JPS59151031A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPS59151031A
JPS59151031A JP2674183A JP2674183A JPS59151031A JP S59151031 A JPS59151031 A JP S59151031A JP 2674183 A JP2674183 A JP 2674183A JP 2674183 A JP2674183 A JP 2674183A JP S59151031 A JPS59151031 A JP S59151031A
Authority
JP
Japan
Prior art keywords
pressure
bridge
strain gauge
resistance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2674183A
Other languages
Japanese (ja)
Inventor
Takeshi Nakane
中根 武司
Katsumi Nakagawa
勝己 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2674183A priority Critical patent/JPS59151031A/en
Publication of JPS59151031A publication Critical patent/JPS59151031A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To raise the sensitivity and to make a pressure detecting circuit simple and inexpensive by providing a pressure detector for adding an outputting a varied portion against a reference set value by pressure of each of plural bridge resistors for forming a strain gauge. CONSTITUTION:A strain of a diaphragm influenced by pressure is tansmitted to a strain gauge, and varies a resistance of a bridge resistor 10. Especially, resistances r1-r4 are varied to a compressed state, its resistance value is decreased, and resistances R1-R4 are varied to an expanded state and its resistance value is increased. When a strain is generated in this pressure detecting circuit, a balance of the bridge resistor 10 is varied, a resistance varied portion of each bridge is added, input voltage of a non-inversion input terminal of an operational amplifier OP1 is increased, and an increased portion against a reference voltage value Vz is obtained as an output from its output terminal. In this way, the sensitivity is raised and the pressure detecting circuit is made simple and inexpensive without damaging a temperature characteristic of a metallic strain gauge.

Description

【発明の詳細な説明】 本発明は圧力センサに関し、料に圧力を変形可能な平板
(ダイヤプラム)で応力、変位などに変換後、ダイヤフ
ラム、の表面に形成された歪ゲージで電気信号に変換す
る圧力センサに関するものである。
Detailed Description of the Invention The present invention relates to a pressure sensor, in which pressure is converted into stress, displacement, etc. by a deformable flat plate (diaphragm), and then converted into an electrical signal by a strain gauge formed on the surface of the diaphragm. The present invention relates to a pressure sensor.

圧力センサは、例えば自動車用センサの中でも重要なセ
ンサの1つで、吸気マニホールド圧、大気圧、トランス
ミッションオイル圧、ブレーキオイル圧、エンジンオイ
ル圧などの測定に用いられる。
A pressure sensor is one of the most important sensors among automotive sensors, and is used to measure intake manifold pressure, atmospheric pressure, transmission oil pressure, brake oil pressure, engine oil pressure, and the like.

と五らの圧力センサとしては、ダイヤフラム上に歪ゲ2
りによるブ、リンジ回路を構成し、圧力によりダイヤフ
ラムに生ずる歪をブリッジ回路によつ−(つて電気信号
に変換するものが一般に用いら扛て艷る。゛この歪ゲー
ジとしては、金属ワイヤ、連続的金属フィルム、非連続
的金属フィルム等を用いブこ金属歪ゲージによるものと
、サーメツトあるいは半導体を用いた半導体歪ゲージに
よるものがある。
As a pressure sensor, there are two strain gauges on the diaphragm.
A bridge circuit is generally used, which converts the strain caused in the diaphragm due to pressure into an electrical signal.This strain gauge is made of metal wire, There are two types of strain gauges: one is a metal strain gauge using a continuous metal film or a discontinuous metal film, and the other is a semiconductor strain gauge using a cermet or a semiconductor.

ところが、金属歪ゲージにおいては極めて優れた温度特
性を有する反面、その感度が劣り、一方半導体歪ゲージ
は金属歪ゲージに比較して数十倍の感度を有するが、そ
の半面、半導体特有の温度特性を有す名た試、温度補償
回路が不可欠であった。加えて、この温度補償回路は圧
力センサの使用状況によっては、非常に複雑かつ高価で
あるという欠点がある。
However, while metal strain gauges have extremely excellent temperature characteristics, their sensitivity is inferior.On the other hand, semiconductor strain gauges have several dozen times the sensitivity of metal strain gauges, but on the other hand, they have temperature characteristics unique to semiconductors. In this famous test, a temperature compensation circuit was essential. In addition, this temperature compensation circuit has the disadvantage that it is very complex and expensive, depending on the usage of the pressure sensor.

そこで、金属歪ゲージの優れた温度特性全利用し、さら
にその感度を補うべく、増幅′器を設けて信号全所定レ
ベルまで増幅することが考えられる。この増幅器として
は、演算増幅器によるものが一般的であるが、金属歪ゲ
ージの出力は編めて小さく・通常自動車用センサとし7
て用いられるものは数十mVの出力しか得られない。ま
た自動車用各種の制御機器がその入力として必要とする
値が数Vである点から、増幅器の増幅率としては、約数
子〜百倍程度の増幅率が必要である。ところが、これら
演算増幅器は温度ドリフトラ有しており、この温度ドリ
フトも上記増幅率で増幅される点(温度ドリフトの小さ
なものもあるが、極めて高価である)、および、自動車
用センサの使用温度が −約−40〜120℃であるこ
とを考えると、高温度下ではこの温度ドリフトの影響が
極めて大きくなり、使用精度が悪くなるという欠点があ
る。
Therefore, in order to make full use of the excellent temperature characteristics of the metal strain gauge and further compensate for its sensitivity, it is conceivable to provide an amplifier to amplify the entire signal to a predetermined level. This amplifier is generally an operational amplifier, but the output of a metal strain gauge is small and is usually used as a sensor for automobiles.
The ones used for this purpose can only obtain an output of several tens of mV. Furthermore, since the input value required by various control devices for automobiles is several volts, the amplification factor of the amplifier must be about a few digits to about 100 times. However, these operational amplifiers have temperature drift, and this temperature drift is also amplified by the above amplification factor (there are some with small temperature drift, but they are extremely expensive), and the operating temperature of automotive sensors is - Considering that the temperature is about -40 to 120°C, there is a drawback that the influence of this temperature drift becomes extremely large at high temperatures, and the accuracy of use deteriorates.

本発明は、金属歪ゲージの優れた温度特性を損うことな
く、その感度を向上させることを第1の目的とし、圧力
検出回路の構成を簡単かつ安価とし、しかも広範囲な温
度状態においても極めて高精度で作動することを第2の
目的とする。
The primary purpose of the present invention is to improve the sensitivity of metal strain gauges without impairing their excellent temperature characteristics.The present invention has a pressure detection circuit that is simple and inexpensive to configure, and is extremely effective even under a wide range of temperature conditions. The second purpose is to operate with high precision.

上記目的を達成するために本発明においては、歪ゲージ
ヲ複数のブリッジ抵抗体にて形成し、あらかじめブリッ
ジ抵抗体の圧力零時の基準設定値な決めておき、そ几ぞ
れのブリッジ抵抗体が圧力により基準抵抗値に対して変
化した変化分全加算して出力する圧力検出回路ケ備える
。これによれば、複数のブリッジ抵抗体のそれぞれの出
力がすべて加算されて出力されるため、形成したブリッ
ジ抵抗体の微量分だけ出力が増加し、結果的に感度が向
上する。さらに本発明によれば、上記構成に加えて、上
記基準設定値が圧力により前記変化分の変化方向とは逆
方向に変化し、該変化分をさらに加算して出力する圧力
検出回路を備える構成とできるため、圧力検出回路の出
力は、各ブリッジ抵抗体の圧力により変化分にさらに基
準設定値自身の圧力による変化分を加えたものとなり、
さらに感度が向上する。
In order to achieve the above object, in the present invention, a strain gauge is formed of a plurality of bridge resistors, a reference setting value of the bridge resistor at zero pressure is determined in advance, and each bridge resistor is It is equipped with a pressure detection circuit that adds up all the changes made to the reference resistance value due to pressure and outputs the result. According to this, since the respective outputs of the plurality of bridge resistors are all added together and output, the output increases by a minute amount of the formed bridge resistors, and as a result, the sensitivity improves. Further, according to the present invention, in addition to the above configuration, the reference set value changes in a direction opposite to the change direction of the change due to pressure, and further includes a pressure detection circuit that adds and outputs the change. Therefore, the output of the pressure detection circuit is the change due to the pressure of each bridge resistor plus the change due to the pressure of the standard setting value itself,
Sensitivity is further improved.

また、本発明の好まR7い実施例においては、これら圧
力検出回路は演算増幅器により加算器を構成、するだけ
でよく、簡単かつ安価に構成、可能である。また、演算
増幅器を加算器として用いるため、高い増幅度は必要と
されず、fnIvドリフトの影響を極めて小さなものと
することかできる。
Furthermore, in the preferred embodiment of the present invention, these pressure detection circuits can be constructed easily and inexpensively by simply constructing an adder using an operational amplifier. Furthermore, since an operational amplifier is used as an adder, a high degree of amplification is not required, and the influence of fnIv drift can be made extremely small.

以下、図面幇参照して本発明の一実施例を説明する。m
1図に、一実施例の回路構成を示す0第・  1図に示
すブリッジ回路1.0がグイヤフラム上に形成さ′rし
た歪ゲージであり、この実施例では4つのブリッジ抵抗
体から成る。そ扛ぞれのブリッジ抵抗体は、抵抗r14
抵抗r2.R2、抵抗r3 、 R3、抵抗r4 、 
R4から構成さ几、それぞれの抵抗の接続点か演算増幅
器op1の非反転入力端子に入力されている。演算増幅
器OPIの反転入力端子には、電源電圧V c c f
抵抗Rx 、 Ryで゛分圧した基準設定値vzが入力
されている。ここで、抵抗Rxおよび抵抗R7は羊れぞ
れ抵抗’] +”2’ + ’3 + ’4の合成抵抗
値および抵抗Rq 、 R2’、 Ra’、Pvの合成
、抵抗値と等しく設定しである。また、抵抗Rfはフィ
ードバック抵抗である。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. m
FIG. 1 shows the circuit configuration of one embodiment. The bridge circuit 1.0 shown in FIG. 1 is a strain gauge formed on a guiaflame, and in this embodiment consists of four bridge resistors. Each bridge resistor has a resistor r14
Resistance r2. R2, resistance r3, R3, resistance r4,
The connection point of each resistor is input to the non-inverting input terminal of the operational amplifier op1. The inverting input terminal of the operational amplifier OPI has a power supply voltage V c c f
A reference set value vz divided by the resistors Rx and Ry is input. Here, the resistor Rx and the resistor R7 are set equal to the combined resistance value of each resistance '] + '2' + '3 + '4 and the combined resistance value of the resistors Rq, R2', Ra', and Pv. Further, the resistor Rf is a feedback resistor.

ダイヤプラムは、圧力によって歪みを受けるが、この歪
みは歪ゲージに伝わり、ブリッジ抵抗体10(7J抵抗
を変化させる。
The diaphragm is strained by pressure, and this strain is transmitted to the strain gauge, changing the resistance of the bridge resistor 10 (7J).

特に、抵抗r1 * R2* ’3 + ’4 Gjl
+縮状徒に変化し7てその抵抗値は減少し、抵抗”i 
+ R−2′+ R3+ R4は伸張状態に変化してそ
の抵抗値は増加すれ。第1図において上向きおよび下向
きの矢印は、そ几ぞれ、抵抗の増加および減少を示して
いる。
In particular, the resistance r1 * R2 * '3 + '4 Gjl
+ Changes to a reduced form 7 and its resistance value decreases, and the resistance "i"
+R-2'+R3+R4 changes to an extended state and its resistance value increases. The upward and downward arrows in FIG. 1 indicate increases and decreases in resistance, respectively.

この様に構成さ扛た圧力検出回路において、歪−みを生
じた場合には、ブリッジ抵抗体10の均衡が変化して、
上記した如くの抵抗値変化に従って、演算増幅器OPI
のa反転入力端子の入力電圧が増加する。従って、演算
増幅器OPIの出力端子から、反転入力端子の入力電圧
である基準設定値■に対しての増加分が出力として得ら
れる。
In the pressure detection circuit configured in this way, when distortion occurs, the balance of the bridge resistor 10 changes,
According to the resistance value change as described above, the operational amplifier OPI
The input voltage at the inverting input terminal a increases. Therefore, from the output terminal of the operational amplifier OPI, the increment with respect to the reference setting value (2), which is the input voltage of the inverting input terminal, is obtained as an output.

この様に、ブリッジ抵抗体lOの各ブリッジの変化分は
すべて加算されて、基準設定値に対する変化分として出
力される。
In this way, all the changes in each bridge of the bridge resistor lO are added together and output as a change with respect to the reference setting value.

次に、本発明の第2実施例を第2図に示す。Next, a second embodiment of the present invention is shown in FIG.

歪ゲージ20は、ダイヤフラム上に形成、された複数の
ブリッジ抵抗体21.22 、28.24であり、各ブ
リッジ抵抗体2] 、22,23.24がそれぞれ、ダ
イヤフラムの歪により圧縮状態に変化してその抵抗値が
減少する抵抗rI+”l、抵抗r2 、’ r二、抵抗
Q l rs、抵抗’4 e ’4および伸張状態に変
化(2てその抵抗値が増大する抵抗R,、R’、1.抵
抗R2,y!2、抵抗穐、R′]ミ抵拉R4,R’、ケ
有し7ている。各抵抗の接点は、それぞれ、電源電圧V
cc、アースGND 、および演算増幅器OP2の反転
入力端子、非反転入力端子に接続される。丁た、抵抗R
Cはフィードバック抵抗である。
The strain gauge 20 includes a plurality of bridge resistors 21, 22, 28, 24 formed on a diaphragm, and each of the bridge resistors 2, 22, 23, 24 changes into a compressed state due to the strain of the diaphragm. The resistance rI+"l whose resistance value decreases, the resistance r2, 'r2, the resistance Q l rs, the resistance '4 e '4, and the resistance R,, R whose resistance value increases ', 1. Resistor R2, y!2, resistor R4, R', has 7. The contact point of each resistor is connected to the power supply voltage V
cc, ground GND, and the inverting input terminal and non-inverting input terminal of the operational amplifier OP2. Right, resistance R
C is a feedback resistance.

さらに・各ブリッジ抵抗体21 、22 、23 。Furthermore, each bridge resistor 21, 22, 23.

24と演算増幅器OP2との接続を説明する。各抵抗は
、第2図において上向きおよび下向きの矢印により抵抗
値の増加および減′+ヲ示した如く、ダイヤフラムの歪
を受けて変化する抵抗の増減により分圧値が増加する接
続点がそれぞれ非反転入力端子に入力され、分圧値が減
少する接続点がそれぞれ反転入力端子に入力される。
24 and the operational amplifier OP2 will be explained. As shown in Fig. 2 by the upward and downward arrows indicating the increase and decrease in resistance value, each resistor has a connection point where the partial pressure value increases due to an increase or decrease in the resistance that changes due to the distortion of the diaphragm. The connection points that are input to the inverting input terminal and at which the divided voltage value decreases are respectively input to the inverting input terminal.

この様に構成された圧力検出回路において、ダイヤフラ
ムに歪が生ずると、演算増幅器OP2の非反転入力端子
の入力電圧は、各ブリッジ抵抗体2]−,22,23,
24の変化分の内、増加分がすべて加算されたものとな
り、また反転入力端子の入力電圧は、各ブリッジ抵抗体
21 、22 、23 。
In the pressure detection circuit configured in this way, when distortion occurs in the diaphragm, the input voltage at the non-inverting input terminal of the operational amplifier OP2 is
The input voltage of the inverting input terminal is the sum of all the increases among the changes of 24, and the input voltage of the inverting input terminal is the voltage of each bridge resistor 21 , 22 , 23 .

24の変化分の内、減少分かすべて加算されたものどな
る。従って、演算増幅器OP2の出力は、各ブリッジ抵
抗体21.22,23.24の変化分の内、増加分と減
少分をそれぞれ加算した値として得ら扛る。ゆえに、本
実施例においては、演算増幅器OP2の反転入力端子の
入力すなわち、基準設定値V″2が圧力によって変化し
、該変化がブリッジ抵抗体自身の変化にざらに加算され
るため、得られる出力はより大きな値となる。
Of the 24 changes, all the decreases are added together. Therefore, the output of the operational amplifier OP2 is obtained as the sum of the increase and decrease of the changes in the bridge resistors 21, 22, 23, and 24, respectively. Therefore, in this embodiment, the input to the inverting input terminal of the operational amplifier OP2, that is, the reference set value V''2 changes with pressure, and this change is roughly added to the change in the bridge resistor itself, so that The output will be a larger value.

次に、本実施例による歪ゲージ(ブリッジ抵抗体)をス
パッタリング法にてダイヤフラム上に形成した際のパタ
ーンの一例を第8図に示す。図中において、演算増幅器
OP2の反転入力端子に接続される部分を←)により、
また非反転入力端子に接続される部分を(1)により示
し、他の各抵抗体は第2図の各抵抗に対応して示しであ
る。
Next, FIG. 8 shows an example of a pattern when the strain gauge (bridge resistor) according to this embodiment is formed on a diaphragm by sputtering. In the figure, the part connected to the inverting input terminal of operational amplifier OP2 is indicated by ←).
Further, the portion connected to the non-inverting input terminal is shown by (1), and the other resistors are shown corresponding to the respective resistors in FIG.

このダイヤフラムは、縁部全体勿把持されて、その表面
全体にわたって圧力を受ける1、従って歪ゲージ20に
おいて、圧力により伸張状態となる抵抗は中央部に位置
しており(R1r ”l + R2L鳥。
This diaphragm is gripped all along its edges and is subjected to pressure over its entire surface 1, so that in the strain gauge 20, the resistance that is stretched by pressure is located in the center (R1r ``l + R2L bird.

R3+ ”s ’l R41R’4)、圧顯状声コどな
る抵抗は周辺°部に配値されている( ’I 1 ”;
 l ’21 ’21 ’31 r二+ ’4、r:)
R3+ ``s 'l R41R'4), the pressure resistance is placed in the peripheral part ('I 1 '';
l '21 '21 '31 r2+ '4, r:)
.

こnら歪ゲージのパターンによる製造技術は種々あるが
、例えば本実施例の如く、スパッタリング法を用いれば
、比較的簡単かつ安価であり、大規模な生産に適してい
る。さらに、歪ゲージがダイヤフラノ\間に接着剤を用
いる必要がなく、このためより感度を向上することがで
きる。
There are various techniques for manufacturing strain gauges using patterns, but for example, if a sputtering method is used as in this embodiment, it is relatively simple and inexpensive, and is suitable for large-scale production. Furthermore, there is no need to use adhesive between the strain gauges and the diaphragm, and therefore the sensitivity can be further improved.

次に、本発明の第8実施例を第4図に示す。この実施例
では、歪ゲージ80を形成する、ブリッジ抵抗体81.
.32,33.84は前述した第2実施例のブリッジ抵
抗体21 、22 、23 、24と同様に構成される
ため説明を省く。本実施例での特徴となる構成は、この
ブリッジ抵抗体と演算増幅器OP8との間に入力抵抗R
j 、R+2 、 Rt3 ’; Ri4 、’R’i
1、 R′i1. Ri2 、 Y@ 、 R″i4を
配した事であり、これら入力抵抗の使用は通常行なはれ
ることであり、本発明の基本的な構成は第2実施例と同
様複数のブリッジ抵抗体と演算増幅器との抵抗であるた
め、これらについても説明を省略する。
Next, an eighth embodiment of the present invention is shown in FIG. In this example, bridge resistors 81 .
.. 32, 33, and 84 are constructed in the same manner as the bridge resistors 21, 22, 23, and 24 of the second embodiment described above, so the explanation thereof will be omitted. The characteristic configuration of this embodiment is that the input resistance R is connected between this bridge resistor and the operational amplifier OP8.
j, R+2, Rt3'; Ri4, 'R'i
1, R′i1. This is because Ri2, Y@, and R″i4 are arranged, and the use of these input resistors is normally done.The basic configuration of the present invention is the same as the second embodiment, including a plurality of bridge resistors and Since these are resistors with the operational amplifier, their explanations will also be omitted.

第5図は第8実施例の歪ゲージパターンの一例を示す。FIG. 5 shows an example of the strain gauge pattern of the eighth embodiment.

ここでも演算増幅器OP8の反転入力端子および非反転
入力端子との接続点ケそれぞれ(ホ)および←)で示す
。また、他の抵抗その他は、第4図に対応して示しであ
る。
Here again, the connection points with the inverting input terminal and the non-inverting input terminal of the operational amplifier OP8 are indicated by (e) and ←), respectively. Further, other resistors and others are shown corresponding to FIG.

以上の如くの歪ゲージパターンをダイヤフラム上に形成
するには、スパッタリング法を用いるのが好ましい。す
なわち、スパッタリング法によれば、第8実施例に入力
抵抗を用いる時でも、ダイヤフラムに歪ゲージと共に形
成すれば良く、入力抵抗を用いる事により製造工程等を
増すことがない。なお、この時入力抵抗を形成する場所
は、ダイヤフラム上の応力が零になる部分に位置させる
のが良い。
In order to form the strain gauge pattern as described above on the diaphragm, it is preferable to use a sputtering method. That is, according to the sputtering method, even when using the input resistor in the eighth embodiment, it is sufficient to form it on the diaphragm together with the strain gauge, and the use of the input resistor does not increase the manufacturing process. At this time, it is preferable that the input resistor be located at a portion where the stress on the diaphragm is zero.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実1也例を示す回路図、第2図は本
発明の第2実施例を示す回路図、第8図は第2実施例の
歪ゲージを示す平面図、第4図は本発明の第3実施例を
示す回路図、第5図は第8実施例の歪ゲージを示す平面
図である。 10・・・歪ゲージ(複数のブリッジ抵抗体)、20・
・・歪ゲージ9.21122 gコう8,24・・・ブ
リッジ抵抗体、80・・・金ゲージ、81.32,83
.34・・・ブリッジ抵抗体、 opl、()p2.O
F2 ・”演算増幅器、 VZ 、 ’V’z 、 V
シ・・・基準設的値 第4図 30 ! 191− 第5図
FIG. 1 is a circuit diagram showing one embodiment of the present invention, FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and FIG. 8 is a plan view showing a strain gauge of the second embodiment. FIG. 4 is a circuit diagram showing a third embodiment of the present invention, and FIG. 5 is a plan view showing a strain gauge according to an eighth embodiment. 10... Strain gauge (multiple bridge resistors), 20...
...Strain gauge 9.21122 gkou8,24...Bridge resistor, 80...Gold gauge, 81.32,83
.. 34...Bridge resistor, opl, ()p2. O
F2 ・”Operation amplifier, VZ, 'V'z, V
C...Standard value Figure 4 30! 191- Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)  ダイヤフラム上に形成ルた歪ゲージにより圧
力を測定する圧力センサにおいて、前記歪ゲージを複数
のブリッジ抵抗体で形赤し、圧力により該各ブリッジ抵
抗体か基順設定値に対し7て変化し7た変化分を加算し
て出力する圧力検出回路?備えた圧力センサ。
(1) In a pressure sensor that measures pressure with a strain gauge formed on a diaphragm, the strain gauge is shaped like a plurality of bridge resistors, and the pressure causes each bridge resistor to respond to a basic set value by 7. A pressure detection circuit that adds up the 7 changes and outputs it? Equipped with pressure sensor.
(2)前記圧力検出回路は、前記基準設定値力$圧力に
より前記変化分の変化方向とは逆方向に変化し・該変化
分合ざらに加算して出力する圧力検出回路である前記特
許請求のf#、門弟(1)項記載の圧力センサ。
(2) The pressure detection circuit is a pressure detection circuit that changes the reference set value force $ pressure in a direction opposite to the change direction of the change amount, adds the change amount together, and outputs the result. f#, pressure sensor described in disciple (1).
(3)前記歪ゲージはス/ぐンタリング法にて形成され
た薄膜抵抗体である前記特許請求の範囲第(1)項記載
の圧力センサ。
(3) The pressure sensor according to claim (1), wherein the strain gauge is a thin film resistor formed by a sintering method.
JP2674183A 1983-02-18 1983-02-18 Pressure sensor Pending JPS59151031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2674183A JPS59151031A (en) 1983-02-18 1983-02-18 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2674183A JPS59151031A (en) 1983-02-18 1983-02-18 Pressure sensor

Publications (1)

Publication Number Publication Date
JPS59151031A true JPS59151031A (en) 1984-08-29

Family

ID=12201721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2674183A Pending JPS59151031A (en) 1983-02-18 1983-02-18 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS59151031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243567A (en) * 2001-02-22 2002-08-28 Minebea Co Ltd Semiconductor type pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243567A (en) * 2001-02-22 2002-08-28 Minebea Co Ltd Semiconductor type pressure sensor

Similar Documents

Publication Publication Date Title
US4333349A (en) Binary balancing apparatus for semiconductor transducer structures
CA2145698C (en) Electronic circuit for a transducer
US3956927A (en) Strain gauge transducer apparatus
US20070295095A1 (en) Apparatus for providing an output proportional to pressure divided by temperature (P/T)
EP0034807B1 (en) Semiconductor strain gauge
JP4568982B2 (en) Physical quantity detection device
US6308577B1 (en) Circuit and method of compensating for membrane stress in a sensor
JPH0972805A (en) Semiconductor sensor
JPS59151031A (en) Pressure sensor
US4611129A (en) Signal conversion circuit
JPS62168030A (en) Temperature compensating circuit for semiconductor pressure sensor
JPH02242121A (en) Pressure/temperature compound detector
JP3544102B2 (en) Semiconductor pressure sensor
JPH08226862A (en) Sensor and method for performing temperature compensation for measuring-range fluctuation in sensor thereof
JP2934538B2 (en) Transducer circuit and manufacturing method thereof
JPS6341079A (en) Semiconductor distortion-converting device
JPS6222272B2 (en)
JPH0455542B2 (en)
JPS59217374A (en) Semiconductor strain converter
JPH0313537B2 (en)
JPH0434091B2 (en)
JPS622484Y2 (en)
JP2536822B2 (en) Temperature compensation circuit for weighing device
JPS59188567A (en) Signal converting circuit
JPH0368830A (en) Temperature compensation circuit of semiconductor pressure sensor