JPS59147253A - On-line hardness measurement of steel plate - Google Patents

On-line hardness measurement of steel plate

Info

Publication number
JPS59147253A
JPS59147253A JP2055983A JP2055983A JPS59147253A JP S59147253 A JPS59147253 A JP S59147253A JP 2055983 A JP2055983 A JP 2055983A JP 2055983 A JP2055983 A JP 2055983A JP S59147253 A JPS59147253 A JP S59147253A
Authority
JP
Japan
Prior art keywords
steel plate
hardness
electromagnet
residual magnetism
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2055983A
Other languages
Japanese (ja)
Other versions
JPH0141217B2 (en
Inventor
Mamoru Akiyama
守 秋山
Akira Takahashi
暁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2055983A priority Critical patent/JPS59147253A/en
Publication of JPS59147253A publication Critical patent/JPS59147253A/en
Publication of JPH0141217B2 publication Critical patent/JPH0141217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure the hardness of a steel plate with high accuracy, by correcting the thickness of the steel plate by measuring the intensity of the residual magnetism of the steel plate subjected to saturation magnetization. CONSTITUTION:A DC exciting electromagnet 2 is arranged in opposed relation to the surface of a continuously running steel plate 1 while the N-pole and the S-pole of the electromagnet 2 are arranged so as to be spaced apart to each other in the running direction of the steel plate 1 and the steel plate 1 is successively magnetized at the positions A-E thereof. By this constitution, even if the steel plate has been magnetized prior to advancing to the position A, it is subjected to saturation magnetization at the position B by the N-pole and demagnetized. Thereafter, said steel plate 1 is subjected to saturation magnetization in the reverse direction at the position D by the S-pole and finally possesses residual magnetization at the position E. The intensity of the residual magnetization is detected by a detector 4 and amplified by a converter 5 while the amplified magnetism is converted to hardness by performing the correction of the plate thickness to be recorded by a recorder 6.

Description

【発明の詳細な説明】 本発明は、鋼板のオンライン硬度測定方法に関する。[Detailed description of the invention] The present invention relates to an online hardness measurement method for steel plates.

一般に、冷延鋼板等の硬度は、その磁気的性質等に関係
があることから、その機械的性質の管理要素としてよく
用いられている。
In general, the hardness of cold-rolled steel sheets and the like is often used as a control factor for its mechanical properties because it is related to its magnetic properties and the like.

従来、このような鋼板の硬度をオンラインで非破壊的に
その全長にわたって連続的に測定可能とすべく、鋼板の
磁気的性質と硬度との相関関係に着目した各種の硬度測
定方法が提案されている。
In the past, various hardness measurement methods have been proposed that focus on the correlation between the magnetic properties of steel plates and hardness, in order to be able to continuously measure the hardness of steel plates online and non-destructively over their entire length. There is.

本出願人は、特願昭56−200135号に添付した明
細書および図面において、「鋼板と直流励磁の電磁石と
を、相対移動状態下で対向配置するとともに、電磁石の
正負両磁極を上記相対移動方向に隔置し、電磁石の一方
の磁極によって飽和磁化された鋼板部分を、電磁石の他
方の磁極によって逆方向に飽和磁化し、上記飽和磁化さ
れた部分の残留磁気の強さを測定し、測定された残留磁
気の強さに基づいて該部分の硬度を求めるg18叛のオ
ンライン硬度測定方法」を既に提案している。
In the specification and drawings attached to Japanese Patent Application No. 56-200135, the applicant states that ``a steel plate and a DC-excited electromagnet are arranged facing each other in a state of relative movement, and both the positive and negative magnetic poles of the electromagnet are moved relative to each other. A steel plate part that is spaced apart in the same direction and saturated magnetized by one magnetic pole of the electromagnet is saturated in the opposite direction by the other magnetic pole of the electromagnet, and the strength of residual magnetism in the saturated magnetized part is measured. We have already proposed a method for measuring the hardness of G18 on-line, which determines the hardness of the part based on the strength of residual magnetism.

上記本出願人が既に提案している硬度測定方法によれば
、鋼板を挾みつける方式でないことから。
According to the hardness measuring method already proposed by the applicant, the method does not involve sandwiching the steel plate.

搬送ローラー等に密着して通板せしめられる鋼板圧測定
装置を対向配置することが可能となり、鋼板パスライン
の変動に対して測定精度にバラツキを生ずることがない
。また、鋼板を挾んで磁化するものでなく、鋼板を飽和
磁化することが可能となる。
It becomes possible to dispose a steel plate pressure measuring device that passes the steel plate in close contact with a conveyance roller or the like, and there is no variation in measurement accuracy due to fluctuations in the steel plate pass line. Further, instead of magnetizing the steel plate by sandwiching it, it becomes possible to saturate the steel plate.

上記本出願人が既に提案している硬度測定方法による硬
度計出力とロックウェル硬度との相関関係は、例えば第
1図に示す通りであり、その測定精度はロックウェル硬
度(、HR30T )で±5である。
The correlation between the hardness meter output and Rockwell hardness according to the hardness measurement method already proposed by the applicant is as shown in FIG. It is 5.

しかしながら、上記本出願人が既に提案している硬度測
定方法は、例えばロックウェル硬度で±2の測定精度が
必要とされている焼鈍炉の製品に対する規格判定に用い
ることができない。
However, the hardness measuring method already proposed by the applicant cannot be used for standard determination of products of annealing furnaces, which require a measurement accuracy of ±2 in terms of Rockwell hardness, for example.

本発明は、鋼板の硬度をより高精度に測定可能とするオ
ンライン硬度測定方法を提供することを目的とする。
An object of the present invention is to provide an online hardness measurement method that enables the hardness of a steel plate to be measured with higher precision.

上記目的を達成するために、本発明に係る鋼板のオンラ
イン硬度測定方法は、鋼板と直流励磁の電磁石とを、相
対移動状態下で対向配置するとともに、電磁石の正負両
磁極を上記相対移動方向に隔置し、’flE石の一方の
磁極によって飽和磁化された鋼板部分を、電磁石の他方
の磁極によって逆方向罠飽和磁化し、上記飽和磁化され
た鋼板部分の残留磁気の強さを測定し、予め定めた鋼板
の板厚と上記残留磁気の強さと鋼板の硬度との相関関係
に基づき、該鋼板部分の硬度を求めるようにしたもので
ある。
In order to achieve the above object, the online hardness measurement method for a steel plate according to the present invention involves arranging a steel plate and a DC-excited electromagnet to face each other in a state of relative movement, and aligning both the positive and negative magnetic poles of the electromagnet in the direction of the relative movement. A steel plate portion that is spaced apart and saturated magnetized by one magnetic pole of the 'flE stone is trap saturated magnetized in the opposite direction by the other magnetic pole of the electromagnet, and the strength of residual magnetism of the saturated magnetized steel plate portion is measured, The hardness of the steel plate portion is determined based on the correlation between the predetermined thickness of the steel plate, the strength of the residual magnetism, and the hardness of the steel plate.

以下1本発明をより具体的に説明する。The present invention will be explained in more detail below.

第2図は1本発明の実施に用いられる測定装置を示す説
明図である。連続的に走行する鋼板10表面に対して、
直流励磁の電磁石2を対向配置するとともに、電磁石の
正磁極(N′Wi、)と負磁極(S極)とを鋼板10走
行方向において隔置する。
FIG. 2 is an explanatory diagram showing a measuring device used in carrying out the present invention. For the surface of the continuously running steel plate 10,
Direct-current excited electromagnets 2 are disposed to face each other, and the positive magnetic pole (N'Wi,) and negative magnetic pole (S pole) of the electromagnets are spaced apart in the running direction of the steel plate 10.

したがって、鋼板1の任意の測定点Pは、電磁石2の正
磁極から負磁極に発生する磁力線3の影響下を移動する
こととなり1位置Aないし位置Eにおいて、第3図に示
す履歴に従って順次着磁される。第3図は横軸に着磁す
る磁界の強さXをと9゜縦軸に着磁されたことによって
鋼板1に残留する磁界の密度Yを示すものであり、鋼板
1は、位置Aに進入する以前に磁化されていても、位置
Bで正磁極によって飽邪磁・化されて消磁され、その後
位置りで負磁極によって逆方向に飽和磁化され、最終的
には位置Eにおいて残留磁気を保有する。
Therefore, any measurement point P on the steel plate 1 moves under the influence of the magnetic field lines 3 generated from the positive magnetic pole to the negative magnetic pole of the electromagnet 2, and arrives at one position A to one position E in sequence according to the history shown in FIG. be magnetized. In Figure 3, the horizontal axis shows the strength of the magnetic field X for magnetization, and the vertical axis shows the density Y of the magnetic field remaining in the steel plate 1 after being magnetized. Even if it is magnetized before entering, it is demagnetized and demagnetized by the positive magnetic pole at position B, then saturated magnetized in the opposite direction by the negative magnetic pole at position B, and finally loses residual magnetism at position E. Possess.

このようにして電磁石2の磁力線影響下を通過し、残留
磁気を保有する鋼板1は、その残留磁気の強さを検出器
4によって検出される。
In this way, the steel plate 1 that passes under the influence of the magnetic field lines of the electromagnet 2 and has residual magnetism has the strength of the residual magnetism detected by the detector 4.

第4図は上記鋼板1における実際の磁化状態を示す説明
図である。第4図において位置Aにおける鋼板1のスピ
ン(磁化の方向)は全くランダムな方向を向いている。
FIG. 4 is an explanatory diagram showing the actual magnetization state of the steel plate 1. As shown in FIG. In FIG. 4, the spin (direction of magnetization) of the steel plate 1 at position A is completely random.

この鋼板1が位置Cに来ると、正磁極と負磁極の中間と
なり、鋼板1の進行方向に対して強い外部磁界が与えら
れることになるため、鋼板1のスピンは、一方向に整列
する。
When this steel plate 1 comes to position C, it becomes intermediate between the positive magnetic pole and the negative magnetic pole, and a strong external magnetic field is applied to the traveling direction of the steel plate 1, so that the spins of the steel plate 1 are aligned in one direction.

その後鋼板1が位置りに来ると、鋼板1のスピンは全て
上向きとな9.また鋼板1が位置Eに来ると上向きとな
ったスピンがランダムな方向に戻ろうとする。軟質材(
焼鈍材)IAに対してはこのスピンの向きが容易に変わ
シ、硬質材(未焼鈍材)1Bに対してはこのスピンの向
きカー容易に戻らない。この磁化状態を、横軸に着磁す
る磁界の強さXをとシ、縦軸に鋼板iA、1Bに残留す
る磁界の密度Yをとって示せば第5図の通シとなる。検
出器4は、鋼板IA、18に対し、それぞれ第5図のY
A点+ YB点示す残留磁気の強さを検出する。
After that, when the steel plate 1 comes to the position, the spin of the steel plate 1 is all upward.9. Furthermore, when the steel plate 1 comes to position E, the upward spin tries to return to a random direction. Soft material (
For the annealed material IA, the direction of this spin changes easily, and for the hard material (unannealed material) 1B, the spin direction does not change easily. If this magnetization state is shown by plotting the strength X of the magnetizing magnetic field on the horizontal axis and the density Y of the magnetic field remaining in the steel plates iA and 1B on the vertical axis, the result will be as shown in FIG. Detector 4 is connected to Y in FIG. 5 for steel plates IA and 18, respectively.
Detect the strength of residual magnetism shown at point A + point YB.

上記第5図に示した着磁する磁界の強さXと残留する磁
界の密度Yとがなす曲線ニL、前記第3図に示した曲線
に係る鋼板1に比して反磁界の影響を受けて、前記第3
図に示した曲線よシ傾斜する傾向にある。すなわち、こ
の反磁界は、被検体の大きさに関係し、特に本発明の実
施に用いられる装置においては鋼板の磁化を厚み方向に
向けようとしているために、板厚に対して反磁界の大き
さが異なってくる。板厚が厚(なるということは、鋼板
を磁化させるために1強い外部磁界を必要とする。反磁
界は一磁極の強さに比例するために、板厚が厚くなれば
5反磁界は当然大きくなる。反磁界が大きくなれば、着
磁する磁界の強さXと残留する磁界の密度Yとがなす曲
線の傾きはより傾斜する。なお、第3図に示した曲線が
静止磁界(着磁器、検出器、被検体共に移動しない磁化
状態)であるのに対し、第5・図に示した曲線は、実際
に本装置で測定している磁化状態(着磁器、検出器は固
定で、被検体のみが移動する。またこの反対でも良い)
の動磁界における。鋼板の着磁経過を示す履歴曲線図で
あシ、板厚は同一での軟質材と硬質材に対する履歴曲線
(*i4板1Aは軟質材、1Bは硬質材)を示している
The curve L formed by the magnetizing magnetic field strength X and the residual magnetic field density Y shown in FIG. Accordingly, the third
The curve shown in the figure tends to be sloped. In other words, this demagnetizing field is related to the size of the object to be examined, and in particular, since the apparatus used to implement the present invention aims to direct the magnetization of the steel plate in the thickness direction, the magnitude of the demagnetizing field is related to the thickness of the steel plate. The quality will be different. The thicker the plate (the thicker it is, the more it requires a strong external magnetic field to magnetize the steel plate. Since the demagnetizing field is proportional to the strength of one magnetic pole, it is natural that the thicker the plate, the more the demagnetizing field will increase by 5). As the demagnetizing field increases, the slope of the curve formed by the magnetizing magnetic field strength X and the residual magnetic field density Y becomes more sloped. In contrast, the curve shown in Figure 5 shows the magnetization state actually measured by this device (the magnetizer, detector, and object are fixed). Only the subject moves.The reverse is also possible)
in a dynamic magnetic field. This is a history curve diagram showing the course of magnetization of a steel plate, and shows history curves for a soft material and a hard material with the same plate thickness (*i4 plate 1A is a soft material, 1B is a hard material).

すなわち、板厚の薄い焼鈍材1Cと、板厚の厚い焼鈍材
1Dの、着磁する磁界の強さXと残留する磁界の密度Y
とがなす曲線をそれぞれ示せば第6図のようになυ、検
出器4は、鋼板IC,IDに対し、それぞれ第6図のY
c点、YD点で示す残留磁気の強さを検出する。第6図
に示すように、板厚が厚くなると着磁する磁界の強さX
と残留する磁界の密度Yとがなす曲線の傾斜は大きくな
り、検出する残留磁気の強さは小さくなる。したがって
That is, the magnetizing magnetic field strength X and the residual magnetic field density Y of the thin annealed material 1C and the thick annealed material 1D.
The curves formed by Y and Y in FIG. 6 are shown as shown in FIG.
The strength of residual magnetism shown at point c and point YD is detected. As shown in Figure 6, as the plate thickness increases, the strength of the magnetic field that magnetizes
The slope of the curve formed by Y and the density Y of the residual magnetic field becomes larger, and the strength of the detected residual magnetism becomes smaller. therefore.

板厚が厚(なると、検出される残留磁気は小さくなり、
残留磁気は板厚に反比例することになる。
As the plate thickness becomes thicker, the detected residual magnetism becomes smaller.
The residual magnetism is inversely proportional to the plate thickness.

上記検出器4は、第2図に示すように、N極およびS極
感知用のセンサーを有しており1両センサーは通常の周
囲に磁界がない場合にはバランスしており、その出力は
零と々つている。鋼板1は上記のようにN極に磁化され
ているため、この鋼板1が上記両センサーに近づくと、
N極感知用センサーのコイルが鋼板1のN極に励磁され
、両七ンザーのコイル間バランスは崩れて、励磁側コイ
ルに電流が流れ、この電流値がガウスメーク4Aに表示
される。このようにして検出器4によって検出された残
留磁気の強さは、変換器5で増幅され、板厚の補正を行
なって硬度換算されて、記録計6に記録されろ。
As shown in Fig. 2, the detector 4 has sensors for detecting N and S poles, and both sensors are balanced when there is no magnetic field around them, and their output is It's almost zero. Since the steel plate 1 is magnetized to the north pole as described above, when this steel plate 1 approaches both of the above sensors,
The coil of the N-pole detection sensor is excited by the N-pole of the steel plate 1, the balance between the coils of both sensors is disrupted, a current flows through the excitation side coil, and this current value is displayed on the Gauss Make 4A. The strength of the residual magnetism thus detected by the detector 4 is amplified by the converter 5, corrected for the plate thickness, converted into hardness, and recorded in the recorder 6.

ここで、鋼板1の上記残留磁気の強さは、以下のように
、鋼板1の硬度に相関するものであることから、上記記
録計6の記録結果によって鋼板1の硬度を求めることが
可能となる。すなわち、残留磁気と硬度との関係は両者
の間に結晶粒という段階をおいて考えろことができる。
Here, since the strength of the residual magnetism of the steel plate 1 is correlated with the hardness of the steel plate 1 as shown below, it is possible to determine the hardness of the steel plate 1 from the recording results of the recorder 6. Become. That is, the relationship between residual magnetism and hardness can be considered by considering the stage of crystal grains between the two.

petchは鋼の降伏点と結晶粒の大きさとの間に次の
関係があるとしている。
Petch states that there is the following relationship between the yield point of steel and the grain size.

(yLYP = ao+ f(I−%        
 ・・・・・・・・(1)ただし、σLYPを下降伏点
とし、σ0を単結晶の下降伏点とし、■を単結晶の直径
とし、Kを定数とする。また、回圧硬度は塑性変形抵抗
を測定するのであるから、上記(1,)式の降伏点を確
度に置きかえて考えることができる。すなわち、硬度と
結晶粒径との間に相関が認められること罠なる。次罠。
(yLYP = ao+f(I-%
(1) However, σLYP is the lower yield point, σ0 is the lower yield point of the single crystal, ■ is the diameter of the single crystal, and K is a constant. Moreover, since the rolling hardness measures plastic deformation resistance, the yield point in the above equation (1,) can be replaced with accuracy. In other words, there is a correlation between hardness and crystal grain size. Next trap.

残留磁気と結晶粒との関係を考えると結晶粒の大きいも
の程、磁化され易く、結晶粒の小さいもの程−磁化され
にくいが、結晶粒が大きいものは結晶粒が小さいものに
比較して、単位面積当りの結晶粒の数が少ないため、残
留磁気が小さい。反対に結晶粒が小さいものは、単位面
積当りの結晶粒の数が多いため、残留磁気は大きくなる
。すなわち、残留磁気の大きいもの程硬度は高く、残留
磁気の小さいもの程硬度は低い。このようにして残留磁
気を測定することにより硬度が測定できる。
Considering the relationship between residual magnetism and crystal grains, larger crystal grains are more easily magnetized, and smaller crystal grains are less likely to be magnetized. Since the number of crystal grains per unit area is small, residual magnetism is small. On the other hand, when the crystal grains are small, the number of crystal grains per unit area is large, so the residual magnetism becomes large. That is, the larger the residual magnetism, the higher the hardness, and the smaller the residual magnetism, the lower the hardness. Hardness can be measured by measuring residual magnetism in this manner.

しかして、上記本発明の実施に用いられる測定装置が鋼
板に与える残留磁気の強さ、すなわち該測定装置の未補
正出力V (V)が上記のように鋼板の板厚t (、m
m)に反比例するものであることから、Cを定数、α−
a、、[(+bを鋼板の硬度H(HR30’f’ )に
よって定まる定数とすれば、下記(2)式が成立する。
Therefore, the strength of the residual magnetism imparted to the steel plate by the measuring device used in the implementation of the present invention, that is, the uncorrected output V (V) of the measuring device, is determined by the plate thickness t (, m
Since it is inversely proportional to m), let C be a constant and α−
a, , [(If +b is a constant determined by the hardness H (HR30'f') of the steel plate, the following equation (2) holds true.

■−♀+α=呈+al(+b            
・(2)上記残留磁気の強さと鋼板の板厚および硬度と
の関係を、実際の実験データを用いて、実験式を求めた
ところ下記(8)式が得られた。
■−♀+α=presentation+al(+b
- (2) When an experimental formula for the relationship between the strength of the residual magnetism and the thickness and hardness of the steel plate was determined using actual experimental data, the following formula (8) was obtained.

V工■十旦−1 L   3(1”””””” (8) 第7図は、上記(8)弐に基づく1本発明の実施に用い
られる測定装置が鋼板に与える残留磁気の強さすなわち
該測定装置の未補正出力と鋼板の板厚との対応関係を示
したものであり、例えば板厚0.24問、硬度計出力2
.OVの場合、両者の交点からHR30Tのスケールを
読むとその硬度は64を示す。
V Engineering ■ Todan-1 L 3 (1””””””) (8) Figure 7 shows the strength of residual magnetism imparted to the steel plate by the measuring device used in implementing the present invention based on (8) 2 above. In other words, it shows the correspondence between the uncorrected output of the measuring device and the thickness of the steel plate. For example, if the plate thickness is 0.24 and the hardness meter output is 2.
.. In the case of OV, the hardness is 64 when read on the HR30T scale from the intersection of the two.

すなわち、W4板の板厚と残留磁気の強さと鋼板の硬度
の三者について、一定の相関関係を得ることが可能とな
る。
That is, it is possible to obtain a certain correlation among the thickness of the W4 plate, the strength of residual magnetism, and the hardness of the steel plate.

そこで1本発明においては、前記測定装置の検出器4に
よって測定される残留磁気の強さ、すなわち該測定装置
の未補正出力Vを、前記相関関係すなわち乍記(4)式
に基づいて、鋼板の板厚tに関して補正し、より−信頼
、度の高い硬度計出力Hを得ることを可能としている。
Therefore, in the present invention, the strength of the residual magnetism measured by the detector 4 of the measuring device, that is, the uncorrected output V of the measuring device, is By correcting the plate thickness t, it is possible to obtain a more reliable and accurate hardness meter output H.

H= 30 (V+ LO−4y、 0.21 )  
  ・・・・・・・・(4)第8図は、板厚0.24m
xにおける1本発明によって補正された硬度計出力と、
ロックウェル硬度との関係を示す線図である。この第8
図によれば。
H=30 (V+LO-4y, 0.21)
・・・・・・・・・(4) Figure 8 shows plate thickness of 0.24m.
a hardness meter output corrected by the present invention at x;
It is a diagram showing the relationship with Rockwell hardness. This eighth
According to the diagram.

硬度計出力とロックウェル硬度との対応関係は非常に良
く、検量線に対し、ロックウェル硬度の値は±1の範囲
に入っている。すなわち、この硬度測定方法によれば、
鋼板の硬度をオンラインでより高精度に測定することが
可能となり、例えば焼鈍炉の製品に対する規格判定に用
いることが可能となる。
The correspondence between the hardness meter output and the Rockwell hardness is very good, and the Rockwell hardness value is within the range of ±1 with respect to the calibration curve. That is, according to this hardness measurement method,
It becomes possible to measure the hardness of a steel plate with higher accuracy online, and it can be used, for example, to determine the standards for products in annealing furnaces.

以上のように1本発明に係る鋼板のオンライン硬度測定
方法は、鋼板と直流励磁の電磁石とを、相対移動状態下
で対向配置するとともに、電磁石の正負両磁極を上記相
対移動方向に隔置し、電磁石の一方の磁極によって飽和
磁化された一板部分を、電磁石の他方の磁極によって逆
方向に飽和磁化し、上記飽和磁化された鋼板部分の残留
磁気の強さを測定し、予め定めた鋼板の板厚と上記残留
磁気の強さと鋼板の硬度との相関関係に基づき、該鋼板
部分の硬度を求めろようにしたものである。
As described above, the online hardness measurement method of a steel plate according to the present invention involves arranging a steel plate and a DC-excited electromagnet to face each other in a state of relative movement, and placing both the positive and negative magnetic poles of the electromagnet apart in the direction of the relative movement. , one plate part that is saturated magnetized by one magnetic pole of the electromagnet is saturated in the opposite direction by the other magnetic pole of the electromagnet, and the strength of residual magnetism of the saturation magnetized steel plate part is measured, and the strength of the residual magnetism is measured. The hardness of the steel plate portion is determined based on the correlation between the thickness of the steel plate, the strength of the residual magnetism, and the hardness of the steel plate.

したがって、本発明によれば1gA板の硬度をオンライ
ンでよυ高精度に測定することが可能となる。
Therefore, according to the present invention, it is possible to measure the hardness of a 1gA plate online with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本出願人が既に提案している硬度測定方法によ
る硬度測定結果を示す線図、第2図は本発明の実施に用
いられる測定装置を示す説明図。 第3図は第2図の測定装置による鋼板の着磁経過を示す
履歴線図、第4図は第2図の測定装置による鋼板の実際
の磁化状態を示す説明図、第5図は第2図の測定装置に
よる軟質材と硬質材に対する着磁経過を示す履歴線図、
第6図は第2図の測定装置による厚板拐と薄板材に対す
る着磁経過を示す履歴線図、第7図は本発明における鋼
板の板厚および硬度と硬度計の未補正出力との関係を示
す線図、第8図は本発明による硬度計出力とロックウェ
ル硬度との関係を示す線図(&厚0.24 mの場合)
である。 i、 IA、 1B、 ic、 i・0・・・鋼板、2
・・・電磁石、3・・・磁力線、4・・・検出器。 代理人 弁理士 塩 川 修 治 第2図 第4図 第5図 第7図 一核雁[mm] 第8図 硬度引出力(HR−307)
FIG. 1 is a diagram showing hardness measurement results by a hardness measurement method already proposed by the applicant, and FIG. 2 is an explanatory diagram showing a measuring device used in implementing the present invention. Fig. 3 is a history diagram showing the progress of magnetization of the steel plate by the measuring device shown in Fig. 2, Fig. 4 is an explanatory diagram showing the actual magnetization state of the steel plate measured by the measuring device shown in Fig. 2, and Fig. 5 is a history diagram showing the progress of magnetization of the steel plate by the measuring device shown in Fig. A history diagram showing the progress of magnetization of soft and hard materials using the measuring device shown in the figure.
Fig. 6 is a history diagram showing the course of magnetization of thick plate and thin plate material by the measuring device of Fig. 2, and Fig. 7 is the relationship between the thickness and hardness of steel plate and the uncorrected output of the hardness meter in the present invention. Figure 8 is a diagram showing the relationship between the hardness meter output and Rockwell hardness according to the present invention (& for thickness 0.24 m)
It is. i, IA, 1B, ic, i・0... steel plate, 2
...electromagnet, 3...magnetic field lines, 4...detector. Agent Patent Attorney Osamu Shiokawa Fig. 2 Fig. 4 Fig. 5 Fig. 7 Single Nucleus [mm] Fig. 8 Hardness Pulling Force (HR-307)

Claims (1)

【特許請求の範囲】[Claims] (11e板と直流励磁の電磁石とを、相対移動状態下で
対向配置するとともに、電磁石の正負両磁極を上記相対
移動方向に隔置し、電磁石の一方の磁極によって飽和磁
化された鋼板部分を、電磁石の他方の磁極によって逆方
向に飽和磁化し、上記飽和磁化された鋼板部分の残留磁
気の強さを測定し、予め定めた鋼板の板厚と上記残留磁
気の強さと鋼板の硬度との相関関係に基づき、該鋼板部
分の硬度を求める鋼板のオンライン硬度測定方法。
(The 11e plate and the DC-excited electromagnet are arranged facing each other in a state of relative movement, and the positive and negative magnetic poles of the electromagnet are spaced apart in the direction of relative movement, and the steel plate portion that is saturated magnetized by one of the magnetic poles of the electromagnet is The other magnetic pole of the electromagnet saturates the steel plate in the opposite direction, measures the strength of the residual magnetism in the saturated magnetized steel plate, and determines the correlation between the predetermined thickness of the steel plate, the strength of the residual magnetism, and the hardness of the steel plate. A steel plate online hardness measurement method for determining the hardness of a steel plate portion based on a relationship.
JP2055983A 1983-02-12 1983-02-12 On-line hardness measurement of steel plate Granted JPS59147253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055983A JPS59147253A (en) 1983-02-12 1983-02-12 On-line hardness measurement of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055983A JPS59147253A (en) 1983-02-12 1983-02-12 On-line hardness measurement of steel plate

Publications (2)

Publication Number Publication Date
JPS59147253A true JPS59147253A (en) 1984-08-23
JPH0141217B2 JPH0141217B2 (en) 1989-09-04

Family

ID=12030512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055983A Granted JPS59147253A (en) 1983-02-12 1983-02-12 On-line hardness measurement of steel plate

Country Status (1)

Country Link
JP (1) JPS59147253A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193554A (en) * 1985-02-21 1986-08-28 Sony Corp Telephone set
WO2018138850A1 (en) * 2017-01-26 2018-08-02 株式会社島津製作所 Magnetic body inspection device and magnetic body inspection method
JP2019042807A (en) * 2017-09-04 2019-03-22 Jfeスチール株式会社 Manufacturing method of steel plate and surface layer hardness measuring device for magnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193554A (en) * 1985-02-21 1986-08-28 Sony Corp Telephone set
WO2018138850A1 (en) * 2017-01-26 2018-08-02 株式会社島津製作所 Magnetic body inspection device and magnetic body inspection method
JP2019042807A (en) * 2017-09-04 2019-03-22 Jfeスチール株式会社 Manufacturing method of steel plate and surface layer hardness measuring device for magnetic material

Also Published As

Publication number Publication date
JPH0141217B2 (en) 1989-09-04

Similar Documents

Publication Publication Date Title
US4931730A (en) Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
US7437942B2 (en) Non-destructive evaluation via measurement of magnetic drag force
JPS61258161A (en) Noncontacting magnetic stress and temperature detector
US20110199081A1 (en) Barkhausen noise inspection apparatus and inspection method
EP0096078B1 (en) Method of measuring on-line hardness of steel plate
Titto et al. Non-destructive magnetic measurement of steel grain size
JPS58501966A (en) Method for non-destructively measuring fatigue strength of ferromagnetic materials
JPS6352345B2 (en)
JPH0572180A (en) Method and device for magnetic-field inspection
JPH0466863A (en) Residual stress measuring method by steel working
JPS59147253A (en) On-line hardness measurement of steel plate
EP1949024A2 (en) Non-destructive evaluation via measurement of magnetic drag force
RU108626U1 (en) DEVICE FOR LOCAL MEASUREMENT OF FERROMAGNETIC PHASE OF MATERIALS
GB2230341A (en) Apparatus for measuring magnetic flux density
RU2483301C1 (en) Method for local measurement of coercitive force of ferromagnetic objects
JPS62294987A (en) Method and apparatus for measuring magnetic property
JP2001228120A (en) METHOD FOR Si CONCENTRATION MEASUREMENT OF STEEL PRODUCT
JPH0750711Y2 (en) Magnetic flaw detector for thin steel strip
JPH01269049A (en) Method of inspecting deterioration of metallic material
JP2800533B2 (en) Magnetic flaw detector
JPS604856A (en) Method and apparatus for non-destructive testing of toughness and strength of ferromagnetic material by acoustic analysis
JP2605517B2 (en) Magnetizing force control method for magnetic flaw detector
JPH06308092A (en) Material deterioration inspection device
JP2890364B2 (en) Online magnetic diagnostic head
SU1456860A1 (en) Method of non-destructive check of magnetic characteristics of ferromagnetic materials