JPS59149931A - Production of thin metallic film - Google Patents

Production of thin metallic film

Info

Publication number
JPS59149931A
JPS59149931A JP2402583A JP2402583A JPS59149931A JP S59149931 A JPS59149931 A JP S59149931A JP 2402583 A JP2402583 A JP 2402583A JP 2402583 A JP2402583 A JP 2402583A JP S59149931 A JPS59149931 A JP S59149931A
Authority
JP
Japan
Prior art keywords
film
thin metallic
thin film
metallic film
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2402583A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Fumiaki Ueno
植野 文章
Kazuyoshi Honda
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2402583A priority Critical patent/JPS59149931A/en
Publication of JPS59149931A publication Critical patent/JPS59149931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a thin metallic film without thermal deformation or heat decomposition, by laying a polymer on the thin metallic film side of a polymer base, moving this along the periphery of a cylindrical can under application of a potential difference between the thin metallic film and the can and forming a thin metallic film on the other side by vacuum metallizing. CONSTITUTION:A polymer base 9 having one surface coated with a thin metallic film A is moved in the direction of an arrow while the film A is in contact with a metallic roller 7. A voltage is applied between the metallic roller 7 and the cylindrical can 2 by a power source 8. Numerals 11 and 12 indicate metallic rollers. Numerals 13 and 14 indicate feed and take-up rollers for polymer film 10. A metal is evaporated from an evaporation source 5 to form a thin metallic film C on the base 9. The base 9 moves while it is in stable contact with the cylindrical can 2 by an electrostatic attractive force, so that the thin metallic film can be formed without thermal deformation or heat decomposition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高分子材料より成る基板上に金属薄膜を形成す
る金属薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a metal thin film, which involves forming a metal thin film on a substrate made of a polymeric material.

従来例の構成とその問題点 高分子材料より成る基板上に真空蒸着法により金属薄膜
を形成する方法としては、基板を円筒状キャンの周側面
に沿わせて走行させつつ蒸着する方法が最も優れている
。第1図にこのような方法を用いた真空蒸着装置の内部
構造の概略を示す。
Conventional structure and its problems The best method for forming a thin metal film on a substrate made of polymeric material by vacuum evaporation is to deposit it while the substrate is running along the circumferential surface of a cylindrical can. ing. FIG. 1 schematically shows the internal structure of a vacuum evaporation apparatus using such a method.

高分子材料より成る基板1は円筒状キャン2の周側面に
沿って矢印の向きに走行する。この基板1上に蒸発源5
によって金属薄膜が形成される。3゜4はそれぞれ基板
1の供給ロール及び巻き取りロールである。このような
真空蒸着装置にて高分子材料より成る基板上に金属薄膜
を蒸着する際に、金属薄膜の膜厚が薄く数100Å以下
の場合には、安定に薄膜が形成されるが、数100八以
上の膜厚を数1oo八/へ以上の高堆積速度で形成する
場合には、蒸発源からの輻射熱や蒸発原子の凝縮熱等に
より基板の熱変形や熱分解を生じてしまい安定な蒸着膜
が得られない。高分子材料より成る一基板の一方の表面
にだけ金属薄膜を蒸着する場合には、金属薄膜と円筒状
キャンとの間に電位差を設けて蒸着することにより、上
記の問題は解決される。このことの−例を第2図を用い
て説明する。
A substrate 1 made of a polymeric material runs along the circumferential side of a cylindrical can 2 in the direction of the arrow. An evaporation source 5 is placed on this substrate 1.
A thin metal film is formed. 3 and 4 are a supply roll and a take-up roll for the substrate 1, respectively. When depositing a metal thin film on a substrate made of a polymeric material using such a vacuum evaporation apparatus, if the metal thin film is thin and has a thickness of several hundred angstroms or less, the thin film can be stably formed; When forming a film with a thickness of 800 mm or more at a high deposition rate of several 100 mm or more, thermal deformation or thermal decomposition of the substrate may occur due to radiant heat from the evaporation source, condensation heat of evaporated atoms, etc., making it difficult to achieve stable evaporation. A film cannot be obtained. When a metal thin film is deposited only on one surface of a single substrate made of a polymeric material, the above problem can be solved by creating a potential difference between the metal thin film and the cylindrical can. An example of this will be explained using FIG.

一方の表面に膜厚数10’O八以、下の金属薄膜Bが蒸
着された高分子材料より成る基板6は、その金属薄膜B
を金属ローラ7に接して走行する。金属ローラ了は電源
8によp1接地された円筒状キャン2との間に電圧が印
加されている。このようにすると基板6と円筒状キャン
2との間に静電気的な引力が生し、基板゛6が円筒状キ
ャンに張り付く。
A substrate 6 made of a polymeric material on which a metal thin film B having a thickness of several tens of degrees or less is deposited on one surface thereof is
runs in contact with metal rollers 7. A voltage is applied between the metal roller 2 and the cylindrical can 2 which is grounded by a power source 8. In this way, electrostatic attraction is generated between the substrate 6 and the cylindrical can 2, and the substrate 6 sticks to the cylindrical can.

張や付いた状態で蒸発源5から薄膜材料を蒸発させ、基
板6上に金属薄膜Cを形成すると、蒸発源からの輻射熱
や蒸発原子の凝縮熱が円筒状キャン2に拡散するので、
基板の熱変形や熱分解か生しない。基板6のキャン2へ
の張り付きが不十分であると熱拡散の量が小さく、基板
が熱的ダメージを受ける。
When the thin film material is evaporated from the evaporation source 5 under tension to form the metal thin film C on the substrate 6, the radiant heat from the evaporation source and the condensation heat of the evaporated atoms are diffused into the cylindrical can 2.
No thermal deformation or thermal decomposition of the substrate occurs. If the substrate 6 is not sufficiently adhered to the can 2, the amount of heat diffusion will be small and the substrate will be thermally damaged.

以上述べた例は、高分子材料より成る基板の一方の表面
に金人気薄膜を蒸着し、他方の表面には金属尚膜が無い
場合についてであるが、既に一方の表面に金属薄膜の形
成されている高分子材料より成る基板の他方の表面にさ
らに金属薄膜を蒸着する際には、上記の方法が使用出来
ない。すなわち静電気的な印力によって基板を円筒状キ
ャンに張り付かせることがでさず、従来の方法で蒸着を
行なうと熱変形や熱分解を生じてしまう 発明の目的 本発明は真空蒸着法により、一方の表面に金属薄膜の形
成されている高分子材料より成る基板に熱変形や熱分解
を生じさせずに、この基板の他方の表面に金属薄膜を形
成する方法を提供することを目的とする。
In the example described above, a thin metal film is deposited on one surface of a substrate made of a polymer material, and there is no metal film on the other surface, but a thin metal film has already been formed on one surface. The above method cannot be used when a thin metal film is further deposited on the other surface of the substrate made of a polymeric material. In other words, it is not possible to stick the substrate to the cylindrical can by electrostatic force, and thermal deformation and thermal decomposition occur when vapor deposition is performed using the conventional method.Object of the InventionThe present invention uses a vacuum vapor deposition method to An object of the present invention is to provide a method for forming a metal thin film on the other surface of a substrate made of a polymeric material on which a metal thin film is formed on one surface without causing thermal deformation or thermal decomposition of the substrate. .

発明の構成 本発明は円筒状キャンの周側面に沿って走行しつつある
、一方の表面に金属薄膜への形成されている高分子材料
より成る基板の他方の表面に直接にあるいは金属薄膜B
を介して金属薄膜Cを真空蒸着法によって形成する際に
、上記基板の上記金属薄膜A側に高分子材料よ構成るフ
ィルムを重ねて走行させかつ上記金属薄膜Aあるいは上
記釜属薄膜Cと上記キャンとの間に電1位差を設けるこ
とを特徴とする金属薄膜の製造方法であり、本発明の方
法を用いることによって、高分子材料より成る基板に熱
変形や熱分解を生じさせずに、金属薄膜をイむることが
可能である。
Structure of the Invention The present invention is directed to a substrate made of a polymeric material, which is formed into a metal thin film on one surface, running along the circumferential side of a cylindrical can.
When forming the metal thin film C by vacuum evaporation method, a film made of a polymeric material is layered and run on the metal thin film A side of the substrate, and the metal thin film A or the pot metal thin film C and the above This is a method for manufacturing a metal thin film characterized by creating a one-potential difference between the metal film and the metal film. , it is possible to immerse metal thin films.

実施例の説明 以下本発明の実施例を第3図及び第4図を用いて説明す
る。第3図は本発明の方法を実施するための真空蒸着装
置内部の一例を示す図であり、第1図、第2図と同一物
は同一番号を伺しておく。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing an example of the inside of a vacuum evaporation apparatus for carrying out the method of the present invention, and the same parts as in FIGS. 1 and 2 are designated by the same numbers.

一方の表面に金属薄膜への形成されている高分子材料よ
構成る基板9は、この金属薄膜へを金偏ローラ7に接し
て矢印の向きに走行する。金属ローラ7は′電源8によ
り円筒状キャン2との間に′低圧が印加されている。1
1.12は金属ローラであり、12のローラで上記基板
9と高分子材料より成るフィルム10が重ね合わされ、
そのまま円筒状キャン2に入る。13.14はそれぞれ
上記高分子材料より成るフィルム1oの供給ロール及び
巻き取りロールである。基板9とフィルム10とが重な
り合って、円筒状キャン2に接している様子を拡大して
模式的に第4図に示す。16は両面に金属薄膜が形成さ
れる高分子材料より成る基板、16は金属薄膜A117
は金属薄膜Cであり、蒸発源5により蒸着されつつある
部分が示されている。第3図の装置にて、電源8の電圧
を60〜260Vとして実験を行なった結果、基板9は
静電気的な引力によ一〕て円部状キャン2に、安定に張
り付いて走行し、熱変形、熱分解を生じずに金属薄膜を
作製出来ることが明らかになった。なお金属薄膜に電圧
を印加するだめの電源としては、第3図で(d直流電源
が描かれているが、交流電源でも差しつかえない。また
高分子材料より成る基板15と金属薄膜Cとの間に、金
属薄膜Bが存在しても悪影響は及はさない。また第3図
では金属薄膜Aに電圧を印加しているが、金属薄膜Cに
印加しても良いし、両膜に印加しても良い。
A substrate 9 made of a polymeric material having a metal thin film formed on one surface thereof runs in the direction of the arrow in contact with a gold bias roller 7 over the metal thin film. A low pressure is applied between the metal roller 7 and the cylindrical can 2 by a power source 8. 1
1.12 is a metal roller, and the substrate 9 and the film 10 made of a polymeric material are superimposed on each other by the roller 12;
Enter the cylindrical can 2 as it is. 13 and 14 are a supply roll and a take-up roll for the film 1o made of the above-mentioned polymeric material, respectively. FIG. 4 schematically shows an enlarged view of how the substrate 9 and the film 10 overlap and are in contact with the cylindrical can 2. 16 is a substrate made of a polymer material on which metal thin films are formed on both sides; 16 is a metal thin film A117;
is a metal thin film C, and the portion being evaporated by the evaporation source 5 is shown. Using the apparatus shown in FIG. 3, we conducted an experiment with the voltage of the power source 8 ranging from 60 to 260 V, and found that the board 9 stuck stably to the circular can 2 due to electrostatic attraction. It has become clear that metal thin films can be produced without thermal deformation or thermal decomposition. As a power source for applying voltage to the metal thin film, in Fig. 3 (d) a DC power source is shown, but an AC power source may also be used. Even if there is a metal thin film B between them, there will be no adverse effect.In addition, although the voltage is applied to the metal thin film A in Fig. 3, it may be applied to the metal thin film C, or it can be applied to both films. You may do so.

次に本発明の具体的な実施例について説明する。Next, specific examples of the present invention will be described.

第3図に示される基本構成を有する真空蒸着装置にて、
膜厚40μmのポリエチレンテレフタレート基板の両側
に膜厚200o人のCo −Cr合金膜を形成した。ま
ず、金属薄膜AとしてのCo −Cr合金膜を従来の方
法で蒸着し、次に金属薄膜CとしてのCo =Cr合金
膜を本発明の方法により蒸着し/ね。蒸着の際に、高分
子材料より成るフィルム1゜として膜厚16 )tmの
ポリエチレンテレフタレートフィルムを用い、金属薄膜
Aに印加する電源8の電圧は80■とした。作製された
膜は非常に安定であり、熱変形、熱分解、クラック等は
見られなかった。一方、電圧を印加せずに金属薄Bcと
してのco=Cr合金膜を蒸着すると、ポリエチレンテ
レフタレート基板は熱分解を生じ、一部に穴がおいてし
まった。
In a vacuum evaporation apparatus having the basic configuration shown in Fig. 3,
A Co--Cr alloy film with a thickness of 200 μm was formed on both sides of a polyethylene terephthalate substrate with a thickness of 40 μm. First, a Co-Cr alloy film as the metal thin film A is deposited by a conventional method, and then a Co=Cr alloy film as the metal thin film C is deposited by the method of the present invention. During vapor deposition, a polyethylene terephthalate film with a film thickness of 16) tm was used as a 1° film made of a polymeric material, and the voltage of the power source 8 applied to the metal thin film A was 80 cm. The produced film was very stable, and no thermal deformation, thermal decomposition, cracks, etc. were observed. On the other hand, when a co=Cr alloy film as a thin metal Bc was deposited without applying a voltage, the polyethylene terephthalate substrate was thermally decomposed and holes were formed in some parts.

発明の効果 以」二のように本発明によれば蒸着時に基板を円筒状キ
ャンに張り付けることが出来、その結果熱変形や熱分解
の無い安定な金属薄膜を提供することが可能である。
Effects of the Invention As described in (2), according to the present invention, a substrate can be attached to a cylindrical can during vapor deposition, and as a result, a stable metal thin film without thermal deformation or thermal decomposition can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の真空蒸着装置内部の概略を示
す原理図、第3図は本発明の金属薄膜の製造方法を実施
するだめの真空蒸着装置内部の一例を示す原理図、第4
図は第3図の一部を模式的に拡大した拡大図である。 2・・・・・・円筒状キャン、8・・・・・・基板に電
圧を印加するための電源、9・・・・・・一方の表面に
金属薄膜Aの形成されている高分子材料より成る基板、
10・−・高分子材料より成るフィルム、16・・・・
・・金属薄膜A117・川・・金属薄膜cQ 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 ワ。。   国中5 ■ 【ヒ6 吊3図 第4図
1 and 2 are principle diagrams showing an outline of the inside of a conventional vacuum evaporation apparatus, and FIG. 4
The figure is an enlarged view schematically enlarging a part of FIG. 3. 2...Cylindrical can, 8...Power source for applying voltage to the substrate, 9...Polymer material with metal thin film A formed on one surface A substrate consisting of;
10...Film made of polymeric material, 16...
...Metal thin film A117 River...Metal thin film cQ Name of agent: Patent attorney Toshi Nakao (Male) Haga 1st person
Figure wa. . Kuninaka 5 ■ [Hi 6 Suspension 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 円筒状キャンの周側面に沿って走行しつつある、一方の
表面に金属薄膜Aの形成されている高分子材料より成る
基板の他方の表面に直接にあるいは金属薄膜Bを介して
金属薄膜Cを真空蒸着法によって形成する際に、上記基
板の上記金属薄膜A側に高分子材料より成るフィルムを
重ねて走行させ、かつ上記金属薄膜Aあるいは上記金属
薄膜Cと上記キャンとの間に電位差を設けることを特徴
とする金属薄膜の製造方法。
A thin metal film C is applied directly or via a thin metal film B to the other surface of a substrate made of a polymeric material on which a thin metal film A is formed on one surface, which is running along the circumferential side of a cylindrical can. When forming by a vacuum evaporation method, a film made of a polymeric material is layered and run on the metal thin film A side of the substrate, and a potential difference is created between the metal thin film A or the metal thin film C and the can. A method for producing a metal thin film, characterized by:
JP2402583A 1983-02-15 1983-02-15 Production of thin metallic film Pending JPS59149931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2402583A JPS59149931A (en) 1983-02-15 1983-02-15 Production of thin metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2402583A JPS59149931A (en) 1983-02-15 1983-02-15 Production of thin metallic film

Publications (1)

Publication Number Publication Date
JPS59149931A true JPS59149931A (en) 1984-08-28

Family

ID=12126982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2402583A Pending JPS59149931A (en) 1983-02-15 1983-02-15 Production of thin metallic film

Country Status (1)

Country Link
JP (1) JPS59149931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9718041B2 (en) 2012-06-14 2017-08-01 Nuvera Fuel Cells, LLC Steam reformers, modules, and methods of use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9718041B2 (en) 2012-06-14 2017-08-01 Nuvera Fuel Cells, LLC Steam reformers, modules, and methods of use
US10105667B2 (en) 2012-06-14 2018-10-23 Nuvera Fuel Cells, LLC Steam reformers, modules, and methods of use
US10773229B2 (en) 2012-06-14 2020-09-15 Ivys, Inc. Steam reformers, modules, and methods of use

Similar Documents

Publication Publication Date Title
EP0931853A3 (en) Method of depositing barrier coatings by plasma assisted chemical vapour deposition
JPS59149931A (en) Production of thin metallic film
JPS6092467A (en) Production of thin metallic film
JPH02239428A (en) Production of metal thin film
JPH11323532A (en) Production of resin thin film
JPS59147023A (en) Preparation of thin film of metal
JPH0626018B2 (en) Method of manufacturing magnetic recording medium
JPS59147024A (en) Preparation of thin film of metal
JPS62207867A (en) Production of thin metallic film
JPS63255362A (en) Device for producing thin metallic film
JPS6358623A (en) Apparatus for producing thin metallic film
JPS59147026A (en) Preparation of thin film of metal
JP3365207B2 (en) Vacuum deposition equipment
JPH0223526A (en) Production of thin metallic film
JPS60167123A (en) Production of vertical magnetic recording medium
JPS5850628A (en) Production of magnetic recording medium
JPH03232958A (en) Production of laminated member coated with thin ti-type film
JPS6046181B2 (en) Vacuum deposition method
JPS634424A (en) Production of magnetic recording medium
JPS60187674A (en) Manufacture of thin metallic film
JPS6020319A (en) Production of thin metallic film type magnetic recording medium
JPS6154615A (en) Thin film forming method
JPS59147025A (en) Preparation of thin film of metal
JPH0757260A (en) Device for producing magnetic recording medium
JPS56142869A (en) Vacuum vapor deposition method