JPS59150910A - Power generating system - Google Patents

Power generating system

Info

Publication number
JPS59150910A
JPS59150910A JP2423083A JP2423083A JPS59150910A JP S59150910 A JPS59150910 A JP S59150910A JP 2423083 A JP2423083 A JP 2423083A JP 2423083 A JP2423083 A JP 2423083A JP S59150910 A JPS59150910 A JP S59150910A
Authority
JP
Japan
Prior art keywords
steam
turbine
accumulator
boiler
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2423083A
Other languages
Japanese (ja)
Other versions
JPH0333888B2 (en
Inventor
Hideji Tsukuda
筑田 秀治
Naoyoshi Oda
小田 直芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2423083A priority Critical patent/JPS59150910A/en
Publication of JPS59150910A publication Critical patent/JPS59150910A/en
Publication of JPH0333888B2 publication Critical patent/JPH0333888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/06Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein the engine being of extraction or non-condensing type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To save energy by operating a turbine under low load conditions by providing a steam ejector between a boiler and a pressure regulating valve, and connecting an accumulator disposed at a steam outlet of the turbine to said steam ejector. CONSTITUTION:A pressure control valve is attached to a steam supply pipe 13 connecting a boiler 11 and a turbine 12. A valve 16, steam ejector 17 and valve 18 are sequentially attached to a by-pass pipe 15. A steam outlet of an accumulator 24 is connected to the steam ejector 17 through a steam supply pipe 25. When the steam passing through the turbine 12 is excessive for the process, it is branched through a branch pipe 22 to the accumulator for a temporary storage. Thus, operation in response to low loading conditions and a rapid change in loading conditions becomes possible, resulting in saving energy and saving manufacturing processes.

Description

【発明の詳細な説明】 本発明は、とくに小型自家発7に設備に・1f効な発電
システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation system that is particularly effective for small private power generators 7 and equipment.

この種の発1メジステムとして第1図のものがある。こ
のシステムは、ボイラIと発電4幾2に連結したタービ
ン3とに接続し、タービン3と並列に設けたパイノ4ス
管4(−減圧弁5を設けている。そして、通常時はボイ
ラIで発生した蒸気をタービン3に送り、発゛4をおこ
なう。これに対し蒸気負荷が定格の20〜30係に低下
すると、第2図C二示すように無負荷となり、更(二低
下Tるとモータリング即ち電力r消費することC二なる
。このため低負荷時は、タービン3及び発電、磯2を停
止し、減圧弁5を介してプロセス蒸気を供給するように
している。
An example of this type of development system is shown in Figure 1. This system is connected to a boiler I and a turbine 3 connected to a power generation unit 42, and is provided with a pinhole pipe 4 (- pressure reducing valve 5) installed in parallel with the turbine 3. The steam generated in the above is sent to the turbine 3 to perform the ignition 4. On the other hand, when the steam load decreases to 20 to 30 times the rated value, there is no load as shown in Figure 2 C2, and further (2 decreases T) This results in motoring, that is, consumption of electric power.For this reason, when the load is low, the turbine 3, power generation, and rock 2 are stopped, and process steam is supplied via the pressure reducing valve 5.

し力\し、タービン3及び発’Jに機2の発停は、熱応
力変形等の障害を避けるため、多くの時間と人為的操作
を必要とする。この定め上述した負荷変動が毎日生じる
ような場合には、この発電システムを利用し難い。従っ
てこの場合、一般には蒸気供給を低圧ボイラでおこない
、電力勿買電でま刀1なうようにしているが%省エネル
ギを図るうえで問題がある。
However, starting and stopping the turbine 3 and the engine 2 require a lot of time and manual operations to avoid problems such as thermal stress deformation. This power generation system is difficult to use when the above-described load fluctuation occurs every day. Therefore, in this case, steam is generally supplied by a low-pressure boiler so that electricity can be saved without purchasing electricity, but this poses a problem in terms of energy savings.

一方第3因に示すようじ回圧で昼夜の負荷差が大きい蒸
気条件の場合、蒸気供給システムとして、第4図に示す
低圧ボイラ6とアキュムレータ7と勿組合せたシステム
が知られている。
On the other hand, in the case of steam conditions with a toothpick circulation pressure and a large load difference between day and night, as shown in the third factor, a system combining a low pressure boiler 6 and an accumulator 7 shown in FIG. 4 is known as a steam supply system.

この場合アキュムレータ制御は、弁8及び9t用いて単
独制御し、又ボイラ制御は、人為的に手動操作をもって
アキュムレータ内圧をある幅内に収めるようにしている
。しがしこのシステムは、手動操作であるため、省力化
には問題がある。
In this case, the accumulator is controlled independently using valves 8 and 9t, and the boiler is controlled by manual operation to keep the accumulator internal pressure within a certain range. However, since this system is manually operated, there is a problem in terms of labor saving.

本発明は、上記事情(二鑑みてなされたもので、低負荷
時にもタービンを駆動して省エネルギ及び省力を図るこ
とができる発車システムを得んとするものである。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide a train starting system that can drive a turbine even during low load to save energy and labor.

すなわち本発明は、ボイラと発電機に連結したタービン
とを圧力制御弁を介して接続するとともに、ボイラと圧
力制御弁との間に蒸気エジ工’9に@Lだバイパス管を
並列に介賎し、刀1つ前記タービンの蒸気出口に接続し
たプロセス蒸気管の一部を分岐してアキュムレータの蒸
気入口に接続し、同アキュムレータの蒸気出口全前記蒸
気工ぎンエクタ(:接続したことを特徴と下る。
That is, the present invention connects a boiler and a turbine connected to a generator via a pressure control valve, and also connects a bypass pipe in parallel between the boiler and the pressure control valve. and a part of the process steam pipe connected to the steam outlet of the turbine is branched and connected to the steam inlet of the accumulator, and all the steam outlets of the accumulator are connected to the steam generator (:). Go down.

以下本発明を第5図1=示T実施例を参照して説明する
。図示する発電システムは、ボイラZZとタービンZ2
とt蒸気供給9 r sで接続し、蒸気供給管I3に圧
力制御弁14葡取付けている。ボイラZZと圧力制御弁
I4との間(二は、バイパス管I5が蒸気供給管I3と
並列に設けられ、このバイパスvI5に弁Z6、蒸気エ
ゼクタ17及び弁I8が順に取付けられている。
The present invention will be explained below with reference to the embodiment shown in FIG. The illustrated power generation system includes a boiler ZZ and a turbine Z2.
A pressure control valve 14 is attached to the steam supply pipe I3. Between the boiler ZZ and the pressure control valve I4 (second), a bypass pipe I5 is provided in parallel with the steam supply pipe I3, and a valve Z6, a steam ejector 17, and a valve I8 are installed in this order in this bypass vI5.

前記タービンI2は、発電機Z9と連結してイル。ター
ビン12の蒸気出口(二は、プロセス蒸気管20が接続
され、このプロセス蒸気管20I:弁2Zか取付けられ
ている。プロセス蒸気管20から分岐した分岐管22は
、弁23を取付け、アキュムレータ24I/J蒸気入口
に接続している。アキュムレータ24の蒸気出口は蒸気
供給管25【介して1前把蒸気エゼクタI7に接続し又
蒸気供給管26を介してプロセス蒸気管20に接続して
いる。この蒸気供16 %f 26 g−は弁27が取
付けられている。またバイパス管I5の弁1Bは、プロ
セス蒸気管20に接続している。
The turbine I2 is connected to a generator Z9. The steam outlet (2) of the turbine 12 is connected to the process steam pipe 20I, and a valve 2Z is attached to the process steam pipe 20I. /J steam inlet. The steam outlet of the accumulator 24 is connected to the first steam ejector I7 through a steam supply pipe 25 and to the process steam pipe 20 through a steam supply pipe 26. A valve 27 is attached to this steam supply 16% f 26 g-. Also, the valve 1B of the bypass pipe I5 is connected to the process steam pipe 20.

この発電システムは、アキュムレータ24の内圧を検出
してボイラIIを自動制御し、圧力制御弁14でボイラ
圧力を一定制御する。
This power generation system detects the internal pressure of the accumulator 24 to automatically control the boiler II, and uses the pressure control valve 14 to constantly control the boiler pressure.

ボイラIIで発生した蒸気は、タービンI2を駆動し、
電力を生ぜしめた後プロセス蒸気管20を通る。
The steam generated in boiler II drives turbine I2,
After the electrical power is generated, it passes through the process steam pipe 20.

タービン通過蒸気がプロセス−に必要な蒸気より多い場
合、分岐管225通り、アキュムレータ24に一時的に
貯蔵される。
If the steam passing through the turbine is greater than the steam required for the process, it is temporarily stored in the accumulator 24 through the branch pipe 225.

逆に少い場合、バイパス管151i通る蒸気を用いて、
アキュムレータ24に貯蔵した蒸気會蒸気エゼクタI2
七通して昇圧し、タービンI2に供j:’uする。この
ことによりタービンz2が連続運転される。
On the other hand, if the amount is small, using the steam passing through the bypass pipe 151i,
Steam ejector I2 stored in accumulator 24
The pressure is increased through seven passes, and the pressure is supplied to the turbine I2. This causes the turbine z2 to operate continuously.

圧力制御弁I4は、タービン12の最低蒸気通過量を確
保Tるとともに発車機Z9の発電量が工場必要櫨r超え
ない様逆送防止の働き’a−Tる。この場合プロセス蒸
気の一部を弁18f介してプロセス蒸気管20に通しプ
ロセス蒸気の不足分+C補う。
The pressure control valve I4 ensures a minimum amount of steam passing through the turbine 12, and also functions to prevent backflow so that the amount of power generated by the starter Z9 does not exceed the amount required by the factory. In this case, a portion of the process steam is passed through the process steam pipe 20 via the valve 18f to compensate for the shortage +C of the process steam.

なお本発明は、上記実施例に限らず、アキュムレータ2
4円圧の変化に応じてタービンI2出口圧力rその変化
幅まで変動させることが可能である。このことによりプ
ラントの必要とする蒸気、電力(二対しフレキシブル(
二対応できる。
Note that the present invention is not limited to the above embodiments, but the accumulator 2
4 It is possible to vary the turbine I2 outlet pressure r up to the range of change according to changes in the circular pressure. This makes it possible to meet the plant's needs for steam, electricity (2) and flexible (2)
I can handle two things.

以上説明したよう(二本発明によれは、アキュムレータ
及び蒸気エゼクタを組合せることにより、既存の機器を
用いて低負荷及び激しい負荷変動に対応でき、省エネル
ギ及び1力化を図心ことができ、とくに小型自家発電設
備に有効である。
As explained above, by combining an accumulator and a steam ejector, it is possible to cope with low loads and severe load fluctuations using existing equipment, and it is possible to save energy and reduce the amount of labor required. This is particularly effective for small private power generation equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発車システムのLL明履、第2図は同シ
ステムC:おける発電機端出力と蒸気負荷との関係を示
す特性因、第3図はプロセス蒸気負荷の変動例【示す説
明図、第4図は蒸気供給ボイラ、アキュムレータシステ
ムの説明図。 第5図は本発明の一実施例を示す発−システムの説明図
である。 ZZ・・・ボイラ、I2・・・タービン、−13・・・
蒸気供給管、I4・・・圧力制御弁、15・・・バイパ
ス管16.1B、21.23.21・・・弁、I7・・
・蒸気エゼクタ、I9・・・発”U+’AJ2o・・・
プロセス蒸気管、22・・・分岐管、24・・・アキュ
ムレータ。 25・・・蒸気供給管、社ミコ26・・・蒸気供給管。 出願人復代理人 紳土鈴江武 彦 第1図 第2図 第3図 峙悶(14)
Figure 1 shows the LL ratio of the conventional train departure system, Figure 2 shows the characteristic factors showing the relationship between the generator end output and steam load in the same system C, and Figure 3 shows an example of process steam load fluctuation. Figure 4 is an explanatory diagram of the steam supply boiler and accumulator system. FIG. 5 is an explanatory diagram of an emitting system showing an embodiment of the present invention. ZZ...Boiler, I2...Turbine, -13...
Steam supply pipe, I4...pressure control valve, 15...bypass pipe 16.1B, 21.23.21...valve, I7...
・Steam ejector, I9... from "U+'AJ2o..."
Process steam pipe, 22... Branch pipe, 24... Accumulator. 25...Steam supply pipe, company 26...Steam supply pipe. Applicant Sub-Agent Takehiko Shindo Suzue Figure 1 Figure 2 Figure 3 Anger (14)

Claims (1)

【特許請求の範囲】 ボイラと発軍機に連結したタービンと【圧力制御弁を介
して接続するとともに、ボイラと圧力制御弁とrJJ間
に蒸気エジェクタkWjtえたバイパス管を並列(二介
装し、力1つ前記タービンの蒸気出口にで続したプロセ
ス蒸気管の一部を分岐してアキュムレータの蒸気入口に
接続し、同アキュムレータの蒸気出口を自iJ記蒸気エ
ジェクタに接続したことを;1″1緻とする発電システ
ム。
[Claims] A turbine connected to a boiler and a firing aircraft is connected via a pressure control valve, and a bypass pipe with a steam ejector kWjt is installed in parallel between the boiler, pressure control valve, and rJJ. 1. Part of the process steam pipe connected to the steam outlet of the turbine was branched off and connected to the steam inlet of the accumulator, and the steam outlet of the accumulator was connected to the steam ejector. power generation system.
JP2423083A 1983-02-16 1983-02-16 Power generating system Granted JPS59150910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2423083A JPS59150910A (en) 1983-02-16 1983-02-16 Power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2423083A JPS59150910A (en) 1983-02-16 1983-02-16 Power generating system

Publications (2)

Publication Number Publication Date
JPS59150910A true JPS59150910A (en) 1984-08-29
JPH0333888B2 JPH0333888B2 (en) 1991-05-20

Family

ID=12132453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2423083A Granted JPS59150910A (en) 1983-02-16 1983-02-16 Power generating system

Country Status (1)

Country Link
JP (1) JPS59150910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329119A (en) * 2005-05-27 2006-12-07 Kobe Steel Ltd Power generation system, cogeneration system and power generation method
JP2008169777A (en) * 2007-01-12 2008-07-24 Kobe Steel Ltd Power generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329119A (en) * 2005-05-27 2006-12-07 Kobe Steel Ltd Power generation system, cogeneration system and power generation method
JP2008169777A (en) * 2007-01-12 2008-07-24 Kobe Steel Ltd Power generating device

Also Published As

Publication number Publication date
JPH0333888B2 (en) 1991-05-20

Similar Documents

Publication Publication Date Title
US4590384A (en) Method and means for peaking or peak power shaving
US7621133B2 (en) Methods and apparatus for starting up combined cycle power systems
JPS6026107A (en) Power generation plant with multistage turbine
US6470688B2 (en) Apparatus for the rapid startup and rapid increase in output of a gas turbine plant
JPS61152914A (en) Starting of thermal power plant
JPS59150910A (en) Power generating system
JP2000297657A (en) Electric power storage type gas turbine generator facility
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JPS63277822A (en) Gas turbine power source
JPS6145298Y2 (en)
JP2566487B2 (en) Steam pressure control method for multiple boilers and generators
JPS63198706A (en) Control method for parallel operation of exhaust gas turbo-generator and diesel generator
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
JPH06185307A (en) Heat utilizing power generating facility
SU918469A2 (en) Power generating unit
JP3010086B2 (en) Cogeneration power plant
JPH0586810A (en) Load control method for composite power generating plant and device therefor
JPS59176423A (en) Gas turbine plant system
JPS6243044B2 (en)
JPS60249847A (en) Hydrogen cooling generator system
JPH0424084Y2 (en)
JPS60204909A (en) Operating method for house power plant
JPH01203618A (en) Control device for co generation equipment
JPH0631151Y2 (en) Combined heat and power equipment
JPH05133203A (en) Control method for gas turbine cogeneration system