JPS63277822A - Gas turbine power source - Google Patents

Gas turbine power source

Info

Publication number
JPS63277822A
JPS63277822A JP10904387A JP10904387A JPS63277822A JP S63277822 A JPS63277822 A JP S63277822A JP 10904387 A JP10904387 A JP 10904387A JP 10904387 A JP10904387 A JP 10904387A JP S63277822 A JPS63277822 A JP S63277822A
Authority
JP
Japan
Prior art keywords
turbine
compressor
valve
generator
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10904387A
Other languages
Japanese (ja)
Inventor
Arata Kida
喜田 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10904387A priority Critical patent/JPS63277822A/en
Publication of JPS63277822A publication Critical patent/JPS63277822A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent reduction in efficiency at the partial load operation time by connecting a compressor to a turbine via a clutch, a motor to the compressor, a generator to the turbine. CONSTITUTION:A compressor 1 and a turbine 4 are connected to each other via a clutch 13. The compressor 1 and the turbine 4 are connected to a motor 12 and a generator 5, respectively. At the partial load time, the clutch 13 is disengaged to reduce the revolution speed of the turbine 4. Since the frequency is reduced, the power of the generator 5 is changed to direct current by a rectifier 6 and then the alternate current of the system frequency is regenerated by an inverter 7. The alternate current driving the motor 12 is generated by another inverter 11. The revolution speeds of both the compressor and the turbine 4 are reduced to reduce the air flow rate, so that the combustion temperature may be kept high and the efficiency reduction be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン発電機に係り、特に、電源として
の効率を上げるのに好適なシステムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas turbine generator, and particularly to a system suitable for increasing efficiency as a power source.

〔従来の技術〕[Conventional technology]

ガスタービンについては機械工学便覧第144第5章に
おいて論じられている。ガスタービンを利用した電力蓄
積には圧縮空気貯蔵システム、CA E S (COM
PRESSED AIRENERGY 5TORAGE
)については、アメリカ機械学会、85−ジエイ・ピー
・ジー・シー−ジー・ティー−10(ASME。
Gas turbines are discussed in Mechanical Engineering Handbook 144, Chapter 5. Compressed air storage system, CA E S (COM
PRESSED AIRENERGY 5TORAGE
), American Society of Mechanical Engineers, 85-G.P.C.T.-10 (ASME).

85−JPGC−GT−10)において論じられている
。以下ガスタービンとCAESのシステムについて従来
例を説明する。
85-JPGC-GT-10). A conventional example of a gas turbine and CAES system will be described below.

第2図により従来のガスタービンを説明する。A conventional gas turbine will be explained with reference to FIG.

圧縮機1で圧縮された空気は、燃焼器3で燃料を混合し
て燃焼する。高温ガスはタービン4を回しその回転が発
電機を回す。圧縮機1.タービン4゜発電機5は同軸で
あり、負荷8の系統周波数を一定にするため、その回転
数は一定である。
The air compressed by the compressor 1 is mixed with fuel and combusted in the combustor 3. The high temperature gas turns the turbine 4, and its rotation turns the generator. Compressor 1. The turbine 4° generator 5 is coaxial, and its rotational speed is constant in order to keep the system frequency of the load 8 constant.

第4図により従来のCAESについて説明する。Conventional CAES will be explained with reference to FIG.

圧縮機1と発電、電動を切替使用できる発電電動機21
とタービン4はクラッチ22.クラッチ23により接−
断可能である。バルブ18.バルブ19.バルブ2oは
運転モードに応じて開閉し、圧縮機1.燃焼器3.空気
タンク2を接続する。
Compressor 1 and generator motor 21 that can be switched between power generation and electric power.
and turbine 4 are connected to clutch 22. Connected by clutch 23
It is possible to disconnect. Valve 18. Valve 19. The valve 2o opens and closes depending on the operating mode, and the compressor 1. Combustor 3. Connect air tank 2.

一般に、空気タンクは地下に穴を堀って設置される。Generally, air tanks are installed by digging a hole underground.

次に三つの運転モードについて説明する。Next, three operation modes will be explained.

(1)通常運転モード クラッチ22.クラッチ23は接状態、発電電動機21
は発電状態、バルブ18.バルブ20は開状態、バルブ
19は閉状態である。これは第2図で説明した従来のガ
スタービンと同じである。圧縮機1で圧縮された空気は
、バルブ18.バルブ20を通り燃焼器3で燃料を混合
しその燃焼を助ける。高温ガスはタービン4を回し、そ
の回転が発電電動機21を回し、負荷8へ電力を供給す
る。
(1) Normal operation mode clutch 22. Clutch 23 is in a connected state, generator motor 21
is the power generation state, valve 18. Valve 20 is in an open state, and valve 19 is in a closed state. This is the same as the conventional gas turbine described in FIG. The air compressed by the compressor 1 is passed through the valve 18. The fuel is mixed in the combustor 3 through the valve 20 to aid in its combustion. The high temperature gas rotates the turbine 4, which rotates the generator motor 21 and supplies power to the load 8.

(2)電力蓄積運転モード クラッチ22は接状態、クラッチ23は断状態、発電電
動機21は電動機状態、バルブ18゜バルブ19は開状
態、バルブ20は閉状態である。負荷8の系統の余剰電
力で発電電動機21を回す。圧縮機1で圧縮された空気
は、バルブ18、バルブ19を通り空気タンク2に蓄積
される。
(2) Power storage operation mode The clutch 22 is in the engaged state, the clutch 23 is in the disengaged state, the generator motor 21 is in the motor state, the valves 18 and 19 are in the open state, and the valve 20 is in the closed state. The generator motor 21 is rotated by the surplus power of the load 8 system. Air compressed by the compressor 1 passes through valves 18 and 19 and is accumulated in the air tank 2.

(3)蓄積空気消費運転モード クラッチ22は断状態、クラッチ23は接状態、発電電
動機21は発電機状態、バルブ18は閉状態、バルブ1
9.バルブ20は開状態である。空気タンク2の高圧空
気はバルブ19゜バルブ2oを通り、燃焼器3で燃料を
混合して燃焼する。高温ガスはタービン4を回し、その
回転が発電電動機21を回し、負荷8へ電力を供給する
(3) Accumulated air consumption operation mode Clutch 22 is in the disengaged state, clutch 23 is in the engaged state, generator motor 21 is in the generator state, valve 18 is in the closed state, valve 1
9. Valve 20 is in an open state. The high-pressure air in the air tank 2 passes through the valve 19° and the valve 2o, mixes fuel in the combustor 3, and burns the mixture. The high temperature gas rotates the turbine 4, which rotates the generator motor 21 and supplies power to the load 8.

以上三つの運転モードについては負荷8の系統周波数が
一定であるため、その回転数は一定である。
Regarding the above three operation modes, since the system frequency of the load 8 is constant, its rotation speed is constant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は圧縮機やタービンを部分負荷で運転する
点については考慮されておらず、系統周波数に合わせる
ため回転数を一定にしていた。従って、部分負荷時には
空気流量一定で燃料を絞るため燃焼温度が低下し、ター
ビン効率が全負荷よりも相当低くなるという問題があっ
た(25%負荷が効率が半分程度となる)。
The conventional technology described above does not take into consideration the fact that the compressor or turbine is operated at partial load, and the rotational speed is kept constant in order to match the system frequency. Therefore, at partial load, the combustion temperature decreases because the air flow rate is constant and the fuel is throttled, causing the problem that the turbine efficiency becomes considerably lower than at full load (the efficiency is about half at 25% load).

本発明の目的は部分負荷での効率低下を防止することに
ある。
An object of the present invention is to prevent a decrease in efficiency at partial loads.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は(1)部分負荷に空気流量を減らすことによ
り燃焼温度を高温に保つこと、(2)そのためにタービ
ンと圧縮機を空気流量に合わせたそれぞれの速度で回転
させること、(3)発電機出力は回転数の低下により周
波数が下るので、整流器でいったん直流にした後、イン
バータで系統周波数の交流を再生すること、(4)別の
インバータで圧縮機用の交流を発生し、空気流量に合わ
せた回転数とすることにより達成される。
The above objectives are (1) to maintain the combustion temperature at a high temperature by reducing the air flow rate to partial load, (2) to rotate the turbine and compressor at respective speeds that match the air flow rate, and (3) to generate electricity. Since the frequency of the machine output decreases as the rotation speed decreases, it is necessary to first convert it to DC using a rectifier and then regenerate the AC at the system frequency using an inverter.(4) Generate AC for the compressor using another inverter to increase the air flow rate. This is achieved by adjusting the rotation speed to match the rotation speed.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

ガスタービンは圧縮機1とモータ2の部分と、タービン
4と発電機5の部分に分れ、クラッチ13で接−断可能
である。整流器6は交流−直流変換用、インバータ7、
インバータ11は直流−交流変換用である。
The gas turbine is divided into a compressor 1 and motor 2 portion, and a turbine 4 and generator 5 portion, which can be connected and disconnected by a clutch 13. Rectifier 6 is for AC-DC conversion, inverter 7,
The inverter 11 is for DC-AC conversion.

次に、二つの運転モードについて説明する。Next, two operation modes will be explained.

(1)定格運転モード 圧縮機1で圧縮された空気は、燃焼器3で燃料を混合し
燃焼する。高温ガスはタービン4を回す。
(1) Rated operation mode The air compressed by the compressor 1 is mixed with fuel and combusted in the combustor 3. The hot gas turns the turbine 4.

クラッチ13を接続しているので、圧縮機2発電機が回
される。スイッチ14.スイッチ15は下側とし、発電
機5の出力を直接負荷8に接続する。
Since the clutch 13 is connected, the compressor 2 generator is rotated. Switch 14. The switch 15 is set to the lower side, and the output of the generator 5 is directly connected to the load 8.

回転数は系統周波数に合わせた一定値である。The rotation speed is a constant value that matches the system frequency.

この状態は第2図で説明した従来例と同じであり、効率
も同じである。
This state is the same as the conventional example explained in FIG. 2, and the efficiency is also the same.

(2)部分負荷運転モード 定格運転モードとの相違点は、クラッチ13を切ってい
ること、スイッチ14.スイッチ15゜スイッチ16を
図示する状態にしていることである。部分′負荷時に空
気流量を減らすことにより燃焼温度を高温に保つ。その
ために、タービン4と圧縮機1を空気流量に合わせたそ
れぞれの速度で回転させる。発電機5の出力は回転数の
低下にょり周波数が下るので(周波数は回転数に比例す
る)、整流器6でいったん直流にした後、インバータ7
で系統周波数の交流を再生する。また、別のインバータ
11で圧縮機1のモータ12を回す交流を発生し、空気
流量に合わせた回転数とする。
(2) Partial load operation mode The difference from the rated operation mode is that the clutch 13 is disengaged and the switch 14. Switch 15° and switch 16 are in the illustrated state. Keep combustion temperatures high by reducing air flow during partial loads. For this purpose, the turbine 4 and compressor 1 are rotated at respective speeds that match the air flow rate. Since the frequency of the output of the generator 5 decreases as the rotation speed decreases (the frequency is proportional to the rotation speed), the output of the generator 5 is converted to direct current by the rectifier 6, and then the inverter 7
to regenerate the grid frequency alternating current. Further, another inverter 11 generates an alternating current that rotates the motor 12 of the compressor 1, and sets the rotation speed to match the air flow rate.

一般に、同一空気量を流す圧縮機1の回転数とタービン
4の回転数は一致しないため、それぞれの回転数で回す
ようにしている。
Generally, the rotational speed of the compressor 1 and the rotational speed of the turbine 4, which flow the same amount of air, do not match, so they are rotated at their respective rotational speeds.

負荷に応じて空気流量を減らして、燃焼温度を高温に保
つため、効率も定格運転モードに近い値が得られる。
Since the air flow rate is reduced according to the load and the combustion temperature is maintained at a high temperature, an efficiency value close to that of the rated operation mode can be obtained.

次に、CAESに本発明を実施した例を第3図により説
明する。ガスタービンは圧縮機1とモータ2の部分と、
タービン4と発電機Sの部分に分れ、クラッチ13で接
−断可能である。バルブ18、バルブ19.バルブ20
は運転モードに応じて開閉し、圧縮機1.燃焼器3.空
気タンク2を接続する。整流器6.整流器9は交流−直
流変換用、インバータ7、インバータ11は直流−交流
変換用である。スイッチ14.スイッチ15゜スイッチ
16.スイッチ17は二回路の選択とOFF機能を持つ
Next, an example in which the present invention is implemented in CAES will be explained with reference to FIG. The gas turbine includes a compressor 1 and a motor 2,
It is divided into a turbine 4 and a generator S, which can be connected and disconnected by a clutch 13. Valve 18, valve 19. valve 20
are opened and closed depending on the operating mode, and compressor 1. Combustor 3. Connect air tank 2. Rectifier 6. The rectifier 9 is for AC-DC conversion, and the inverter 7 and inverter 11 are for DC-AC conversion. Switch 14. Switch 15° Switch 16. The switch 17 has two circuit selection and OFF functions.

次に六つの運転モードについて説明する。Next, the six operation modes will be explained.

(1)定格通常運転モード クラッチ13は接状態、バルブ18.バルブ20は開状
態、バルブ19は閉状態、スイッチ14、スイッチ15
は下側に接続した状態、スイッチ16.スイッチ17は
OFF状態である。
(1) Rated normal operation mode Clutch 13 is in the engaged state, valve 18. Valve 20 is open, valve 19 is closed, switch 14, switch 15
is connected to the lower side, switch 16. Switch 17 is in the OFF state.

これは第1図で説明した本発明のガスタービンの(1)
定格運転モードと同じである。
This is (1) of the gas turbine of the present invention explained in FIG.
Same as rated operation mode.

(2)部分負荷通常運転モード クラッチ13は断状態、バルブ18.バルブ20は開状
態、バルブ19は閉状態、スイッチは第3図の状態、す
なわち、スイッチ14.スイッチ15.スイッチ16は
中間に接続した状態、スイッチ17はOFF状態である
。これは第1図で説明した本発明のガスタービンの(2
)部分負荷運転モードと同じである。
(2) Partial load normal operation mode Clutch 13 is disengaged, valve 18. Valve 20 is in the open state, valve 19 is in the closed state, and the switch is in the state shown in FIG. 3, that is, switch 14. Switch 15. The switch 16 is in an intermediately connected state, and the switch 17 is in an OFF state. This is the result of (2) of the gas turbine of the present invention explained in FIG.
) Same as part load operation mode.

(3)定格電力蓄積運転モード クラッチ13は断状態、バルブ18.バルブ19は開状
態、バルブ2oは閉状態、スイッチ14、スイッチ15
はOFF状態、スイッチ16、スイッチ17は上側に接
続した状態である。負荷8の系統余剰電力でモータ12
を回す。
(3) Rated power accumulation operation mode clutch 13 is in the disconnected state, valve 18. Valve 19 is open, valve 2o is closed, switch 14, switch 15
is in the OFF state, and the switches 16 and 17 are connected to the upper side. Motor 12 is powered by the grid surplus power of load 8.
Turning the.

圧縮機1で圧縮された空気は、バルブ18.バルブ19
を通り、空気タンクに蓄積される。これは第4図で説明
した従来例の(2)電力蓄積運転モードと同じである。
The air compressed by the compressor 1 is passed through the valve 18. valve 19
and is accumulated in the air tank. This is the same as (2) power storage operation mode of the conventional example explained in FIG.

(4)部分電力蓄積運転モード クラッチ13は断状態、バルブ18.バルブ19は開状
態、バルブ20は閉状態、スイッチ14、スイッチ15
はOFF状態、スイッチ16、スイッチ17は中間に接
続した状態である。
(4) Partial power storage operation mode Clutch 13 is disengaged, valve 18. Valve 19 is open, valve 20 is closed, switch 14, switch 15
is in the OFF state, and the switch 16 and switch 17 are in the intermediately connected state.

負荷8の系統余剰電力を整流器9でいったん直流にした
後、インバータ11で圧縮機1のモータ12を回す交流
を発生する。圧縮機1で圧縮された空気は、バルブ18
.バルブ19を通り空気タンクに蓄積される。
After the system surplus power of the load 8 is once converted into DC by a rectifier 9, an inverter 11 generates an AC to rotate the motor 12 of the compressor 1. The air compressed by the compressor 1 is passed through the valve 18
.. It passes through valve 19 and is accumulated in the air tank.

(3)の定格電力蓄積運転モードとの違いは、余剰電力
の量に合わせて空気を蓄積できることであり、電力が少
なければインバータ11の出力周波数を下げ、圧縮機1
の回転数を下げ、蓄積する空気流量を減らすようにする
The difference from the rated power storage operation mode (3) is that air can be stored according to the amount of surplus power, and if the power is low, the output frequency of the inverter 11 is lowered and the compressor 1
Reduce the rotation speed of the engine to reduce the amount of air that accumulates.

(5)定格蓄積空気消費運転モード クラッチ13は断状態、バルブ18は閉状態、バルブ1
9.バルブ2oは開状態、スイッチ14、スイッチ15
は下側に接続した状態、スイッチ16.スイッチ17は
OFF状態である。
(5) Rated accumulated air consumption operation mode Clutch 13 is disengaged, valve 18 is closed, valve 1
9. Valve 2o is open, switch 14, switch 15
is connected to the lower side, switch 16. Switch 17 is in the OFF state.

空気タンク2の高圧空気はバルブ19.バルブ20を通
り、燃焼器3で燃料を混合して燃焼を助ける。高温ガス
はタービン4を回し、その回転が発電機5を回し、負荷
8八電力を供給する。
The high pressure air in the air tank 2 is supplied through the valve 19. It passes through valve 20 and mixes fuel in combustor 3 to aid combustion. The hot gas rotates the turbine 4, which rotates the generator 5, which supplies power to the load 88.

これは第4図で説明した従来例の(3)蓄積空気消費運
転モードと同じである。
This is the same as the accumulated air consumption operation mode (3) of the conventional example explained in FIG.

(6)部分蓄積空気消費運転モード クラッチ13は断状態、バルブ18は閉状態、バルブ1
9.バルブ2oは開状態、スイッチ14、スイッチ15
は中間に接続した状態、スイッチ16.スイッチ17は
OFF状態である。
(6) Partial accumulation air consumption operation mode Clutch 13 is disengaged, valve 18 is closed, valve 1
9. Valve 2o is open, switch 14, switch 15
is connected in the middle, switch 16. Switch 17 is in the OFF state.

空気タンクの高圧空気はバルブ19.バルブ20を通り
、燃焼器3にて燃料を混合して燃焼を助ける。高温ガス
はタービン4を回し、その回転モーメントが発電機5を
回す。部分負荷のため空気流量を減らし回転数を下げて
いるため、周波数が下るので、整流器6でいったん直流
にした後、インバータ7で系統周波数の交流を再生し、
負荷8へ供給する。
High pressure air in the air tank is supplied through valve 19. The fuel passes through the valve 20 and is mixed in the combustor 3 to aid combustion. The high temperature gas turns the turbine 4, and its rotational moment turns the generator 5. Since the air flow rate is reduced and the rotation speed is lowered due to partial load, the frequency decreases, so after converting it to direct current with the rectifier 6, the inverter 7 regenerates the alternating current of the system frequency.
Supply to load 8.

第1図の(1)定格運転モード、第3図の(2)定格通
常運転モード、(3)定格電力蓄積運転モード。
(1) Rated operation mode in Figure 1, (2) Rated normal operation mode, and (3) Rated power storage operation mode in Figure 3.

(5)定格蓄積空気消費運転モードは、従来例としてあ
げた第2図の運転、第4図の(1)通常運転モード、(
2)電力蓄積運転モード、(3)蓄積空気消費運転モー
ドにそれぞれが対応する。機器の構成が少し変わるが、
機能は同じである。
(5) Rated accumulated air consumption operation mode is the operation shown in Figure 2 as a conventional example, (1) normal operation mode in Figure 4, (
Each corresponds to 2) electric power accumulation operation mode and (3) accumulation air consumption operation mode. Although the configuration of the equipment will change slightly,
The functionality is the same.

これに対し第1図の(2)部分負荷運転モード、第3図
の(2)部分負荷通常運転モード、(4)部分電力蓄積
運転モード、(6)部分蓄積空気消費運転モードが新し
い機能を出するものである。この中で(4)部分電力蓄
積運転モードは余剰電力の大きさに比例した電力蓄積が
できるため、余剰電力を無駄なく蓄積できる効果がある
In contrast, (2) partial load operation mode in Figure 1, (2) partial load normal operation mode, (4) partial power storage operation mode, and (6) partial storage air consumption operation mode in Figure 3 have new functions. It is something to be released. Among these, (4) partial power storage operation mode allows power to be stored in proportion to the amount of surplus power, so it has the effect of storing surplus power without wasting it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、部分負荷で運転する場合に圧縮機やタ
ービンの回転数を下げて、空気流量を下げるので、燃焼
温度が高温に保たれ、ガスタービンの効率の低下を防ぐ
ことができる。
According to the present invention, when operating under partial load, the rotational speed of the compressor and turbine is lowered to lower the air flow rate, so that the combustion temperature is maintained at a high temperature and a decrease in efficiency of the gas turbine can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図は従来例の
系統図、第3図は本発明の他の実施例の系統図、第4図
は別の従来例の系統図である。 1・・・圧縮機、2・・・空気タンク、3・・・燃焼器
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a system diagram of a conventional example, Fig. 3 is a system diagram of another embodiment of the invention, and Fig. 4 is a system diagram of another conventional example. It is. 1...Compressor, 2...Air tank, 3...Combustor.

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン発電機において、圧縮機とタービンを
クラッチで結合し分離自由とし、前記圧縮機にはモータ
を、前記タービンには発電機をそれぞれ備え、部分負荷
運転時には空気流量を減らすため前記タービンの回転数
を下げ燃焼温度を下げないようにしタービン効率を保ち
、周波数の低下した交流は整流器で直流としインバータ
で系統周波数の交流を再生し、別のインバータでモータ
駆動用の交流を発生し、空気流量に合わせた圧縮機回転
速度とする手段を設けたことを特徴とするガスタービン
電源。
1. In a gas turbine generator, a compressor and a turbine are connected by a clutch so that they can be separated freely, the compressor is equipped with a motor, and the turbine is equipped with a generator, and the turbine is connected to reduce the air flow rate during partial load operation. The turbine efficiency is maintained by lowering the rotation speed to prevent the combustion temperature from lowering, and the AC with reduced frequency is converted into DC by a rectifier, and the AC at the grid frequency is regenerated by an inverter. Another inverter generates AC for driving the motor. A gas turbine power source characterized by being provided with means for adjusting the compressor rotation speed to match the air flow rate.
JP10904387A 1987-05-06 1987-05-06 Gas turbine power source Pending JPS63277822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10904387A JPS63277822A (en) 1987-05-06 1987-05-06 Gas turbine power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10904387A JPS63277822A (en) 1987-05-06 1987-05-06 Gas turbine power source

Publications (1)

Publication Number Publication Date
JPS63277822A true JPS63277822A (en) 1988-11-15

Family

ID=14500158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10904387A Pending JPS63277822A (en) 1987-05-06 1987-05-06 Gas turbine power source

Country Status (1)

Country Link
JP (1) JPS63277822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438186A1 (en) * 1994-10-26 1996-05-02 Abb Management Ag Operation of sync electrical machine mechanically coupled to gas-turbine
WO2012176257A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Closed-cycle gas turbine
WO2015054834A1 (en) * 2013-10-16 2015-04-23 General Electric Company Gas turbine system and method of operation
JP2018526565A (en) * 2015-08-06 2018-09-13 ツリー アソシエイツ エルティーディー. engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438186A1 (en) * 1994-10-26 1996-05-02 Abb Management Ag Operation of sync electrical machine mechanically coupled to gas-turbine
WO2012176257A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Closed-cycle gas turbine
JP5550787B2 (en) * 2011-06-20 2014-07-16 熱技術開発株式会社 Closed cycle gas turbine
JPWO2012176257A1 (en) * 2011-06-20 2015-02-23 熱技術開発株式会社 Closed cycle gas turbine
WO2015054834A1 (en) * 2013-10-16 2015-04-23 General Electric Company Gas turbine system and method of operation
CN105637198A (en) * 2013-10-16 2016-06-01 通用电气公司 Gas turbine system and method of operation
JP2018526565A (en) * 2015-08-06 2018-09-13 ツリー アソシエイツ エルティーディー. engine

Similar Documents

Publication Publication Date Title
US6683389B2 (en) Hybrid electric vehicle DC power generation system
JP6625161B2 (en) DC coupled power electronics system for fuel cell power system
US20210281095A1 (en) Electric power station
US6664653B1 (en) Command and control system for controlling operational sequencing of multiple turbogenerators using a selected control mode
JP2018198525A (en) Ac coupling type power electronics system for fuel cell power system
KR101117084B1 (en) Method for efficient, nonsynchronous ??? production
US9605556B2 (en) Power station and method for its operation
US7122916B2 (en) Multi-unit power generation system for stand-alone and grid connected operation
WO2002029225A9 (en) Method of shutting-down a turbine engine and system for carrying out said method
US9391458B2 (en) Control method and control system for parallel operation of different types of power generation apparatuses
KR102249662B1 (en) Marine integrated power control management system
JP6216872B2 (en) Gas turbine combined power generator
CA2246769A1 (en) Turbogenerator/motor controller
JP2007006595A (en) Operation method of private power generator set with power storage means
MX2013003433A (en) Gas turbine start with frequency convertor.
KR20160003197A (en) Device and a drive system, in particular for ships, which comprises a device of this type
PL170640B1 (en) Set of gas turbines and method of increasing their rpm
JPS63277822A (en) Gas turbine power source
JPH07119485A (en) Compressed air storage generating system
JP2008131694A (en) Gas turbine power generator
JP2015095976A (en) System stabilization power generation system
RU2272937C1 (en) Method of operating compression station for main gas pipeline
JPH0245622A (en) Compressed air storage type power generator
JPS59150910A (en) Power generating system
RU2265739C1 (en) Method of operation of internal combustion engine and internal combustion engine implementation the method