し、加圧、加熱に対し安
定となり、転′4.特性も多くの改良が見られたが、そ
れでもなお先にのべた第1図の破紳葡越えるものは得ら
れなかった。
The magnetic iron oxide powder obtained by these methods is more stable against pressure and heating than that obtained by dissolving it in cobalt, and has a high resistance to transfer. Although many improvements were made in the properties, it was still not possible to achieve anything better than the broken grapes shown in Figure 1 mentioned above.

従来、コバルト変性に用いるγ−F e 20 Sは、
通常17)r−Fe203(!:同様に、(1)a−F
e00Hf300〜700 ’(で脱水してa−Fe2
0mとし、(2)更に還元性ガ曵雰囲気において300
−参oo 0cで還元してF e 304とし、(3)
次いでこれ5200〜300’C程度の低温で酸化して
強磁性のr −F e 203 f得るのが一般的であ
る。
Conventionally, γ-F e 20 S used for cobalt modification is
Usually 17) r-Fe203 (!: Similarly, (1) a-F
e00Hf300~700' (dehydrated with a-Fe2
0 m, and (2) further 300 m in a reducing gas atmosphere.
- Reduce with oo 0c to F e 304, (3)
This is then generally oxidized at a low temperature of about 5200 to 300'C to obtain ferromagnetic r -Fe 203 f.

ここで、*iの酸化の工程において200〜300°C
という比較的低WAt−用いているのは、これ以上高温
で酸化全行うと、r−Fe203の一部が非出性の安定
なα−F e 203に非可逆的に転移して磁性が減少
してしまうと一般的に考えられているからである。
Here, in the oxidation step of *i, the temperature is 200 to 300°C.
This relatively low WAt is used because if the complete oxidation is carried out at higher temperatures, part of r-Fe203 will irreversibly transfer to non-extractable stable α-Fe203 and the magnetism will decrease. This is because it is generally believed that

本発明者らは、上述の転与特性と、磁性体の粒子サイズ
との関係を打破るべく鋭意研究t−重ねた結果、γ−F
e2θs1r原料とし、これ會コバルト変性する方法に
おいて、まずr  FezO3fあらかじめ熱処理し、
しかる債にコバルト変性することによって著るしくその
転与特性が同上することを見出した。
The present inventors have conducted extensive research to break down the relationship between the above-mentioned transfer characteristics and the particle size of the magnetic material, and as a result, the γ-F
In this method of cobalt modification using e2θs1r raw material, first, rFezO3f is heat-treated in advance,
It has been found that by modifying such a bond with cobalt, its transferred properties are significantly the same as those described above.

即ち、本発明は、前記のステップ(3)において、γ−
Fe 203を従来の酸化温度よシは高いWA度で熱処
理した後コバルト変性1行うことを%徴とする方法であ
る。
That is, in the present invention, in step (3), γ-
This method is characterized in that Fe 203 is heat treated at a higher WA degree than the conventional oxidation temperature and then subjected to cobalt modification.

この熱処理は臨界温度(すなわちr−Fe203の一部
がα−F e 203に転移し、飽和磁化(σS)が熱
処理前のタタ%になる温度)K対して−コO0°Cから
+10’(:、(好ましくは−100”Cから+O@C
)の温度範囲で行われる。熱処理温度がこれニジ低い場
合には、効果がほとんど見らnず、また高い場合には、
転与の改良効果扛飽和するが、σSが大巾に低下する。
This heat treatment ranges from -0°C to +10'( :, (preferably -100"C to +O@C
). When the heat treatment temperature is very low, there is almost no effect, and when the heat treatment temperature is high,
The improvement effect of transfer is saturated, but σS is significantly reduced.

第2図扛熱処理温度と、得られfcr−Fe20Bの飽
和磁化(σS)及びこれを原料としてコバルト変性して
得られた強磁性酸化鉄の転与物性の関係管示し良もので
ある。飽和缶化(σ3)扛温度が上るにつれて上昇し、
臨界温度−100”(:、ないし臨界温度−S OoC
でヒータとなるが、さらに高温で処理すると降下し始め
、臨界rIA度では熱処理前のσsl下まわる。転与特
性は処理温度が^くなるにつれて向上し、臨界rj7A
#−toooC程度より顕著となる。臨界温度に達する
ころ一足値となり、さらに温#LtよけてもそのvIt
変化しない。
Figure 2 shows the relationship between the heat treatment temperature, the saturation magnetization (σS) of the obtained fcr-Fe20B, and the transferred physical properties of the ferromagnetic iron oxide obtained by modifying this as a raw material with cobalt. Saturation canning (σ3) increases as the temperature increases,
Critical temperature -100" (:, or critical temperature -S OoC
However, when treated at a higher temperature, it begins to drop, and at the critical rIA degree it falls below σsl before the heat treatment. The transfer characteristics improve as the processing temperature increases, and the critical rj7A
It becomes more noticeable than #-tooC. When the critical temperature is reached, it becomes a value, and even if the temperature #Lt is avoided, the vIt
It does not change.

臨界温度は、r−Fe20aのα転移温度と大きな関係
がある。また、r−Fe20Bは準安定物質であるため
、α−Fe203への転移温fは原料や製法の違い、あ
るいは純度などによ1異る。
The critical temperature has a large relationship with the α transition temperature of r-Fe20a. Further, since r-Fe20B is a metastable substance, the transition temperature f to α-Fe203 varies depending on the raw materials, manufacturing method, purity, etc.

また、同一のr−Fetusであっても、昇温速度や保
持時間の違いによりその転移するa度は異ってくる。従
って、本発明の実施にあっては、臨界mfは熱処理時の
昇温速度や保持時間その他の加熱条件に合せて求めなけ
ればならない6また、臨界温度fl r −F e 2
03 カらa−Fe203への転移温度と強い関係があ
り、r−Fe203からα−F e 203への転移は
発熱反応であるため、上記の臨界rI!A#は簡便には
示差熱分析(DTA)あるいは示差走青熱量測足(D8
C)Q用いておおよその見当をつけることができる。第
3囚に示すごとく、r −F’ e 203に[DTA
又1−1D8cの発熱ピークの数がコ本のものと1本の
ものがある。DTA(I)8C)測定における転移湿度
は図中dRrとして求められる。通常の焼成炉を用いて
加熱した際のF e 203からのα−F e 203
へ転移する際の臨界温度FXqTA又はDECにてlO
°C/min  TJjll L7を際ノ転1111f
″”lrlシフ0〜7タ0Cはど低い。
Furthermore, even if the same r-Fetus is used, the a degree at which it transitions will vary depending on the temperature increase rate and holding time. Therefore, in carrying out the present invention, the critical mf must be determined according to the temperature increase rate, holding time, and other heating conditions during heat treatment.6 Also, the critical temperature fl r −F e 2
There is a strong relationship with the transition temperature from 03 to a-Fe203, and since the transition from r-Fe203 to α-Fe203 is an exothermic reaction, the above critical rI! A# can be easily measured by differential thermal analysis (DTA) or differential blue calorimetry (D8
C) A rough estimate can be made using Q. As shown in the third prisoner, [DTA
In addition, there are two types of 1-1D8c with two exothermic peaks and one type with one exothermic peak. The transition humidity in the DTA(I)8C) measurement is determined as dRr in the figure. α-F e 203 from F e 203 when heated using a normal kiln
Critical temperature for transition to lO at FXqTA or DEC
°C/min TJjll L7 to 1111f
``''lrl shift 0-7ta 0C is so low.

本発明の熱処理による転写とσSの改善効果はとのよう
なr −F e 203にも肩効である。すなわち、出
発原料(cl −F e OOHor r−Fe00H
)、焼成法、r −F e 203 f)比度面積、p
H,a化転移温度、DTAピークの数郷の如何にかかわ
らず熱外JilKよる改善は竪められる。また、r −
F e 20 gを熱処理するのみでなく、Fe804
からr−Fe203への酸化温度を上記の温度範囲で行
っても同様の効果が得られる。ただし、このときの転移
温度はあらかじめ2jO’C′c酸化して得られたr 
−F e 203から求める。
The effect of improving transfer and σS by the heat treatment of the present invention is also effective for r -F e 203 such as. That is, starting material (cl -F e OOHor r-Fe00H
), firing method, r −F e 203 f) specific area, p
Regardless of the H, a transition temperature or the number of DTA peaks, the improvement by epithermal JilK is reduced. Also, r −
In addition to heat-treating 20 g of Fe804
Similar effects can be obtained even if the oxidation temperature from to r-Fe203 is carried out within the above temperature range. However, the transition temperature at this time is r obtained by 2jO'C'c oxidation in advance.
- Determined from Fe 203.

本発明における熱処理により、どのような理由で前述の
磁気特性の同上が起るのか扛現在のところ明らかでない
が、熱処理することによって第参図のようにr −F 
e 203のDTAカーブがシャープになることから、
結晶構造の不完全性が小さくなり、磁気的結合が強くな
ったものと考える。
It is currently not clear why the above-mentioned magnetic properties occur due to the heat treatment in the present invention, but by heat treatment, the r -F
Since the DTA curve of e 203 becomes sharp,
It is thought that the imperfections in the crystal structure have become smaller and the magnetic coupling has become stronger.

次に、本発明を実施例によって説明する。粉体の比表面
積はN2の吸着、pHはJ I 8−A法によ〕求めた
。転移m度fiDTAを用いて昇温速度10 @C/m
in  ’I’ll定した。
Next, the present invention will be explained by examples. The specific surface area of the powder was determined by N2 adsorption, and the pH was determined by the J I 8-A method. Temperature increase rate 10 @C/m using transition m degree fiDTA
in 'I'll decide.

本発明で粉末サンプルの転写測定のためテープ化した条
件は次の通りである。なお、以下の説明において「部」
は「重量部」を示す。
The conditions under which a powder sample was made into a tape for transfer measurement in the present invention are as follows. In addition, in the following explanation, "part"
indicates "parts by weight".

磁性粉             1ooH塙酢ビ共隼
合体(UCC社製 rVAGHJ )         10部ポリウレタ
ン(日本ポリウレタン 社製「ニツボランコ30/J)    10@家 ポリインシアネート(日本ポリ ウレタン社製「コロネートL」)    3部ノーヤレ
シチン           1部MEK      
        /10sMIBK         
    tJo部上記の原料をボールミルにて分散した
後(’)Iポリイソシアネートは分散終了時に加える)
、濾過して塗布、磁場゛配回、乾燥した。次いで、カレ
ンダー処理を行つfc後、3.1−幅にスリットした。
Magnetic powder 10H Hanawa Vinyl Acetate Co-Hyayabusa compound (rVAGHJ manufactured by UCC) 10 parts Polyurethane (Nitsubolanko 30/J manufactured by Nippon Polyurethane Co., Ltd.) 10@Polyincyanate (Coronate L manufactured by Nippon Polyurethane Co., Ltd.) 3 parts Noya Lecithin 1 part MEK
/10sMIBK
tJo part After dispersing the above raw materials in a ball mill (')I polyisocyanate is added at the end of dispersion)
, filtered, applied, applied a magnetic field, and dried. Next, after performing fc calender treatment, it was slit to a width of 3.1 mm.

ベースは表面の平滑な厚さ11μmのPETを用いた。The base was made of PET with a smooth surface and a thickness of 11 μm.

転与特性(・S/P )は次のように測定した。Transfer characteristics (・S/P) were measured as follows.

3、tμmμm−プをコンパクトカセットに組込む。バ
ルク消去の後、規建入カレベル(@気テープ工業会標準
規格MT8−ioコによる)にて/K)1mの信号を記
録する。これを10 ”C4A1時間駐時させたのち、
再生し出力信号を中心周波数t K Hz sバンド幅
//Jオクターブ≦dBのフィルターを通したのち、信
号レベルと転与レベルの出力を測定した。
3. Incorporate the tμmμm-p into the compact cassette. After bulk erasing, a signal of 1 m is recorded at the standard input power level (according to the standard MT8-io of the Tape Industry Association). After parking this in 10"C4A for 1 hour,
After reproducing and passing the output signal through a filter with a center frequency t K Hz s bandwidth //J octave≦dB, the signal level and the output level of the transfer were measured.

結晶子サイズはX線回折ピークの(220)djJの半
価幅から計算した結晶子サイズと、(参μO)面のキー
−から計算し大結晶サイズを半均して求めた。
The crystallite size was calculated from the crystallite size calculated from the half width of (220) djJ of the X-ray diffraction peak and the key of the (reference μO) plane, and was determined by dividing the large crystal size by half.

磁性特性については乗英工条製 振動試料型1束形 U
8M−門を用い、外S磁場jKO=にて一ノ定した。
Regarding the magnetic properties, please refer to the vibrating sample type 1 bundle type U made by Norei Kojo Co., Ltd.
Using an 8M gate, the external S magnetic field was constant at jKO=.

実施例L アルカリ側で生成したゲータイトを空気中60(1)Q
Cで脱水し、水素中320°Cで還元した。
Example L Goethite generated on the alkaline side is exposed to 60(1)Q in air.
C and reduced in hydrogen at 320°C.

その彼、空気中2IO’Cにて酸化してr−Fe2θ3
を得た。
He oxidized r-Fe2θ3 in 2IO'C in air.
I got it.

このr −F e 203をDTAにて100C/mi
n  の昇温速度で転移温度を調べた結果67!0Cで
あった。この粉末jOfを一端開放内容積コlの石英ガ
ラス製レトルト容器に投入し、10oDc%sso ’
c、tpoo°C,6200Cで10分間ずつ保持して
そのσSを測足したところzzoocmtで上昇し、z
oo0Cで線熱処理前の伜より/emu/f程度下り、
4.2θ0Cで線熱処理前の504まで低下した。これ
により臨界温度がタタj0Cである率がわかった。この
r−F e 203をaoo ’c、 zoo ’c%
zzo’c。
This r-F e 203 was heated at 100C/mi by DTA.
The transition temperature was examined at a heating rate of n and was found to be 67!0C. This powder jOf was put into a quartz glass retort container with one end open and the internal volume 1, and was heated to 10oDc%sso'.
c, tpoo°C, held at 6200C for 10 minutes each and measured its σS, it rose at zzoocmt and z
At oo0C, it is about /emu/f lower than the value before wire heat treatment,
At 4.2θ0C, it decreased to 504, which was before the linear heat treatment. This revealed the rate at which the critical temperature is Tata j0C. This r-F e 203 aoo'c, zoo'c%
zzo'c.

600°C,4/ t oCKて/ r分〜4’811
熱処理した。
600°C, 4/toCK/r min~4'811
Heat treated.

得られfc r −F e 203のそれぞれ3009
を水2tに分散し、これに(iilfa!コバルト(C
oS04・7H20) 3/、6 fを水/lK溶2)
−したものを加えた。窒素カスを0.57’/min 
 で吹き込みつつ強く攪拌した。lO分後Na(JHμ
m9fを水/1に溶かして添加したのち9素吹込みと攪
拌を続けながら昇温し、ワタ0CK保ちながらV時間反
応した。得られた磁性体tK料/−/、/−2、/−j
、l−参、/−夕、/−6とする。−万、熱処理しない
r −F e 203を用いて同様にコバルト変性し喪
。これ全比較試料lとする。これら磁性体の特性を表/
に示す。
3009 each of the obtained fcr −F e 203
was dispersed in 2 tons of water, and (iilfa! cobalt (C
oS04・7H20) 3/, 6 f dissolved in water/lK2)
- added. Nitrogen scum 0.57'/min
The mixture was vigorously stirred while being blown in with. After lO min Na(JHμ
After m9f was dissolved in 1/1 water and added, the temperature was raised while continuing to blow in 9 atoms and stirring, and the reaction was carried out for V hours while maintaining the concentration of 0CK. Obtained magnetic material tK material /-/, /-2, /-j
, l- reference, /- evening, /-6. -10,000, similarly modified with cobalt using r-Fe 203 without heat treatment. This is the total comparison sample 1. Table of characteristics of these magnetic materials/
Shown below.

なお原料のγ−F e 203 n、Hc392Ck、
σs4り、A、 p)if 、 !、結晶子サイズ30
0A1比表面積J o 、 a m /fT;hつた。
Note that the raw materials γ-F e 203 n, Hc392Ck,
σs4ri, A, p)if, ! , crystallite size 30
0A1 specific surface area J o , a m /fT;

o   (>c>O偽        偽処理温度が高
い程転与特性が向上し、臨界atですでに改良は飽和す
る事がわかる。一方、σ。
o (>c>Ofalse) It can be seen that the higher the false treatment temperature is, the better the transfer characteristics are, and the improvement is already saturated at the critical at.On the other hand, σ.

は熱処理により向上しzzo”cをピークに再び低下す
る事がわかる。
It can be seen that the temperature increases with heat treatment and then decreases again after peaking at zzo'c.

実施例2 実施例りで用いたものと同じゲータイトを用い同一条件
T r −F e 20 g トし要談、その11さら
温度をよけ、ryollcで1時間熱処理し九。
Example 2 The same goethite as that used in Example 1 was used under the same conditions as T r -F e 20 g.

得られたr −F e 20 B B、Hc 4IO&
 Ck、σ86り、 76mu/f 、比表面積30 
、tm /f。
The obtained r -F e 20 B B, Hc 4IO&
Ck, σ86ri, 76mu/f, specific surface area 30
,tm/f.

結晶子サイズztoAであった。The crystallite size was ztoA.

このr −F e 203を実施例りに従ってコバルト
変性した。得られた磁性粉末を試料コとする。
This r-Fe 203 was modified with cobalt according to the example. The obtained magnetic powder is used as a sample.

実施例龜 実施例りで用いたものと同じゲータイトを同じ条件で脱
水、還元した。その後zzo’cで酸化(、r−Fe2
0gとし九〇 得られ1t−r−Fe203はHc uλJ0、σS′
73.2emu/fs pH1、I、結晶子サイズ3コ
<7Aであった。
EXAMPLE The same goethite used in the example was dehydrated and reduced under the same conditions. After that, it was oxidized with zzo'c (, r-Fe2
0g and 90 obtained 1t-r-Fe203 is Hc uλJ0, σS'
73.2 emu/fs pH 1, I, crystallite size 3<7A.

このr −F e 203を用い実施例りと同じ条件で
コバルト食性した。得られ九磁性粉を試料3とする。
Using this r-Fe 203, cobalt feeding was carried out under the same conditions as in the example. The obtained nine magnetic powder is designated as Sample 3.

試料コ、3の特性を比較試料lと共に表コに示す。The characteristics of Samples 3 and 3 are shown in Table 3 together with Comparative Sample 1.

表 λ Hc((h)   8Q   as<emu/f)  
転与dB)試料 J   +6p  o、rs   6
t、r   zt、i試料 3  6!タ  0.11
2   61.2   j6.7壇呻寥/   670
 0.10  61.t   !J、/熱処理を、r−
Fe203の焼成時に連続して打っても、また酸化温度
自体で高くしても転与、σSへの効果が認められる。
Table λ Hc ((h) 8Q as<emu/f)
Transfer dB) Sample J +6p o, rs 6
t, r zt, i sample 3 6! Ta 0.11
2 61.2 j6.7 Dan Oanba / 670
0.10 61. T! J,/heat treatment, r-
Effects on transfer and σS are observed even if the firing is continued during firing of Fe203, or even if the oxidation temperature itself is increased.

実施例本 レピッドクロサイトから魯られたHcl/40e%σs
7a、aemulfs比表面積コ3.1m/f。
Example Hcl/40e%σs extracted from this lepidocrocite
7a, aemulfs specific surface area 3.1 m/f.

結晶サイ、<aoo^、pHj、j4’、tvr−F 
e 20 Bのα化転移温度及び臨界温度を実施例りと
同じようにして求めた所1cta’c%41100Cで
あった。
Crystal rhinoceros, <aoo^, pHj, j4', tvr-F
The gelatinization transition temperature and critical temperature of e 20 B were determined in the same manner as in Examples and were found to be 1 cta'c% 41100C.

このr −F e 203及び参io ’c、  1t
o0cで1時間熱処理したものを実施例先に従ってコバ
ルト変性した。得られ良磁性粉末を比較試料2、試料μ
m/、4’−Jとする。これらの特性をi13に示す。
This r - Fe 203 and reference io 'c, 1t
The sample was heat treated at o0c for 1 hour and then modified with cobalt according to the example. Comparison sample 2 and sample μ of the obtained good magnetic powder
m/, 4'-J. These characteristics are shown in i13.

実施例& レピッドクロサイトから得られ九Hc3/I(k、dB
 7 J 、 P emu/l 、比表面積コt、7m
/f、pH3,69、結晶サイズ(I J OAOr−
Fe 203、のα化転移温度及び臨界i11度を実施
例りと同様にして求めた所4tIt0C%aoo’cで
あった。
Example & Nine Hc3/I (k, dB
7 J, P emu/l, specific surface area, 7 m
/f, pH 3,69, crystal size (I J OAOr-
The gelatinization transition temperature and critical i11 degrees of Fe 203 were determined in the same manner as in the example and were found to be 4tIt0C%aoo'c.

このr−F e 20 B及び370 ’C,p00’
Cで熱処理したものを実施例りに従ってコバルト変性し
た。得られた磁性粉を比較試料J1試料!−/、t−2
とする。特性を*3に示す。
This r-F e 20 B and 370 'C, p00'
The material heat-treated with C was modified with cobalt according to the example. Comparative sample J1 of the obtained magnetic powder! -/, t-2
shall be. The characteristics are shown in *3.

実施例へ 従来法によって焼成されたpHり、!、σS73、り、
HcjJ/(h、比表面積コぐ、2m 7y。
To the examples, the pH value baked by the conventional method,! ,σS73,ri,
HcjJ/(h, specific surface area, 2m 7y.

結晶サイズμlOAのr −F e 203のα化転移
温度、及び臨界a度を実施例1.と同様にして求めたと
ころ6弘2°C%17!0Cであった。
The gelatinization transition temperature and critical a degree of r -F e 203 with crystal size μlOA were determined in Example 1. The temperature was determined in the same manner as above, and it was found to be 6hiro2°C%17!0C.

このr −F e 2θ3及びこれを170°C5z3
0°Cにて1時間熱処理し友ものを用い実施例1、に従
ってコバルト変性した。得られた磁性粉を比較試料μ、
試料4−/、6−2とする。これら磁性粉の特性を表3
に示す。
This r −F e 2θ3 and this at 170°C5z3
After heat treatment at 0°C for 1 hour, the sample was modified with cobalt according to Example 1. The obtained magnetic powder was compared with sample μ,
Samples 4-/, 6-2. Table 3 shows the characteristics of these magnetic powders.
Shown below.

表  3 HC((k)  a@(emv′y)  転4(dB)
試料μ−/Aμ2  73.0   12.2μm2 
   431   73.1    !り、O比較試料
コ   l、10  73./    1t、Z試料タ
ー/jりt   ≦!、0    !?、7j−コ  
   401    7コ、4      I&、/比
較試料J    40λ  72.Q   ハ電?試料
、g−76317コ、7   40.76−2    
 ≦qコ    73.3     j7.0比較試料
弘   61,0  7J、7   !J、r試料7−
/6334り、コ   j9.17−24,072 、
コ     !II  、3比較試料j    630
  7/#   j7.j表3に示した試料及び比較試
料の特性から、r−F e 203の比表面積、結晶子
サイズ、pH1転移温度、臨界温度にかかわらず、さら
に水和識化鉄の結晶形及びそれを生成した条件が酸儒で
あるか、アルカリ側であるようなものについても、r 
−F 62 Q 3を熱処理することで、コパルIf性
俊の転与が著るしく改善されていることがわかる。
Table 3 HC ((k) a@(emv'y) 4(dB)
Sample μ-/Aμ2 73.0 12.2μm2
431 73.1! 1, 10 73. / 1t, Z sample tar/jrit ≦! ,0! ? , 7j-ko
401 7 pieces, 4 I&, / comparative sample J 40λ 72. Q Haden? Sample, g-76317, 7 40.76-2
≦qko 73.3 j7.0 comparative sample Hiroshi 61,0 7J, 7! J, r sample 7-
/6334ri,ko j9.17-24,072,
Ko ! II, 3 comparative sample j 630
7/# j7. jFrom the characteristics of the samples and comparative samples shown in Table 3, regardless of the specific surface area, crystallite size, pH1 transition temperature, and critical temperature of r-F e 203, the crystal form of hydrated iron and its production. Even if the conditions are acidic or alkaline, r
It can be seen that by heat-treating -F 62 Q 3, the transfer of copal if properties is significantly improved.

実施例7゜ 酸性側で生成されたゲータイトより得られたHc327
(k、a S 7 j 、Oemu/fq比!!面積2
3.3m1t% pH3,r、結晶子サイズ弘りOAの
r −F e 203のα化転移温度及び臨界温度を実
施例りと同様にして求め九ところ44A3°C114夕
oCであつ友。
Example 7 Hc327 obtained from goethite produced on the acidic side
(k, a S 7 j , Oemu/fq ratio!! Area 2
The gelatinization transition temperature and critical temperature of r-F e 203 of 3.3ml 1t% pH 3, r, large crystallite size OA were determined in the same manner as in the example, and heated at 44A3°C and 114oC.

このr−Fe20g及びこれをz6o”c、zlθ0C
で1時間熱処理して得られたr  Fe2O3を実施例
1.に示した方法でコバルト変性した。得られた磁性粉
を比較試料!、試料7−/、7−Jとする。これら磁性
粉の特性を表3に示す。
This r-Fe20g and this z6o”c, zlθ0C
The rFe2O3 obtained by heat treatment for 1 hour in Example 1. It was modified with cobalt using the method shown in . A comparison sample of the obtained magnetic powder! , Sample 7-/, 7-J. Table 3 shows the properties of these magnetic powders.

実施例a 実施例tで用いたr−Fe203及びこれt600°C
で7時間アニールしたr −F e 20 Bについて
次の方法でコバルト変性した。
Example a r-Fe203 used in Example t and its temperature at 600°C
The r -F e 20 B annealed for 7 hours was modified with cobalt in the following manner.

水λtに鎖酸コバルト(Co5O4m7H20)J/。Cobalt chain acid (Co5O4m7H20) J/ in water λt.

Atを溶かし、この中にr−Fe 103 JOOfを
分散する。強く攪拌しつつ、NaOH/74fを水it
に溶かしたものを加え、次いでりzOcにまで昇温する
。ここに臂酸第二鉄(Fe2(洩〕4)3・7820)
/ j 、tfを水/lに溶かしたものを14 d 7
m i nの割合で1時にわたって添加した。添加後さ
らに3時間加熱と攪拌をつづけ、計参時間反応した後水
洗、脱水、乾燥し九。
At is dissolved and r-Fe 103 JOOf is dispersed therein. While stirring strongly, add NaOH/74f to water.
Add the dissolved material to the solution, and then raise the temperature to zOc. Here, ferric oxalate (Fe2(leak)4)3.7820)
/ j, tf dissolved in water/l is 14 d 7
It was added over 1 hour at a rate of min. After the addition, heating and stirring were continued for another 3 hours, and after reacting for a total of 3 hours, the mixture was washed with water, dehydrated, and dried.

得られた磁性粉を比較試料4%試料lとする。The obtained magnetic powder is referred to as a comparative sample 4% sample 1.

特性を表弘に示す。The characteristics are shown in Table 1.

実施例会。Practical meeting.

実施例りで用いたf−Fe20B及びこれをtoo”0
.で1時間アニールしたr −F e 2031fCつ
いて次の方法でコバルト変性した。
f-Fe20B used in the example and this too”0
.. The r -Fe 2031fC annealed for 1 hour was modified with cobalt in the following manner.

水xtYcr−Fe20B 1oott分散すbaこの
中に窒素ガスを0 、Jl/minで吹き込み強く攪拌
しなから備酸コパル) (Co8U4・7H20)it
、6fs**第−鉄(Fe3O47H20) If I
fを水o、zlK@かしたものを添加した。10分後に
NaOH/girtを水o、ztに溶かした溶液を加え
たのち昇温した。一時間タナoCに保った後冷却水洗し
、乾燥した。得られ九磁性粉を比較試料7、試料りとす
る。表弘に特性を示した。
Disperse 1 oot of water x Ycr-Fe20B into this, blow nitrogen gas at 0 Jl/min and stir vigorously.
, 6fs** Ferrous (Fe3O47H20) If I
A solution of f mixed with water o and zlK was added. After 10 minutes, a solution of NaOH/girt in water was added and the temperature was raised. After being kept at TanaoC for one hour, it was washed with cold water and dried. The nine magnetic powders obtained were designated as comparative sample 7 and sample sample. The characteristics were shown to Omotehiro.

実施例1a 爽施例叡と同じ条件で磁性体を得た俊窒木雰囲気中で1
zo0Cλ時間熱処理した。得られた磁性体をそれぞれ
比較試料1%試料ioとする。特性t−Il!参に示す
Example 1a Magnetic material was obtained under the same conditions as Example 1.
Heat treatment was performed for zo0Cλ time. The obtained magnetic bodies are respectively referred to as a comparative sample and a 1% sample io. Characteristic t-Il! See below.

実施例11゜ 実Th?lJQ、と−じ条件で磁性体を得た恢空気雰囲
試料り、試料//とする。特性を表参に示す。
Example 11゜Actual Th? IJQ is a sample of a fresh air atmosphere in which a magnetic material was obtained under the same conditions, and is referred to as sample //. The characteristics are shown in the table.

表参 転与(dB) 試料  1     22.3 比較試料t     !弘、O 試料  タ     j!、! \ 比較試料7      j/、J 試料 10      j!、7 比較試料1      j/、J 試料 //      j7.3 比較試料P      ri、を 表Vにより明らかなようにコバルト変性のいかんを問わ
す、r−Fe2031熱処理し死後、コバルト変性する
事で無処理のままコバルト変性する場合よりも転与が良
くなる事は明らかである。
Table reference transfer (dB) Sample 1 22.3 Comparative sample t! Hiro, O sample ta j! ,! \ Comparative sample 7 j/, J Sample 10 j! , 7 Comparative sample 1 j/, J sample // j7.3 Comparative sample P ri, as shown in Table V, was subjected to r-Fe2031 heat treatment, postmortem, cobalt denaturation, and untreated. It is clear that the transfer is better than when the cobalt is directly modified.

【図面の簡単な説明】[Brief explanation of drawings]

第5?、FJA2O3の結晶子サイズと転与特性の関係
を示すグラフである60は従来の方法によるγ−F e
 203の特性を示し、Δは、このγ−F e 203
に本発明による処理大行ったr−F e 203の特性
を示す。 第2図はr −F e 203を熱処理した場合の処理
温度と、飽和磁化(σS)及びこれをコバルト変性した
ときの転写特性(SP)の関係を示すグラフである。 第3図はr −F e 203を示差熱分析(DTA)
にて分析したときの温度と発熱費の関係を示す模式図で
ある。 第V図はr  Fe203f:、本発明による熱処理を
行う前後のDTA曲線の模式−である。All熱処理前
、Bは熱処理後のDTA曲線である。 特許出願人  富士写真フィルム株式会社手続補正書 特許庁長官 殿        4 1、事件の表示    昭和57年 特願第rotoi
号2、発・(qの名称   コバルト変性強磁性酸化鉄
の製法3、補正をする者 事件との関係       %許出願人住 所  神奈
川恩南京柄i′1rTl’沼210番地4、補正の対象
  明細書の「発明の詳細な説明」の欄および「図面の
簡単な説 明」の欄 5、補正の内容 (1)  本願明細書第3頁lコ行「記載」を「記載さ
れて」と補正する。 (2)同書第1頁3行「化度面積」を「比表面積」と補
正する、 (3)同書第1頁7行「酸化温度」を「酸化」と補正す
る。 (4)同書箱r頁コ0行rTJを「で」と補正する。 (5)同書第10頁//行、第1!頁下からコ行及び第
16頁l1行「結晶サイズ」を「結晶子サイズ」と補正
する。 (6)同書第14IJj1行(温度」を「に温度」と補
正する。 (7)同書第23頁10行「発熱量」を「発熱量」と補
正するー 以上
Fifth? , 60 is a graph showing the relationship between crystallite size and transfer properties of FJA2O3.
203, and Δ is this γ-F e 203
Figure 2 shows the characteristics of r-F e 203 which has been extensively treated according to the present invention. FIG. 2 is a graph showing the relationship between the processing temperature when heat-treating r-Fe 203, the saturation magnetization (σS), and the transfer characteristic (SP) when it is modified with cobalt. Figure 3 shows differential thermal analysis (DTA) of r-F e 203.
FIG. 2 is a schematic diagram showing the relationship between temperature and heat generation cost when analyzed in . FIG. V is a schematic diagram of the DTA curves of rFe203f: before and after the heat treatment according to the present invention. All before heat treatment and B are DTA curves after heat treatment. Patent Applicant Fuji Photo Film Co., Ltd. Procedural Amendments Commissioner of the Patent Office 4 1. Indication of Case 1981 Patent Application No. rotoi
No. 2, Name of issue (q) Manufacturing method of cobalt-modified ferromagnetic iron oxide 3, Relationship with the case of the person making the amendment % Applicant Address Kanagawa Onnanjingara i'1rTl' Swamp 210-4, Subject of amendment Details Column 5 of “Detailed Description of the Invention” and “Brief Description of Drawings” of the Book, Contents of Amendment (1) “Description” in line 1 on page 3 of the specification of the present application is amended to “described”. (2) ``Oxidation degree area'' on page 1, line 3 of the same book is corrected to ``specific surface area.'' (3) ``Oxidation temperature'' on page 1, line 7 of the same book is corrected to ``oxidation.'' (4) Box of the same book. Correct page r, line 0, rTJ to “de”. (5) Change “crystal size” to “crystal size” in page 10 of the same book, line //, line 1 from the bottom of page 1!, and line l1 of page 16. (6) The same book, page 23, line 1 (temperature) is corrected to “temperature”. (7) The same book, page 23, line 10, “calorific value” is corrected to “calorific value”.

Claims (1)

【特許請求の範囲】 強磁性γ−F e 203粒子ケコバルト及び必要によ
りFe++  、Fe+1+、Ni++、Zn++、C
n++。 Al++、Mn汁、 M g++ノ/ ツ又は混合物で
f性してなるコバルト変性強磁性厳化鉄の製法において
、コバルトz性処理より先立って、γ−Fe2(J3の
一部がα−Fe203に転移し、飽和磁化が熱処理前の
タタ偶に減少する熱処理a度で足義される臨界m度に対
して一200〜+30°Cの間の温度で、強磁性γ−F
2031に熱処理することを特徴とするコバルト変性強
磁性酸化鉄の製法。
[Claims] Ferromagnetic γ-F e 203 particles Kecobalt and optionally Fe++, Fe+1+, Ni++, Zn++, C
n++. In the method for producing cobalt-modified ferromagnetic toughened iron which is f-characterized with Al++, Mn juice, Mg++ or a mixture, γ-Fe2 (part of J3 becomes α-Fe203) ferromagnetic γ-F at a temperature between -200 and +30 °C with respect to the critical m degree defined by the heat treatment a degree where the saturation magnetization decreases evenly.
A method for producing cobalt-modified ferromagnetic iron oxide, which is characterized by heat-treating the cobalt-modified ferromagnetic iron oxide.
JP57080601A 1982-05-12 1982-05-12 Manufacture of cobalt modified ferromagnetic iron oxide Granted JPS58199726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080601A JPS58199726A (en) 1982-05-12 1982-05-12 Manufacture of cobalt modified ferromagnetic iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080601A JPS58199726A (en) 1982-05-12 1982-05-12 Manufacture of cobalt modified ferromagnetic iron oxide

Publications (2)

Publication Number Publication Date
JPS58199726A true JPS58199726A (en) 1983-11-21
JPS6215490B2 JPS6215490B2 (en) 1987-04-08

Family

ID=13722845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080601A Granted JPS58199726A (en) 1982-05-12 1982-05-12 Manufacture of cobalt modified ferromagnetic iron oxide

Country Status (1)

Country Link
JP (1) JPS58199726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165703A (en) * 1984-02-09 1985-08-28 Sony Corp Acicular magnetic powder of ferromagnetic iron oxide
JPS60208805A (en) * 1984-04-02 1985-10-21 Sony Corp Acicular ferromagnetic iron oxide powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165703A (en) * 1984-02-09 1985-08-28 Sony Corp Acicular magnetic powder of ferromagnetic iron oxide
JPS60208805A (en) * 1984-04-02 1985-10-21 Sony Corp Acicular ferromagnetic iron oxide powder

Also Published As

Publication number Publication date
JPS6215490B2 (en) 1987-04-08

Similar Documents

Publication Publication Date Title
US4296149A (en) Manufacture of acicular cobalt-containing magnetic iron oxide
JPH0145202B2 (en)
JPS58199726A (en) Manufacture of cobalt modified ferromagnetic iron oxide
JP5711086B2 (en) Magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium
SE443896B (en) PARTICULAR MAGNETIC MATERIAL OF IRON OXIDE MODIFIED WITH COBLE AND EVEN CHROME
Dhara et al. Magnetic Properties of Chemical Vapour Deposited Cobalt Dope Gamma Iron Oxide Thin Films
JPH0123402B2 (en)
US5487954A (en) Non-acicular modified high coercivity iron oxides for high density magnetic recording and the processes of making the same
US3640871A (en) Tellurium-iron modified chromium dioxides
US5512194A (en) Acicular ferromagnetic iron oxide particles and process for producing the same
KR0125939B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
US4317675A (en) Magnetic iron powder containing molybdenum
JPS59152226A (en) Treatment of magnetic powder
JPH03261620A (en) Preparation of stabilized needle chromium dioxide
JPS58199725A (en) Manufacture of ferromagnetic iron oxide
JP3242102B2 (en) Magnetic powder and method for producing the same
JPS5931961B2 (en) Manufacturing method of ferromagnetic powder
JPS58161710A (en) Production of ferromagnetic powder
JPH02118056A (en) Magnetic material and magnetic head by using it
SU1579448A3 (en) Method of obtaining magnetic material
EP0131223B1 (en) Process for producing cobalt-modified ferromagnetic iron oxide
JPS61111508A (en) Manufacturing method for magnetic powder used in magnetic recording
Hsu et al. Improved thermal stability of Mo‐modified γ‐Fe2O3 particles
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JPS627635A (en) Cobalt modified ferric oxide particle