JP2536822B2 - Temperature compensation circuit for weighing device - Google Patents
Temperature compensation circuit for weighing deviceInfo
- Publication number
- JP2536822B2 JP2536822B2 JP1058753A JP5875389A JP2536822B2 JP 2536822 B2 JP2536822 B2 JP 2536822B2 JP 1058753 A JP1058753 A JP 1058753A JP 5875389 A JP5875389 A JP 5875389A JP 2536822 B2 JP2536822 B2 JP 2536822B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- coefficient
- output
- operational amplifiers
- resistance element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Measurement Of Force In General (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は重量を機械歪に変換する起歪体の歪量を電気
信号に変換して出力するようにした計量装置用の温度補
償回路に関する。Description: TECHNICAL FIELD The present invention relates to a temperature compensation circuit for a weighing device, which converts a strain amount of a flexure element that converts weight into mechanical strain into an electric signal and outputs the electric signal. .
(従来技術) 電子秤等の起歪体の歪量を電気信号に変換する回路
は、第4図に示したように信号取出端子を挟んで対向す
る各2辺に起歪体に貼着された歪ゲージA、A′、B、
B′を接続してなるブリッジ回路Dと、このブリッジ回
路Dの信号出力端子に非反転入力端子をそれぞれ接続
し、また反転入力端子に起歪体に密着させた感温抵抗素
子Eを接続してなる演算増幅器F、Gと、これら演算増
幅器F、Gの出力を受ける差動増幅回路Hからなり、起
歪体を構成している金属、通常アルミニウム合金のヤン
グ率の温度特性や、歪ゲージの抵抗の温度特性による重
量信号の変動を感温抵抗素子Eを備えた増幅回路の増幅
率の変化により補正することが行なわれている。(Prior Art) As shown in FIG. 4, a circuit for converting the strain amount of a flexure element such as an electronic scale into an electric signal is attached to the flexure element on each of two opposite sides with a signal output terminal interposed therebetween. Strain gauges A, A ', B,
A bridge circuit D connected to B ', a signal output terminal of the bridge circuit D is connected to a non-inverting input terminal, and an inverting input terminal is connected to a temperature-sensitive resistance element E closely attached to the strain body. Composed of operational amplifiers F and G and a differential amplifier circuit H that receives the outputs of these operational amplifiers F and G. The temperature characteristics of the Young's modulus of the metal, usually aluminum alloy, which constitutes the strain-generating body, and the strain gauge The fluctuation of the weight signal due to the temperature characteristic of the resistance is corrected by the change of the amplification factor of the amplifier circuit including the temperature sensitive resistance element E.
(解決しようとする課題) このような回路によれば、補償温度設定点を挟む比較
的狭い温度に対しては、高い精度で重量信号を補正でき
るものの、ブリッジ回路からの出力の温度特性と、感温
抵抗素子Eを含む増幅回路の出力の温度特性が正の2次
特性を有するため、第5図に示したように補償温度設定
点T0から隔たるにつれて誤差ΔLが急激に大きくなると
いう問題を依然として抱えている。(Problem to be Solved) According to such a circuit, although the weight signal can be corrected with high accuracy for a relatively narrow temperature between which the compensation temperature set point is sandwiched, the temperature characteristic of the output from the bridge circuit, Since the temperature characteristic of the output of the amplifier circuit including the temperature-sensitive resistance element E has a positive second-order characteristic, the error ΔL rapidly increases with distance from the compensation temperature set point T 0 , as shown in FIG. I still have problems.
このような問題を解消するため、ブリッジ回路に直列
に感温抵抗素子を接続してブリッジ出力の温度特性を改
善することも考えられるが、このような温度補償は汎用
性を欠くためにコストの上昇を招くばかりでなく、起歪
体や歪ゲージの特性に合う感温抵抗を多数用意する必要
があるという新たな問題を招く。In order to solve such a problem, it is conceivable to connect a temperature-sensitive resistance element in series with the bridge circuit to improve the temperature characteristic of the bridge output, but such temperature compensation lacks general versatility, which leads to cost reduction. Not only does this cause a rise in temperature, but it also introduces a new problem in that it is necessary to prepare a large number of temperature-sensitive resistors that match the characteristics of the flexure element and strain gauge.
本発明はこのような問題に鑑みてなされたもので、そ
の目的とするところは、コストの増大を招くことなく、
広い温度範囲に亙って高い精度で、歪みゲージを含むブ
リッジ回路と、これに接続される増幅回路の温度特性を
トータルで補正することができる新規な計量装置用温度
補償回路を提供することである。The present invention has been made in view of the above problems, and an object thereof is to prevent an increase in cost,
By providing a new temperature compensating circuit for weighing devices that can correct the temperature characteristics of the bridge circuit including the strain gauge and the amplifier circuit connected to it with high accuracy over a wide temperature range. is there.
(課題を解決するための手段) このような問題を解消するために本発明においては、
ロードセルの起歪体に設けられた歪みゲージにより構成
されたブリッジ回路と、第1、第2の演算増幅器とを備
え、第1、第2の演算増幅器の非反転入力端子が前記ブ
リッジ回路に接続するとともに、第1、第2の演算増幅
器の反転入力端子を、正の2次温度係数を有しない金属
と、正の2次温度係数を有する金属とにより2次の温度
特性を合わせ込み、さらに精密抵抗により1次の温度係
数を調整した感温手段により接続するようにした。(Means for Solving the Problems) In order to solve such a problem, in the present invention,
The load circuit includes a bridge circuit configured by a strain gauge provided in the strain generating element and first and second operational amplifiers, and non-inverting input terminals of the first and second operational amplifiers are connected to the bridge circuit. At the same time, the inverting input terminals of the first and second operational amplifiers are made to match the secondary temperature characteristics with a metal having no positive secondary temperature coefficient and a metal having a positive secondary temperature coefficient. The connection was made by a temperature-sensitive means whose primary temperature coefficient was adjusted by a precision resistor.
(実施例) そこで、以下に本発明の詳細を図示した実施例に基づ
いて説明する。(Embodiment) Therefore, the details of the present invention will be described below based on an illustrated embodiment.
第1図は本発明の一実施例を示すものであって、図中
符号1は、起歪体に貼着された歪ゲージ3、3′、4、
4′を4辺に有するブリッジ回路である。6、7は、そ
れぞれ第1、第2の演算増幅器で、それぞれ非反転入力
端がブリッジ回路1の信号出力端に接続され、また反転
入力端子が精密抵抗8、9を介して出力端子に接続され
るとともに、各反転入力端子間を後述する感温抵抗素子
10と精密抵抗12により接続されている。FIG. 1 shows an embodiment of the present invention, in which reference numeral 1 denotes strain gauges 3, 3 ', 4 attached to a flexure element.
This is a bridge circuit having 4'on four sides. Reference numerals 6 and 7 denote first and second operational amplifiers, respectively, whose non-inverting input terminals are connected to the signal output terminals of the bridge circuit 1, and whose inverting input terminals are connected to the output terminals via precision resistors 8 and 9. And the temperature-sensitive resistance element described below between the inverting input terminals.
It is connected by 10 and precision resistor 12.
10は、前述の感温抵抗素子で、2次係数成分を有しな
い銅、または負の2次係数を有する白金等の第1の感温
抵抗素子10aと、正の2次係数を有するニッケル等の第
2の感温抵抗素子10bとを直列、もしくは並列に接続し
て構成されている。12は、1次温度係数をマッチングさ
せるための精密抵抗12で、この実施例においては感温抵
抗素子10に直列接続されている。なお、図中符号14は、
演算増幅器6、7から出力を受けるとともに、これと協
働して高入力インピーダンス差動増幅回路を構成する差
動増幅回路を示す。Reference numeral 10 is the above-mentioned temperature-sensitive resistance element, which is a first temperature-sensitive resistance element 10a such as copper having no quadratic coefficient component or platinum having a negative quadratic coefficient, and nickel having a positive quadratic coefficient. The second temperature-sensitive resistance element 10b is connected in series or in parallel. Reference numeral 12 is a precision resistor 12 for matching the primary temperature coefficient, which is connected in series to the temperature-sensitive resistance element 10 in this embodiment. In addition, reference numeral 14 in the figure
A differential amplifier circuit that receives outputs from the operational amplifiers 6 and 7 and cooperates with them to form a high input impedance differential amplifier circuit is shown.
ところで銅からなる第1の感温抵抗素子10aの温度−
抵抗特性は、第2図(I)に示したように温度に対して
正の1次温度特性を示し、またニッケルからなる第2の
感温抵抗素子10bの温度−抵抗特性は同図(II)に示し
たように正の1次、正の2次の温度−抵抗特性を示す。By the way, the temperature of the first temperature-sensitive resistance element 10a made of copper −
The resistance characteristic shows a positive primary temperature characteristic with respect to temperature as shown in FIG. 2 (I), and the temperature-resistance characteristic of the second temperature-sensitive resistance element 10b made of nickel is shown in FIG. ), The positive first-order and positive second-order temperature-resistance characteristics are shown.
この実施例において、予め起歪体を含むブリッジ回路
1の温度変化に対する出力信号の変化を測定してブリッ
ジ出力の温度−出力特性を調査する。この温度−出力特
性を1+αSP25ΔT(ただしαSP25は温度係数、ΔTは
補償温度設定点からの温度差を表わす)なる式で近似し
て係数αSP25を求める。In this embodiment, the temperature-output characteristic of the bridge output is investigated by measuring the change of the output signal with respect to the temperature change of the bridge circuit 1 including the strain element in advance. This temperature-output characteristic is approximated by an expression of 1 + α SP25 ΔT (where α SP25 is a temperature coefficient and ΔT is a temperature difference from the compensation temperature set point) to obtain a coefficient α SP25 .
このようにしてブリッジ出力の温度計数αSP25が定ま
った段階で、演算増幅器6、7、及び差動増幅回路14か
らなる高入力差動増幅回路の出力の温度係数を求め、こ
れからの出力がほぼ平坦化するように銅、ニッケル等を
組合せた感温抵抗素子10、及び精密抵抗12のそれぞれの
抵抗値の合せ込みを行なう。In this way, when the temperature coefficient α SP25 of the bridge output is determined, the temperature coefficient of the output of the high input differential amplifier circuit including the operational amplifiers 6 and 7 and the differential amplifier circuit 14 is obtained, and the output from this is almost the same. The resistance values of the temperature-sensitive resistance element 10 and the precision resistance 12 in which copper, nickel, etc. are combined so as to be flat are adjusted.
基準温度を25℃とし、(25+T)℃におけるブリッジ
回路の定格出力をf(T)とすると、 fSP(T)−ASP25(1+αSP25T) ただし、αSP25:25℃におけるブリッジ出力の温度係
数 T:25℃からの温度差 α1SP:25℃におけるブリッジ出力の温度係数定数項 α2SP:温度変化したときのブリッジ出力の温度係数の温
度依存項 αSP25×α1SP+α2SPT により表すことができる。Assuming that the reference temperature is 25 ° C and the rated output of the bridge circuit at (25 + T) ° C is f (T), f SP (T) −A SP25 (1 + α SP25 T) where α SP25 : Bridge output temperature at 25 ° C Coefficient T: Temperature difference from 25 ℃ α 1SP : Temperature coefficient constant term of bridge output at 25 ℃ α 2SP : Temperature dependence term of temperature coefficient of bridge output when temperature changes α SP25 × α 1SP + α 2SP T You can
一方、(25+T)℃における高入力差動増幅回路の増
幅率をfa(T)とすると、 ただし、RSO25:25℃における入力抵抗の感温抵抗値 RS1:入力抵抗の精密抵抗値 Rf:帰還抵抗値 αS25:25℃における増幅率の温度係数 α1:25℃における増幅率温度係数定数項 α2:温度変化したときの増幅率温度係数の温度依存項 α25=α1+α2T として表すことができる。On the other hand, if the amplification factor of the high input differential amplifier circuit at (25 + T) ° C is f a (T), Where R SO25 : Temperature-sensitive resistance value of input resistance at 25 ° C R S1 : Precision resistance value of input resistance R f : Feedback resistance value α S25 : Temperature coefficient of amplification factor at 25 ° C α 1 : Temperature of amplification factor at 25 ° C Coefficient constant term α 2 : It can be expressed as a temperature-dependent term α 25 = α 1 + α 2 T of the amplification factor temperature coefficient when the temperature changes.
ブリッジの出力と高入力差動増幅回路とを組合せたと
きの全体を出力をft(T)とすると、 ここで、上記出力ft(T)の温度変化を抑えるために
は、3次以上の項を無視すると、1次、2次の項がゼロ
となるようにすればよいから、 となる。この条件を満足するように各抵抗値Rf、RS25、
RS1を設定すればよい。Letting f t (T) be the entire output when the output of the bridge and the high input differential amplifier circuit are combined, Here, in order to suppress the temperature change of the output f t (T), if the terms of the third or higher order are ignored, the first and second terms should be zero. Becomes To satisfy this condition, each resistance value R f , R S25 ,
You can set R S1 .
ただし、αiSP、α2SPは実験により求めたブリッジ出
力の温度特性により一義的に定まり、またα1、α2は
使用する感温抵抗素子の温度係数に依存し、さらに増幅
率(1+2Rf/(RSO25+RS1)をいくらにするかによって
抵抗値Rf、RSO25、RS1の抵抗値の比が決るので、これら
から上記2式を満足する感温抵抗素子10と精密抵抗12の
各々の抵抗値が定まる。However, α iSP and α 2SP are uniquely determined by the temperature characteristics of the bridge output obtained by the experiment, and α 1 and α 2 depend on the temperature coefficient of the temperature-sensitive resistance element to be used, and the amplification factor (1 + 2R f / The ratio of the resistance values R f , R SO25 , and R S1 is determined by how much (R SO25 + R S1 ) is set. The resistance value of is determined.
これにより、ブリッジ回路1から出力した信号の正の
2次温度変化分は、高入力差動増幅回路自体の負の2次
温度変化分により相殺されるから、温度補償設定点T0を
中心に広い温度範囲に亘る温度変化に関わりなく、重量
だけに比例した信号を出力することになる。As a result, the positive secondary temperature change of the signal output from the bridge circuit 1 is canceled by the negative secondary temperature change of the high input differential amplifier circuit itself, so that the temperature compensation set point T 0 is centered. A signal proportional to only the weight is output regardless of the temperature change over a wide temperature range.
なお、この実施例においては差動増幅14との組合せに
よる高入力インピーダンス型増幅器に適用しているが、
第3図に示したように高入力インピーダンス反転回路に
適用しても同様の作用効果を奏することは明らかであ
る。In this embodiment, the high input impedance type amplifier in combination with the differential amplifier 14 is applied,
It is apparent that the same operational effect can be obtained even when applied to the high input impedance inverting circuit as shown in FIG.
(発明の効果) ロードセルの起歪体に設けられた歪みゲージにより構
成されたブリッジ回路と、第1、第2の演算増幅器とを
備え、第1、第2の演算増幅器の非反転入力端子がブリ
ッジ回路に接続するとともに、第1、第2の演算増幅器
の反転入力端子を、正の2次温度係数を有しない金属
と、正の2次温度係数を有する金属とからなる感温抵抗
素子により2次の温度特性を合わせ込み、さらに精密抵
抗により1次の温度計数を調整した感温手段により接続
したので、歪みゲージを含むブリッジ回路及び後段の増
幅回路との温度特性を広い温度範囲に亙って平坦となる
ように簡単に合わせ込むことができる。(Effects of the Invention) A bridge circuit including a strain gauge provided in the strain generating element of the load cell and first and second operational amplifiers are provided, and the non-inverting input terminals of the first and second operational amplifiers are The inverting input terminals of the first and second operational amplifiers are connected to the bridge circuit by a temperature-sensitive resistance element made of a metal having no positive second-order temperature coefficient and a metal having a positive second-order temperature coefficient. The temperature characteristics of the bridge circuit including the strain gauge and the amplification circuit of the subsequent stage are combined in a wide temperature range because the temperature characteristics of the secondary temperature characteristics are adjusted and the temperature coefficient of the primary temperature coefficient is adjusted by a precision resistor. It can be easily fitted so that it becomes flat.
第1図は本発明の一実施例を示す装置の構成図、第2図
は同上装置に使用する温度抵抗素子の一例を示す線図、
第3図は本発明の他の実施例を示す構成図、及び第4、
5図はそれぞれ従来の温度補償回路の一例を示す構成図
と、その温度補償特性を示す線図である。 1……ブリッジ回路 3、3′、4、4′……歪ゲージ 6、7……演算増幅器 10……感温抵抗素子 10a……銅抵抗素子 10b……ニッケル抵抗素子 12……精密抵抗素子FIG. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of a temperature resistance element used in the same apparatus,
FIG. 3 is a block diagram showing another embodiment of the present invention, and FIG.
FIG. 5 is a block diagram showing an example of a conventional temperature compensation circuit and a diagram showing its temperature compensation characteristic. 1 ... Bridge circuit 3, 3 ', 4, 4' ... Strain gauge 6, 7 ... Operational amplifier 10 ... Temperature-sensitive resistance element 10a ... Copper resistance element 10b ... Nickel resistance element 12 ... Precision resistance element
Claims (1)
ジにより構成されたブリッジ回路と、第1、第2の演算
増幅器とを備え、第1、第2の演算増幅器の非反転入力
端子が前記ブリッジ回路に接続するとともに、第1、第
2の演算増幅器の反転入力端子を、正の2次温度係数を
有しない金属と、正の2次温度係数を有する金属とから
なる感温抵抗素子により2次の温度特性を合わせ込み、
さらに精密抵抗により1次の温度係数を調整した感温手
段により接続してなる計量装置用温度補償回路。1. A bridge circuit composed of strain gauges provided in a strain element of a load cell, and first and second operational amplifiers, wherein non-inverting input terminals of the first and second operational amplifiers are provided. A temperature-sensitive resistance element that is connected to the bridge circuit and has inverting input terminals of the first and second operational amplifiers made of a metal having no positive second-order temperature coefficient and a metal having a positive second-order temperature coefficient. By combining the secondary temperature characteristics with
Further, a temperature compensating circuit for a measuring device, which is connected by a temperature-sensing means whose primary temperature coefficient is adjusted by a precision resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1058753A JP2536822B2 (en) | 1989-03-09 | 1989-03-09 | Temperature compensation circuit for weighing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1058753A JP2536822B2 (en) | 1989-03-09 | 1989-03-09 | Temperature compensation circuit for weighing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02236422A JPH02236422A (en) | 1990-09-19 |
JP2536822B2 true JP2536822B2 (en) | 1996-09-25 |
Family
ID=13093300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1058753A Expired - Fee Related JP2536822B2 (en) | 1989-03-09 | 1989-03-09 | Temperature compensation circuit for weighing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2536822B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5184520A (en) * | 1989-10-18 | 1993-02-09 | Ishida Scales Mfg. Co., Ltd. | Load sensor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57154020A (en) * | 1981-03-19 | 1982-09-22 | Teraoka Seiko Co Ltd | Temperature compensation circuit for weight detector |
JPS5884543U (en) * | 1981-12-01 | 1983-06-08 | 株式会社クボタ | load cell |
JPH0765920B2 (en) * | 1986-10-07 | 1995-07-19 | 株式会社石田衡器製作所 | Load detection circuit for load cell type electronic balance |
-
1989
- 1989-03-09 JP JP1058753A patent/JP2536822B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02236422A (en) | 1990-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4337665A (en) | Semiconductor pressure detector apparatus with zero-point temperature compensation | |
EP0086462B2 (en) | Pressure sensor employing semiconductor strain gauge | |
JP3399953B2 (en) | Pressure sensor | |
JPH06174536A (en) | Measuring apparatus | |
EP0034807B1 (en) | Semiconductor strain gauge | |
US5184520A (en) | Load sensor | |
US4958526A (en) | Force measuring device with zero adjustment | |
WO1988006719A1 (en) | Transducer signal conditioner | |
JP2536822B2 (en) | Temperature compensation circuit for weighing device | |
US6107861A (en) | Circuit for self compensation of silicon strain gauge pressure transmitters | |
JPH0531729B2 (en) | ||
JP7527026B2 (en) | Load Cell | |
JPH0125425B2 (en) | ||
JPH0434091B2 (en) | ||
JPH0339569B2 (en) | ||
US3303702A (en) | Pressure transducers | |
JPH0814521B2 (en) | Temperature compensation method for semiconductor pressure sensor | |
JPS6039521A (en) | Force measuring device provided with temperature compensation | |
KR830001352B1 (en) | Semiconductor pressure detector with zero temperature compensation | |
KR19980084452A (en) | Temperature compensation circuit of pressure sensor | |
JPS60144632A (en) | Temperature compensating circuit | |
JPS6358218A (en) | Load detecting circuit | |
JPH0419470Y2 (en) | ||
JPH0765920B2 (en) | Load detection circuit for load cell type electronic balance | |
POPLE | Increasing the voltage output of a Wheatstone bridge having one or two active strain gauge arms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |