JPS59147236A - Lens eccentricity measuring apparatus - Google Patents

Lens eccentricity measuring apparatus

Info

Publication number
JPS59147236A
JPS59147236A JP1966683A JP1966683A JPS59147236A JP S59147236 A JPS59147236 A JP S59147236A JP 1966683 A JP1966683 A JP 1966683A JP 1966683 A JP1966683 A JP 1966683A JP S59147236 A JPS59147236 A JP S59147236A
Authority
JP
Japan
Prior art keywords
lens
light receiving
incident
inspected
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1966683A
Other languages
Japanese (ja)
Inventor
Mitsuhisa Fukuda
光久 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1966683A priority Critical patent/JPS59147236A/en
Publication of JPS59147236A publication Critical patent/JPS59147236A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/025Testing optical properties by measuring geometrical properties or aberrations by determining the shape of the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To contrive to enhance measuring preciseness, by electrically detecting the eccentric amount of a lens to be measured or a lens system by maniplying the same. CONSTITUTION:The laser beam from a laser oscillator 10 is reflected by a reflex mirror 11 and a lens 14 to be inspected is provided to the beam path of the reflected beam so that said beam is vertically incident to the surface of the lens 14 to be inspected in aligned relation to the beam axis. The beam permeated through the lens 14 is refracted by a prism 12 and received by a light receiving apparatus 12 while emitted to the direction different from the incident direction to detect an incident position. As the light receiving apparatus, CCD is suitable and, by precisely measuring the deviation of the incident positions of the laser beam to the light receiving apparatus when the lens 14 to be inspected is present and absent while converting each of said incident positions to the quantity of electricity, the eccentric amount of the lens to be inspected can be calculated with high accuracy.

Description

【発明の詳細な説明】 」幻り立方 この発明は光学レンズ又はレンズ系の光軸偏心測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a device for measuring optical axis eccentricity of an optical lens or lens system.

惺」U支l− 光学レンズ又はレンズ系の偏心は、光学系を持つ各種装
置の精度の低下をもたらす。従って、レンズの加工時及
びレンズ系組立時出来る丈偏心を取除くよう努力されて
いる。このレンズ及びレンズ系の偏心の測定には従来コ
リメータが使用されている。コリメータによるレンズ又
はレンズ系の偏心の測定は、第1図に示す如く、光源1
がら出た光線は集光レンズ2を介して標板3を照明し、
コリメーターレンズ4によって平行光線とされ被検レン
ズ5に入射される。被検レンズ5は光軸と垂直に設置さ
れ、光線は被検レンズ5の焦点6で結像して標鈑像が形
成される。この像を顕微鏡7によって観察して見えるよ
うに光軸に沿って顕微鏡7を調整する。次に被検レンズ
5を回転させて像6を移動させその移動量を測定する。
Decentering of an optical lens or lens system causes a decrease in the accuracy of various devices having an optical system. Therefore, efforts are being made to eliminate the eccentricity that occurs during lens processing and lens system assembly. A collimator has conventionally been used to measure the eccentricity of this lens and lens system. Measurement of eccentricity of a lens or lens system using a collimator is performed using a light source 1 as shown in FIG.
The light rays emitted from the glass illuminate the signboard 3 through the condensing lens 2,
The collimator lens 4 converts the light into parallel light beams, and the light beams enter the lens 5 to be examined. The lens 5 to be tested is installed perpendicular to the optical axis, and the light beam is focused at the focal point 6 of the lens 5 to be tested to form a target image. The microscope 7 is adjusted along the optical axis so that this image can be observed and seen using the microscope 7. Next, the lens 5 to be tested is rotated to move the image 6 and the amount of movement thereof is measured.

この移動量をlとし、被検レンズ5の焦点距離をfとす
ると、偏心量Sは S=t/2f の式で角度を読んで求める。
When this amount of movement is l and the focal length of the lens 5 to be tested is f, the eccentricity S is determined by reading the angle using the formula S=t/2f.

この方法ではレンズ焦点距離fに比して像の移動量tが
小さいため精度の高い偏心量測定は困難である。特に焦
点距離の短かいものについては、測定する変位りが小さ
くて顕微鏡による観測では精度が得られない◎ Jn この発明は、従来のコリメーターによるレンズ及びレン
ズ系の偏心測定精度の上述の実情にかんがみ、測定精度
を向上することの出来るレンズ偏心測定装置を提供する
ことを目的とする。
In this method, it is difficult to measure eccentricity with high accuracy because the amount of movement t of the image is small compared to the lens focal length f. In particular, for objects with short focal lengths, the displacement to be measured is small and accuracy cannot be obtained by observation with a microscope.◎ Jn This invention addresses the above-mentioned situation of accuracy in measuring eccentricity of lenses and lens systems using conventional collimators. In view of this, it is an object of the present invention to provide a lens eccentricity measuring device that can improve measurement accuracy.

監−國 以下、本発明をその実施例を示す図面にもとづいて詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to drawings showing embodiments thereof.

第2図は本発明の一実施例を示すものであって、測定用
光−源としてのレーザー発振器10、反射鏡11、プリ
ズム12、受光装置13がレーザi光線の光路に配設さ
れて構成されている。レーザー発振器10より発生した
レーザー光線は反射鏡11によって反射し、その反射光
線の光路に被検レンズ(又はレンズ系)14が、光線が
被検レンズ14の表面に垂直にかつ光軸に一致して入射
する如く設置される。被検レンズ14を透過した光線は
プリズム12によって屈折し、入射方向と異った方向に
射出し、この射出光線は、受光装置12により受光され
、受光装置への入射位置が検知される。
FIG. 2 shows an embodiment of the present invention, in which a laser oscillator 10 as a measurement light source, a reflecting mirror 11, a prism 12, and a light receiving device 13 are arranged in the optical path of the laser i beam. has been done. A laser beam generated by a laser oscillator 10 is reflected by a reflecting mirror 11, and a test lens (or lens system) 14 is placed in the optical path of the reflected light beam so that the light beam is perpendicular to the surface of the test lens 14 and coincides with the optical axis. It is installed so that it is incident. The light beam transmitted through the test lens 14 is refracted by the prism 12 and emitted in a direction different from the direction of incidence. This emitted light beam is received by the light receiving device 12, and the position of incidence on the light receiving device is detected.

受光装置としては例えばCCp等が適当であり、電気量
に置換して被検レンズ14のある場合と、被検レンズ1
4のない場合のレーザー光線の受光装置への入射位置の
偏差分精密に計測すること□により、被検レンズの偏心
量を高精度に求めることができる。
For example, a CCp or the like is suitable as the light receiving device.
By accurately measuring the deviation of the incident position of the laser beam onto the light receiving device in the case where 4 is not present, the amount of eccentricity of the lens to be tested can be determined with high precision.

以下にその原理を詳細に説明する。The principle will be explained in detail below.

第3図は本発明の偏心測定装置の被検レンズ14プリズ
ム12、及び受光部13の付近のレーザー光線の光路を
図式的に示す図てあって、被検レンズ14がない場合あ
るいはあっても偏心が皆無の場合、プリズム12の第1
面12a  KA点で入射し、屈折して第2面12b 
 を0点から出射して受光部+1i13(7q面にE点
で入射する。
FIG. 3 schematically shows the optical path of the laser beam in the vicinity of the test lens 14, prism 12, and light receiving unit 13 of the eccentricity measuring device of the present invention. If there is no
It enters the surface 12a at the KA point, is refracted and becomes the second surface 12b.
is emitted from point 0 and enters the light receiving section +1i13 (7q plane) at point E.

−力、偏心量(角)εの被検レンズから出たレーザー光
線は、プリズム12の第1面12aKB点で入射し、屈
折して第2面12b  より0点で出射し屈折して受光
装置13の面にF点で入射する。
- A laser beam emitted from the lens to be tested with force and eccentricity (angle) ε enters the first surface 12aKB point of the prism 12, is refracted, exits from the second surface 12b at the 0 point, is refracted, and is refracted into the light receiving device 13. is incident on the surface at point F.

今、第4図において、プリズム12の頂角をα、ある光
線の第1面への入射角をθ、とし、入射後の屈折角をθ
1′、第2面への入射角を02′、射出角をθ2とする
と、スイ・ルの法則より、sin θ、  = n s
in θ(−・・−(1)sin θ2 ”n8inθ
2′   ・・・・・・(2)但しnはプリズムの利料
の空気に対する屈折率である。
Now, in FIG. 4, the apex angle of the prism 12 is α, the incident angle of a certain ray on the first surface is θ, and the refraction angle after incidence is θ.
1', the incident angle to the second surface is 02', and the exit angle is θ2. According to Suille's law, sin θ, = n s
in θ(-・・-(1) sin θ2 ”n8inθ
2' (2) where n is the refractive index of the prism with respect to air.

、−1sinθ1 (1)式より  θ、’= Sin  ()   =・
・(3)第4図において、光線の第1面への入射点を0
1第2面からの出射点をH1プリズムの頂点を1、G点
及び1点で夫々第1面、第2図に立てた垂線の交点をJ
とすれば、 乙HGJ−θ、’ 、  1GHJ=θ2/、1GIH
−α1IGJ=LR、LIHJ=lR 1、θ、′+θ ′=α −0,02’ ”’ ct ++ 01 ’     
       ・・・・・・(4)(2)式に(4)式
を代入干れば sin  θt=n  sin  (a−θ、′)之に
(3)式を代入すれば 、′、θ2=sin”−1(n 5in(α−8i、T
I (Bin−θ’ ) ) )・f61プリズムの頂
角α、屈折inは一定であるから、7θ1からθ2を求
めることができる。
, -1sinθ1 From equation (1), θ,'= Sin () =・
・(3) In Figure 4, the point of incidence of the ray on the first surface is set to 0.
1 The exit point from the second surface is H1, the vertex of the prism is 1, and the intersection of the perpendicular lines erected at point G and point 1 on the first surface and Figure 2, respectively, is J.
Then, OtsuHGJ−θ,', 1GHJ=θ2/, 1GIH
-α1IGJ=LR, LIHJ=lR 1, θ,'+θ'=α -0,02'”' ct ++ 01'
・・・・・・(4) Substituting equation (4) into equation (2), sin θt=n sin Substituting equation (3) into (a-θ,′),′, θ2= sin”-1(n 5in(α-8i, T
Since the apex angle α and the refraction in of the I (Bin-θ′) )·f61 prism are constant, θ2 can be determined from 7θ1.

次にθ1とεだけ角度差をもつ入射角θ1.で゛このプ
リズムの第1面に入射した光線の第2面からの射出角を
021とすれば(6)式より θ、1=sin−’(n 5in(α−5in−’(己
・))〕・・・(7)入射角θ1とθ1.の角度差はε
であるから0 エ ε+θ、。
Next, the incident angle θ1 has an angular difference between θ1 and ε. If the exit angle from the second surface of the ray incident on the first surface of this prism is 021, then from equation (6), θ, 1=sin-'(n 5in(α-5in-'(self) )]...(7) The angular difference between the incident angles θ1 and θ1. is ε
Therefore, 0 ε + θ.

こ\で01を前記の級検レンズのない場合のプリズムへ
の入射角とすれば、εは前述のレンズの偏心量(角)に
相当する。
Here, if 01 is the angle of incidence on the prism without the above-mentioned inspection lens, ε corresponds to the eccentricity (angle) of the above-mentioned lens.

θ = θ −ε  ヲ(7)式に代入すると、11 
      1 θ21 =sinl (n 5in(α−5ir(””
’−’))〕・・・(s)となる。故に(6)式と(8
)式より 一5in”(n s in[α−s 1nH−’(m’
) ) ]θ、−021=δとすると、δとεとの関係
は上式より となりδが判ればεが求まる。
Substituting θ = θ −ε into equation (7), we get 11
1 θ21 = sinl (n 5in(α−5ir(””
'-'))]...(s). Therefore, equation (6) and (8
) From the formula, 15in”(n s in[α-s 1nH-'(m'
) ) ] θ, −021=δ, the relationship between δ and ε is from the above equation, and if δ is known, ε can be found.

入射角01を小さくすると、(5)式すなわちsinθ
2=n 5in(α−s i n−’ (己) 1より
θ2は大きくなる。
When the angle of incidence 01 is made small, equation (5), that is, sin θ
2=n 5in (α-s in-' (self) θ2 becomes larger than 1.

従ってθとεの関係も同様に01を小さくして求めると
6とδの比も犬きくなり、εの値を拡大して精歴高く求
めることができる。
Therefore, if the relationship between θ and ε is similarly determined by reducing 01, the ratio between 6 and δ will also become smaller, and a higher precision can be obtained by expanding the value of ε.

父、2個のプリズムを被検レンズと受光装置との間に設
けることにより、被検レンズの偏心ケより大きく拡大し
て測定することができる。
By providing two prisms between the lens to be tested and the light receiving device, measurements can be made with greater magnification than the eccentricity of the lens to be tested.

又、第5図に示す如く、プリズム15の第1面15a 
 に対向する面15bをミラーにし、第1面15aより
射出させると射出角θ2を太きくすることができる。さ
らに第6図に示す如く、このミラー付きプリズム15を
2個使用することにより更に射出角θ2を大きくするこ
とが可能となる。
Further, as shown in FIG. 5, the first surface 15a of the prism 15
If the surface 15b facing the surface 15b is made a mirror and the light is emitted from the first surface 15a, the emission angle θ2 can be increased. Furthermore, as shown in FIG. 6, by using two of these mirrored prisms 15, it is possible to further increase the exit angle θ2.

父、装置の配置^1の必要に応じて、第7図に示す如く
、被検レンズ14とプリズム14との間に反   ゛射
鏡16を設けることも可能である。
Depending on the necessity of the arrangement of the apparatus, it is also possible to provide a reflecting mirror 16 between the lens to be examined 14 and the prism 14, as shown in FIG.

効  果 以上の如く、本発明によれば被測定レンズ又はレンズ系
の偏心量を拡大して電気的に精密に測定することができ
るので光学系を用いた機器の性能向上に効果が得られる
Effects As described above, according to the present invention, the amount of eccentricity of the lens or lens system to be measured can be expanded and electrically precisely measured, which is effective in improving the performance of equipment using optical systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレンズ偏心測定装置の1例を示す断面図
、第2図は本発明の実施例を示す断面図、第3図は本発
明の装置の被検レンズ以降の光路を示す図式図、第4図
は本発明の詳細な説明するための図式図、第5図乃至第
7図は夫々本発明の他の実施例のプリズム周辺部分を示
す断面図である。 10・・・レーザー発振器
FIG. 1 is a sectional view showing an example of a conventional lens eccentricity measuring device, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIG. 3 is a diagram showing the optical path after the test lens of the device of the present invention. 4 are schematic diagrams for explaining the present invention in detail, and FIGS. 5 to 7 are sectional views showing the peripheral portions of prisms of other embodiments of the present invention. 10... Laser oscillator

Claims (1)

【特許請求の範囲】[Claims] レーザー発振器と、これより発射されたレーザー光線の
光路に設けられたプリズムと受光装置とを有し、上記レ
ーザー光線が被測定光学レンズ又はレンズ系の表面に垂
直にかつ光軸に一致して入射する如く被測定光学レンズ
又はレンズ系を設置し、これを透過したレーザー光線を
プリズムに入射させ、その出射光線の上記受光装置への
入射位置を該受光装置で検知し、上記被検光学レンズ又
はレンズ系のない時のその位置との偏差より被検光学レ
ンズ又はレンズ系の光軸偏心を測定するようにしたこと
を特徴とするレンズ偏心測定装置。
It has a laser oscillator, a prism provided in the optical path of the laser beam emitted from the laser oscillator, and a light receiving device, such that the laser beam is incident perpendicularly to the surface of the optical lens or lens system to be measured and coincident with the optical axis. An optical lens or lens system to be measured is installed, a laser beam that has passed through it is made incident on a prism, and the light receiving device detects the position of incidence of the emitted light beam on the above-mentioned light receiving device. 1. A lens eccentricity measuring device, characterized in that the optical axis eccentricity of a test optical lens or lens system is measured from the deviation from the position when the optical lens is not in use.
JP1966683A 1983-02-10 1983-02-10 Lens eccentricity measuring apparatus Pending JPS59147236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1966683A JPS59147236A (en) 1983-02-10 1983-02-10 Lens eccentricity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1966683A JPS59147236A (en) 1983-02-10 1983-02-10 Lens eccentricity measuring apparatus

Publications (1)

Publication Number Publication Date
JPS59147236A true JPS59147236A (en) 1984-08-23

Family

ID=12005559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1966683A Pending JPS59147236A (en) 1983-02-10 1983-02-10 Lens eccentricity measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59147236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244221A (en) * 1987-03-31 1988-10-11 Nec Corp Disk controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244221A (en) * 1987-03-31 1988-10-11 Nec Corp Disk controller

Similar Documents

Publication Publication Date Title
US7298468B2 (en) Method and measuring device for contactless measurement of angles or angle changes on objects
JP2752003B2 (en) Inspection interferometer with scanning function
CN100451540C (en) Device for detecting three-axle parallel of large photoelectric monitoring equipment using thermal target technology
KR920009800B1 (en) Curvature radius measuring method and device
CA1302700C (en) Method and apparatus for optical distance measurement
JPS6347606A (en) Apparatus for measuring shape of non-spherical surface
US4810895A (en) Method and apparatus for optical examination of an object particularly by moire ray deflection mapping
RU2697436C1 (en) Method for angular reflector angular parameters measurement and device for its implementation
US4425041A (en) Measuring apparatus
JPH06508218A (en) Deflection type optical device with wide measurement range
JPS59147236A (en) Lens eccentricity measuring apparatus
US4595288A (en) Method and apparatus for measuring deep mirrors
JP2002048673A (en) Physical quantity measuring method of optical element or optical system
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JP2000205998A (en) Reflection eccentricity measuring apparatus
JPH0471453B2 (en)
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
CN116678331B (en) Laser thickness measuring instrument
JP3164444B2 (en) Interference measurement method
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
CN117367323A (en) Spatial rotation angle detection device and method
JPS60211304A (en) Measuring instrument for parallelism
JP3373552B2 (en) Method for analyzing alignment of reflection objective lens and method for adjusting reflection objective lens
KR20000053759A (en) Potable Nondestructive and Noncontact Optical Measurement System
JPH08166209A (en) Polygon mirror evaluating device