JPH06308092A - Material deterioration inspection device - Google Patents

Material deterioration inspection device

Info

Publication number
JPH06308092A
JPH06308092A JP5101095A JP10109593A JPH06308092A JP H06308092 A JPH06308092 A JP H06308092A JP 5101095 A JP5101095 A JP 5101095A JP 10109593 A JP10109593 A JP 10109593A JP H06308092 A JPH06308092 A JP H06308092A
Authority
JP
Japan
Prior art keywords
magnetic field
degree
fatigue damage
subject
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5101095A
Other languages
Japanese (ja)
Inventor
Noriyuki Nakashiro
憲行 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5101095A priority Critical patent/JPH06308092A/en
Publication of JPH06308092A publication Critical patent/JPH06308092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To inspect a specimen of a non-magnetic material which cannot be measured easily by measuring fatigue damage non-destructively without any contact. CONSTITUTION:The title device consists of an excitation part 2 for applying alternate magnetic field to a specimen 1 to be inspected by an excitation coil, a sensor part 3 consisting of a flux gate flux meter for detecting a small magnetic field generated in the specimen 1 to be inspected at the excitation part 2, a computer group 6 for judging the degree of fatigue damage of a material according to the data base indicating the relationship with the fatigue damage and then displaying the output result, and a measurement control device 7 for controlling excitation etc. For example, the degree of fatigue damage can be inspected non-destructively without any contact by capturing, with the flux crate flux meter, the magnetic properties generated by turning the degree of fatigue of the specimen to be inspected made of, for example, austenite steel into martensite by fatigue.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は材料劣化検査装置に係
り、特に、繰り返し応力が作用して使用されるオーステ
ナイト系ステンレス鋼,ニッケル基合金等の非磁性体材
料製被検体に生じる劣化・損傷、特に疲労損傷の検出を
可能とする材料劣化検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material deterioration inspection apparatus, and more particularly, to deterioration and damage caused to a specimen made of a non-magnetic material such as austenitic stainless steel or nickel-based alloy which is used under repeated stress. In particular, the present invention relates to a material deterioration inspection device capable of detecting fatigue damage.

【0002】[0002]

【従来の技術】繰り返し応力が作用して使用される機器
・部材(以下、被検体と記す)においては、その形状不
連続部あるいは応力集中部では応力が作用し、疲労によ
る劣化・損傷が生じることが知られている。
2. Description of the Related Art In a device / member (hereinafter referred to as an object to be inspected) that is used under repeated stress, stress acts on a discontinuity of shape or a stress concentration part, causing deterioration / damage due to fatigue. It is known.

【0003】従来、被検体の疲労損傷の検査方法として
は硬さ法やX線を利用する方法等が知られている。これ
らの検査方法は適用検査部位が平坦部に限られており、
特に複雑な形状・部位に対しては、その適用が困難な状
況であった。
Conventionally, as a method of inspecting a subject for fatigue damage, a hardness method and a method utilizing X-rays are known. In these inspection methods, the applicable inspection site is limited to the flat part,
In particular, it was difficult to apply it to complicated shapes and parts.

【0004】また、材料の磁気的性質の変化を非破壊検
査の手段として利用する方法が、たとえば特開昭59-112
257 号公報に開示されている。
Further, a method of utilizing a change in magnetic properties of a material as a means of nondestructive inspection is disclosed in, for example, Japanese Patent Laid-Open No. 59-112.
No. 257 is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
技術は強磁性材料の被検体に磁界を印加したときに、磁
化過程で生じる弾性波のAE信号を検出する方法であ
り、また、強磁性材料である被検体に作用している応力
や製造時の残留応力を計測値と関連づけるだけであり、
疲労損傷による評価を定性的に行っていない。
However, the conventional technique is a method of detecting an AE signal of an elastic wave generated in a magnetization process when a magnetic field is applied to an object made of a ferromagnetic material. It is only to associate the stress acting on the test object and the residual stress during manufacturing with the measured value,
The evaluation by fatigue damage is not performed qualitatively.

【0006】このように、従来の磁気を応用した疲労損
傷の検査法は、繰り返し応力が作用して使用されている
強磁性材料から構成される被検体に生じる疲労損傷を計
測し評価する場合には適しているが、非磁性材料の被検
体の劣化損傷程度を計測することには困難な課題があ
る。
[0006] As described above, the conventional method of inspecting fatigue damage applying magnetism is used in the case of measuring and evaluating the fatigue damage generated in the subject composed of the ferromagnetic material used under repeated stress. Is suitable, but there is a difficult problem in measuring the degree of deterioration damage of a nonmagnetic material sample.

【0007】本発明は上記課題を解決するためになされ
たもので、従来検査が困難な非磁性材料の被検体に対し
て、非接触で、かつ、非破壊的な手段により疲労損傷を
計測し、検査できる材料劣化検査装置を提供することに
ある。
The present invention has been made in order to solve the above problems, and measures fatigue damage by a non-contact and non-destructive means with respect to an object of a non-magnetic material which is conventionally difficult to inspect. The purpose of the present invention is to provide a material deterioration inspection device that can inspect.

【0008】[0008]

【課題を解決するための手段】本発明は非磁性材料製被
検体に交流磁界を印加する励磁装置と、この励磁装置に
よって前記被検体に生じる微小な磁界を検出するセンサ
部と、このセンサ部を前記被検体に対して非接触に保持
する機構部と、前記センサ部の検出信号を信号処理する
信号処理装置と、予め試験材等で求めた微小磁界の特性
値の変化と前記被検体の疲労損傷度との関係を示すマス
ターカーブから前記被検体の疲労損傷度を判定する劣化
度判定手段およびそれらの結果を表示する表示手段とを
具備し、前記センサ部は逆方向励磁により励磁コイルの
磁界の前記センサ部への影響を打ち消した状態での磁界
測定を可能とするフラックスゲート磁束計からなること
を特徴とする。
DISCLOSURE OF THE INVENTION The present invention provides an exciting device for applying an alternating magnetic field to an object made of a non-magnetic material, a sensor section for detecting a minute magnetic field generated in the object by the exciting apparatus, and this sensor section. A non-contact holding mechanism with respect to the subject, a signal processing device for signal processing the detection signal of the sensor unit, a change in the characteristic value of the minute magnetic field previously obtained with a test material and the subject It comprises a deterioration degree judging means for judging the fatigue damage degree of the subject from a master curve showing a relationship with the fatigue damage degree and a display means for displaying the results thereof, and the sensor part is of an exciting coil by reverse excitation. It is characterized by comprising a fluxgate magnetometer capable of measuring the magnetic field in a state where the influence of the magnetic field on the sensor unit is canceled.

【0009】[0009]

【作用】本発明は、非磁性材料の疲労損傷に伴って変化
する被検体の磁気的な特性の変化を計測することによ
り、被検体の疲労損傷程度を検査する。すなわち、非磁
性材料製被検体に疲労損傷を付与することにより、疲労
損傷部の組織が非磁性のオーステナイト相から磁性を帯
びるマルテンサイト相に変態し、微小磁界を有すること
を利用して疲労損傷度を検査する。
According to the present invention, the degree of fatigue damage of a subject is inspected by measuring the change in the magnetic characteristics of the subject that changes with the fatigue damage of the non-magnetic material. That is, by imparting fatigue damage to a non-magnetic material specimen, the structure of the fatigue damage part transforms from a non-magnetic austenite phase to a magnetic martensite phase, and fatigue damage is exploited by having a minute magnetic field. Check the degree.

【0010】被検体に励磁コイル等により交番磁界を印
加するとき生じる微小磁界を、フラックスゲート磁束計
により検出する。検出された磁気信号を信号処理および
演算処理し、予め試験材による計測や解析等により求め
ておいた磁気信号の変化と被検体の劣化・損傷の程度、
すなわち、疲労損傷度との関係を表すデータベースから
被検体の疲労損傷度を演算処理装置で判定し、各種演算
処理結果、劣化度判定結果等の出力結果を表示する。
A minute magnetic field generated when an alternating magnetic field is applied to a subject by an exciting coil or the like is detected by a fluxgate magnetometer. The detected magnetic signal is processed by signal processing and arithmetic processing, and the change of the magnetic signal and the degree of deterioration / damage of the test object, which are obtained in advance by measurement and analysis using a test material,
That is, the fatigue damage degree of the subject is determined by the arithmetic processing device from the database representing the relationship with the fatigue damage degree, and various output results such as the arithmetic processing result and the deterioration degree determination result are displayed.

【0011】ここで、被検体に所定の交番磁界を印加、
制御するための手段と、磁界の印加時に生ずる微小磁界
を検出し、得られた信号を電圧信号に変換し、その信号
を信号処理する手段とを用い、予め疲労損傷度が既知の
試験材を用いて計測し、得られた磁界信号を信号処理に
より求めた特性値、例えば、磁気モーメントの位置およ
び大きさと疲労損傷度との関係を求め、試験材の劣化度
評価曲線(マスターカーブ)として劣化度評価部に格納
しておく。被検体の劣化計測では、被検体の計測データ
を前記劣化度評価曲線に照合することより疲労損傷度を
検出する。
Here, a predetermined alternating magnetic field is applied to the subject,
Using a control means and a means for detecting a minute magnetic field generated when a magnetic field is applied, converting the obtained signal into a voltage signal, and processing the signal, a test material whose fatigue damage degree is known in advance is used. Measured using the obtained magnetic field signal, the characteristic value obtained by signal processing, for example, the relationship between the position and magnitude of the magnetic moment and the degree of fatigue damage is obtained, and the deterioration is evaluated as the deterioration evaluation curve (master curve) of the test material. Stored in the evaluation section. In the deterioration measurement of the subject, the degree of fatigue damage is detected by collating the measurement data of the subject with the deterioration degree evaluation curve.

【0012】励磁部およびセンサ部を一体化して構成し
た計測ヘッドを計測ヘッド保持機構や操作機構により被
検体の所定の位置に適正に設置し、適正な条件で移動可
能とする。また、その位置情報は表示器に表示あるいは
信号処理部等のコンピュータ群に送信される。
A measuring head constituted by integrating an exciting unit and a sensor unit is properly installed at a predetermined position of a subject by a measuring head holding mechanism and an operating mechanism, and can be moved under appropriate conditions. The position information is displayed on a display or transmitted to a computer group such as a signal processing unit.

【0013】[0013]

【実施例】図1から図3により本発明に係る材料劣化検
査装置の一実施例を説明する。図1は本発明に係る材料
劣化検出装置の構成例をブロック系統図で示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the material deterioration inspection apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a block system diagram showing an example of the configuration of a material deterioration detecting device according to the present invention.

【0014】主要構成部は疲労損傷を受けた例えばオー
ステナイト系ステンレス鋼製非磁性材料の被検体1を励
磁するための励磁部2と、フラックスゲート磁束計およ
び励磁磁界キャンセルコイルで構成されるセンサ部3
と、このセンサ部3を位置決め移動させるための駆動系
4と、励磁部2に接続される励磁電源5と、センサ部3
に対してセンサ信号収録、磁界強度信号をコンピュータ
群6により処理するための信号処理装置および励磁等を
制御する計測制御装置7である。
The main constituent parts are an exciting part 2 for exciting a subject 1 made of, for example, an austenitic stainless steel non-magnetic material that has been damaged by fatigue, and a sensor part composed of a fluxgate magnetometer and an exciting magnetic field canceling coil. Three
A drive system 4 for positioning and moving the sensor unit 3, an excitation power source 5 connected to the excitation unit 2, and a sensor unit 3
On the other hand, a measurement control device 7 for controlling sensor signal recording, a signal processing device for processing the magnetic field intensity signal by the computer group 6, and excitation.

【0015】被検体1、つまり金属材料は応力の繰り返
し負荷や繰り返し熱負荷により金属組織が変化するとと
もに材料の強度が低下する。材料の内部では、繰り返し
負荷とともに、転位が増殖し転位密度が増加する。
In the subject 1, that is, the metal material, the metal structure changes due to the repeated load of stress and the repeated heat load, and the strength of the material decreases. Inside the material, dislocations grow and the dislocation density increases with repeated loading.

【0016】一方、材料の表面では微小なき裂が発生・
成長し、これらのき裂は近接したき裂と連結・合体し、
主き裂となり最終破断に至る。疲労損傷を受けた被検体
に交流磁界を印加したときに損傷部がオーステナイト相
からマルテンサイト相に変態する。これによって生じる
被検体表面の微小磁界を検出し、この検出信号の信号処
理装置で得られた特性値、例えば磁気モーメントの大き
さを演算処理する。
On the other hand, a small crack is generated on the surface of the material.
Grows, these cracks connect and coalesce with adjacent cracks,
It becomes the main crack and reaches the final fracture. When an alternating magnetic field is applied to a fatigue-damaged subject, the damaged part transforms from the austenite phase to the martensite phase. The minute magnetic field on the surface of the subject generated by this is detected, and the characteristic value obtained by the signal processing device of this detection signal, for example, the magnitude of the magnetic moment is arithmetically processed.

【0017】信号処理装置としてのコンピュータ群6は
励磁磁界、フラックスゲート磁束計からの磁界強度を信
号処理して、磁気モーメントの大きさと位置情報を計算
するコンピュータで構成し、外部の地磁気等をキャンセ
ルするための電流も制御できるものである。
The computer group 6 as a signal processing device is composed of a computer for processing the magnetic field intensity from the exciting magnetic field and the fluxgate magnetometer to calculate the magnitude of magnetic moment and position information, and cancels external geomagnetism and the like. The current for doing this can also be controlled.

【0018】信号処理して求められた磁気モーメントか
ら被検体の疲労損傷度を求めるため、予め疲労損傷度が
既知の試験材で求めておいた計測データベースから作成
した劣化度評価曲線(マスターカーブ)と照合し、劣化
度を判定、評価する。
In order to obtain the fatigue damage degree of the object from the magnetic moment obtained by signal processing, a deterioration degree evaluation curve (master curve) created from a measurement database previously obtained from a test material with a known fatigue damage degree And the deterioration degree is determined and evaluated.

【0019】また、この判定結果はコンピュータ群6に
データとして格納される。センサ部3は駆動系4によ
り、計測部位の所定の位置に走査可能とし、その制御は
コンピュータ群6により可能とする。
The determination result is stored in the computer group 6 as data. The sensor unit 3 can be scanned by a drive system 4 at a predetermined position of a measurement site, and its control can be performed by a computer group 6.

【0020】励磁部2は、被検体1中の強磁性相(この
場合、マルテンサイト相)に磁界を加え、その強磁性相
の磁気モーメントを磁界の方向にそろえて外部で検出で
きるようにするため、ソレノイドコイル等で構成されて
いる。
The exciting unit 2 applies a magnetic field to the ferromagnetic phase (in this case, the martensite phase) in the subject 1 so that the magnetic moment of the ferromagnetic phase is aligned with the direction of the magnetic field and can be detected outside. Therefore, it is composed of a solenoid coil and the like.

【0021】センサ部3の一部として構成されているフ
ラックスゲート磁束計は、図2(a)に示したように交
流磁界電源10により励磁される第1のコア8および第2
のコア9は外部磁界により、交流の時間軸上での飽和点
が逆方向励磁のため非磁性であれば“0”であるが、磁
気を帯びると変化し、そのデータを磁界強度してとらえ
る。なお、図2(b)は(a)における磁束密度と磁場
の強さとの関係を示している。
The fluxgate magnetometer formed as a part of the sensor unit 3 has a first core 8 and a second core 8 which are excited by an AC magnetic field power source 10 as shown in FIG. 2A.
Core 9 is "0" if the saturation point on the AC time axis is non-magnetic due to reverse excitation due to an external magnetic field, but it changes when magnetized and the data is captured as magnetic field strength. . Note that FIG. 2B shows the relationship between the magnetic flux density and the magnetic field strength in FIG.

【0022】フラックスゲート磁束計の周囲には励磁キ
ャンセル用コイルを置き、励磁コイルの磁界によるセン
サ部3への影響を打ち消した状態で磁界測定を行う。
An excitation canceling coil is placed around the fluxgate magnetometer, and the magnetic field is measured while the influence of the magnetic field of the exciting coil on the sensor unit 3 is canceled.

【0023】次に本発明の原理となる金属材料被検体1
の疲労損傷度とセンサ部により得られる磁界強度の関係
について図3を用いて説明する。本発明は非磁性材料で
あるオーステナイト系ステンレス鋼あるいはオーステナ
イト系のニッケル基合金の疲労損傷に伴う金属組織変化
に対して、磁界が生じること、すなわち、励磁によるこ
の磁界強度の大きさ影響を及ぼすことに着目している。
Next, the metallic material sample 1 which is the principle of the present invention
The relationship between the degree of fatigue damage and the magnetic field strength obtained by the sensor unit will be described with reference to FIG. INDUSTRIAL APPLICABILITY The present invention relates to the generation of a magnetic field, that is, the influence of the magnitude of this magnetic field strength due to excitation, with respect to the metallurgical structure change accompanying fatigue damage of austenitic stainless steel or austenitic nickel-based alloy which is a non-magnetic material Is paying attention to.

【0024】一般に、金属材料が疲労を受けると材料内
部に転位が増殖し、結晶粒内、すべり線の生成および増
加が生じ、損傷部の金属組織がオーステナイト相からマ
ルテンサイト相に変わり、磁性を帯びる。
In general, when a metallic material is subjected to fatigue, dislocations multiply inside the material, the generation and increase of slip lines occur in the crystal grains, the metal structure of the damaged portion changes from the austenite phase to the martensite phase, and the magnetism changes. Take on.

【0025】ここで、オーステナイト系ステンレス鋼
(SUS304)を歪制御で疲労試験し、この疲労試験片を被
検体として本発明の材料劣化検査装置で計測(検査)し
た例を図3に示す。
FIG. 3 shows an example in which an austenitic stainless steel (SUS304) is subjected to a fatigue test under strain control and the fatigue test piece is used as an object to be measured (inspected) by the material deterioration inspection apparatus of the present invention.

【0026】図3は横軸に疲労試験で 1.2×105 サイク
ルで破断する被検体について途中で疲労繰り返しを止め
て計測した時の繰り返し数、縦軸に計測される磁界強さ
(磁束密度)で整理したものである。図3から疲労損傷
度の増加に伴い、計測される磁界強さが増加することが
認められる。
In FIG. 3, the horizontal axis represents the number of repetitions when the fatigue test is stopped halfway through the fatigue test in the fatigue test at 1.2 × 10 5 cycles, and the vertical axis represents the measured magnetic field strength (magnetic flux density). It was organized in. It can be seen from FIG. 3 that the measured magnetic field strength increases as the fatigue damage degree increases.

【0027】なお、本発明は、計測ヘッドの形状・寸法
を適宜変更させて適用することで、非磁性体材料であれ
ば金属材料の組成に関係なく、また計測部位の形状が曲
面、平面等の構造物に対しても、上記の方法および装置
を用いれば、計測部位の疲労損傷度を計測することが可
能となる。
The present invention can be applied by appropriately changing the shape and size of the measuring head, so that the non-magnetic material is a non-magnetic material regardless of the composition of the metal material, and the shape of the measuring portion is a curved surface, a flat surface, or the like. With respect to the above structure, it is possible to measure the degree of fatigue damage at the measurement site by using the above method and apparatus.

【0028】また、本発明において使用する検出センサ
は非接触であり、計測部位の表面状態によらず、計測部
位の劣化程度を計測できるという効果がある。
Further, the detection sensor used in the present invention is non-contact, and has the effect of being able to measure the degree of deterioration of the measurement site regardless of the surface condition of the measurement site.

【0029】[0029]

【発明の効果】本発明によれば、繰り返し応力が作用し
て使用される非磁性材料製被検体の疲労損傷度を非接触
でかつ非破壊により検査し評価することができるため、
機器・部材の健全性および安全性を確保することができ
る。
According to the present invention, it is possible to inspect and evaluate the fatigue damage degree of a non-magnetic material specimen used under repeated stresses in a non-contact and non-destructive manner.
It is possible to ensure the soundness and safety of equipment and members.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の材料劣化検査装置の一実施例を示すブ
ロック系統図。
FIG. 1 is a block system diagram showing an embodiment of a material deterioration inspection device of the present invention.

【図2】(a)は図1におけるセンサ部の原理を説明す
るための構成図、(b)は(a)における磁束密度と磁
場の強さとの関係を示す特性図。
2A is a configuration diagram for explaining the principle of the sensor unit in FIG. 1, and FIG. 2B is a characteristic diagram showing the relationship between the magnetic flux density and the magnetic field strength in FIG.

【図3】図1による材料劣化検査装置で被検体を検査し
た際の疲労過程における磁界強さの変化を示す特性図。
3 is a characteristic diagram showing a change in magnetic field strength during a fatigue process when an object is inspected by the material deterioration inspection apparatus according to FIG.

【符号の説明】[Explanation of symbols]

1…被検体、2…励磁部、3…センサ部、4…駆動系、
5…励磁電源、6…コンピュータ群(信号処理部)、7
…計測制御装置、8…第1のコア、9…第2のコア、10
…交流磁界電源。
1 ... Subject, 2 ... Excitation part, 3 ... Sensor part, 4 ... Driving system,
5 ... Excitation power supply, 6 ... Computer group (signal processing unit), 7
... Measurement control device, 8 ... First core, 9 ... Second core, 10
… AC magnetic field power supply.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非磁性材料製被検体に交流磁界を印加す
る励磁装置と、この励磁装置によって前記被検体に生じ
る微小な磁界を検出するセンサ部と、このセンサ部を前
記被検体に対して非接触に保持する機構部と、前記セン
サ部の検出信号を信号処理する信号処理装置と、予め試
験材等で求めた微小磁界の特性値の変化と前記被検体の
疲労損傷度との関係を示すマスターカーブから前記被検
体の疲労損傷度を判定する劣化度判定手段およびそれら
の結果を表示する表示手段とを具備し、前記センサ部は
逆方向励磁により励磁コイルの磁界の前記センサ部への
影響を打ち消した状態での磁界測定を可能とするフラッ
クスゲート磁束計からなることを特徴とする材料劣化検
査装置。
1. An exciting device for applying an alternating magnetic field to a subject made of a non-magnetic material, a sensor unit for detecting a minute magnetic field generated in the subject by the exciting device, and the sensor unit for the subject. A mechanism unit for holding in a non-contact manner, a signal processing device for signal processing a detection signal of the sensor unit, and a relationship between a change in the characteristic value of a minute magnetic field previously obtained in a test material and the fatigue damage degree of the subject. A deterioration degree determination means for determining the degree of fatigue damage of the subject from the master curve shown and a display means for displaying the results thereof are provided, and the sensor portion is directed to the sensor portion of the magnetic field of the exciting coil by reverse excitation. A material deterioration inspecting device comprising a fluxgate magnetometer capable of measuring a magnetic field in a state where the influence is cancelled.
JP5101095A 1993-04-27 1993-04-27 Material deterioration inspection device Pending JPH06308092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5101095A JPH06308092A (en) 1993-04-27 1993-04-27 Material deterioration inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5101095A JPH06308092A (en) 1993-04-27 1993-04-27 Material deterioration inspection device

Publications (1)

Publication Number Publication Date
JPH06308092A true JPH06308092A (en) 1994-11-04

Family

ID=14291539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5101095A Pending JPH06308092A (en) 1993-04-27 1993-04-27 Material deterioration inspection device

Country Status (1)

Country Link
JP (1) JPH06308092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257589A (en) * 2004-03-15 2005-09-22 Japan Atom Energy Res Inst Method for evaluating soundness in stainless steel for nuclear reactor
JP2007127508A (en) * 2005-11-02 2007-05-24 Tokyo Univ Of Science Nondestructive inspection method and nondestructive inspection device
WO2010002184A3 (en) * 2008-07-02 2010-05-06 한국표준과학연구원 Reversible permeability measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257589A (en) * 2004-03-15 2005-09-22 Japan Atom Energy Res Inst Method for evaluating soundness in stainless steel for nuclear reactor
JP2007127508A (en) * 2005-11-02 2007-05-24 Tokyo Univ Of Science Nondestructive inspection method and nondestructive inspection device
WO2010002184A3 (en) * 2008-07-02 2010-05-06 한국표준과학연구원 Reversible permeability measuring device
US8626470B2 (en) 2008-07-02 2014-01-07 Korea Research Institute Of Standards And Science Reversible permeability measuring device

Similar Documents

Publication Publication Date Title
JPS63502457A (en) Methods and apparatus for non-destructive material testing and magnetic structural material investigation
EP2360467A1 (en) Barkhausen noise inspection apparatus and inspection method
JP2004245815A (en) Nondestructive measuring method for aged deterioration of strength of austenitic stainless steel
Hayashi et al. Imaging of defect signal of reinforcing steel bar at high lift-off using a magnetic sensor array by unsaturated AC magnetic flux leakage testing
JP2766929B2 (en) Non-destructive inspection equipment
JP3639908B2 (en) Nondestructive measurement method for aging of ferromagnetic structural materials
EP1098194A2 (en) Nondestructive fatigue test method for ferromagnetic construction materials
JP3910222B2 (en) Fatigue measuring device
EP1267160B1 (en) Method for nondestructively determining aged deterioration accompanying change in brittleness of ferromagnetic construction materials
JPH06308092A (en) Material deterioration inspection device
JP2002277442A (en) Non-destructive inspection method and apparatus
JPH04221757A (en) Defect detecting device
JP2005127963A (en) Nondestructive inspection method and its apparatus
JPH06271926A (en) Non-destructive measuring method of depth of quench-hardened layer
Chady Evaluation of stress loaded steel samples using GMR magnetic field sensor
EP3118641A1 (en) An improved giant magneto-impedance (gmi) based sensing device for the detection of carburization in austenitic stainless steel
Uchanin et al. Eddy current method for evaluation of stresses in steel components
JPH01269049A (en) Method of inspecting deterioration of metallic material
JP4109114B2 (en) Detector for nondestructive evaluation of steel structures or components
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JP2008002859A (en) Non-destructive testing method of austenite stainless steel and its device
Dzhudzhev et al. Non-destructive Analysis of Ferromagnetic Materials by Means of Barkhausen Effect Methods
JP3889016B2 (en) Nondestructive detection method of high temperature fatigue damage area
JP3092837B2 (en) Magnetic head for detecting Barkhausen noise and detection system using the same
RU2807964C1 (en) Method for monitoring the mechanical properties of rolled metal made of ferromagnetic metal alloys and a device for its implementation

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050317

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050426

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

LAPS Cancellation because of no payment of annual fees