KR20000053759A - Potable Nondestructive and Noncontact Optical Measurement System - Google Patents
Potable Nondestructive and Noncontact Optical Measurement System Download PDFInfo
- Publication number
- KR20000053759A KR20000053759A KR1020000016703A KR20000016703A KR20000053759A KR 20000053759 A KR20000053759 A KR 20000053759A KR 1020000016703 A KR1020000016703 A KR 1020000016703A KR 20000016703 A KR20000016703 A KR 20000016703A KR 20000053759 A KR20000053759 A KR 20000053759A
- Authority
- KR
- South Korea
- Prior art keywords
- light
- mirror
- optical
- rays
- destructive
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/026—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
본 발명은 광계측기에 관한 것으로, 보다 상세히는 대상물의 변형의 정도나 결함의 검출을 하는 방법으로서 보다 정밀한 결과를 획득하고 이를 이동이 가능한 수단으로 하는 휴대용 비파괴 비접촉 광계측기에 관한 것이다.TECHNICAL FIELD The present invention relates to a photometer, and more particularly, to a portable non-destructive non-contact photometer as a method of detecting the degree of deformation or a defect of an object and obtaining a more accurate result and moving it.
현재의 과학기술 발달의 추세는 소형화, 고정밀화 등으로 대별되며, 사용자가 사용의 편리성을 갖춘 장비가 요구된다. 이러한 목적의 장비들이 지속적으로 개발되는데 방사선투과검사, 자분탐상검사, 침투탐상검사 등은 세심한 주의를 하지 않으면 인체 또는 대상물에 치명적인 손상을 일으킬 수 있으며, 압력용기나 복합재에 발생한 결함 및 변형의 정도를 검출하는 방법은 기존의 검사 방법으로도 가능하나 원자로 압력용기내의 미세한 기공이나 균열, 항공기의 동체나 날개에 사용된 복합재가 얇은 조각으로 갈라지는 현상인 박리(delamination), 새와 같은 부드러운 물체의 충격에 의한 손상 정도 등의 검출 등에는 어려움이 있으며, 측정의 정밀도 또한 밀리미터단위로 제한을 받는다. 이러한 이유로 레이저 광을 이용하는 방법이 개발되었는데 미국특허 5,920,017에 따르면 유동 온도 지시 코팅을 이용한 잔류응력을 측정하는 방법이 개발되었다. 이 방법은 대상물의 잔류응력을 쉽게 가시화하 수 있지만 이 방법은 대상물에 코팅을 해야하는 단점이 있다. 또한 미국 특허 5,419,405에 따르면 펄스레이저를 이용하여 대상물의 진동특성을 해석하는 방법을 개발하였는데 이는 진동특성을 정밀하게 측정할 수 있으나 고가의 펄스레이저를 사용해야 한다. 따라서 검사대상의 형상, 주변조건에 제한을 받지 않으며 마이크로미터단위의 고정밀도로 대상물의 변형 정도를 측정하고, 통상 사용되는 연속 레이저를 사용하여 사용자가 이를 쉽게 이해할 수 있도록하는 비접촉에 의한 방법이 필요하다.Current trends in science and technology development are largely classified into miniaturization and high precision, and require equipment with user convenience. Equipment for this purpose is continuously developed. Radiography, magnetic particle inspection, penetration inspection, etc., can cause fatal damage to the human body or the object without careful attention, and to determine the degree of defects and deformations in the pressure vessel or composite. The detection method can be performed by conventional inspection methods, but it can be applied to fine pores and cracks in the reactor pressure vessel, to delamination, which is a phenomenon in which the composite used in the fuselage or wing of the aircraft is broken into thin pieces, and to the impact of a soft object such as a bird. There is a difficulty in the detection of the degree of damage and the like, and the accuracy of the measurement is also limited in millimeters. For this reason, a method using laser light has been developed. According to US Pat. No. 5,920,017, a method of measuring residual stress using a flow temperature indicating coating has been developed. This method can easily visualize the residual stress of the object, but this method has the disadvantage of coating the object. In addition, according to US Pat. No. 5,419,405, a method of analyzing vibration characteristics of an object using a pulse laser has been developed, which can accurately measure vibration characteristics, but an expensive pulse laser must be used. Therefore, there is a need for a non-contact method that can be used to measure the degree of deformation of an object with a high precision in micrometers and can be easily understood by a user using a continuous laser. .
본 발명은 상기한 바와 같은 문제점에서 착안하여 제안된 것으로, 그 목적은 대상물의 변형의 정보나 결함의 정보를 비파괴 비접촉식으로 측정하며, 사용자로 하여금 사용이 편리하고 이동이 가능하게 하는 휴대용 비파괴 비접촉 광계측기를 제공하고자 하는 것이다.SUMMARY OF THE INVENTION The present invention has been proposed in view of the above problems, and its object is to carry out non-destructive contactless measurement of deformation information or defect information of an object, and to allow a user to use and move a non-destructive contactless light. To provide a meter.
본 발명의 특징에 따르면, 광자를 이용하는 방법으로서 레이저의 여러 가지 특성 중 가간섭성, 직진성 등을 이용하며, 또한 컴퓨터 기술의 발달로 이미지의 실시간 처리가 가능하여 현장에서 실시간으로 결과의 출력이 가능하다. 레이저로부터 광을 유도하는 광유도 케이블과 케이블 고정장치와; 광을 물체광과 참조광으로 분배하는 광분리기와; 광을 확산시키기 위한 광확산기와; 대상물에 광을 확산하면서 직접 조사하는 오목거울설치 아암과; 물체광과 참조광의 변위정보를 받아들이는 렌즈가 부착된 카메라와; 카메라의 촬영을 조절하는 제어부가 포함되어 구성된 것을 특징으로 하는 휴대용 비파괴 비접촉 광계측기가 제공된다.According to the characteristics of the present invention, as a method of using photons, it uses coherence, straightness, and the like among various characteristics of the laser, and furthermore, the development of computer technology enables real-time processing of the image, which enables real-time output of the result in the field. Do. A light guide cable and a cable anchor for guiding light from the laser; An optical separator for distributing the light into the object light and the reference light; A light diffuser for diffusing light; A concave mirror mounting arm for direct irradiation while diffusing light onto the object; A camera with a lens for receiving displacement information of the object light and the reference light; A portable non-destructive non-contact photometer is provided that includes a control unit for adjusting the photographing of the camera.
도 1은 본 발명의 휴대용 비파괴 비접촉 광계측기를 나타낸 사시도1 is a perspective view showing a portable non-destructive non-contact photometer of the present invention
도 2는 본 발명의 주요부인 광확산용 오목거울과 아암의 평면도Figure 2 is a plan view of the light diffusion concave mirror and the arm of the present invention
도 3은 계측장치와 화상처리 장치 및 위상이동 제어장치 구성도3 is a block diagram of a measuring device, an image processing device, and a phase shift control device;
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100 : 광유도 케이블 110 : 광유도 케이블 고정장치100: light guide cable 110: light guide cable fixing device
120 : 입출력 단자 및 케이블 120' : 입출력 단자 및 케이블120: input / output terminal and cable 120 ': input / output terminal and cable
200 : 편광기능 광분배기 200' : 편광기능 광분배기200: polarization function optical splitter 200 ': polarization function optical splitter
210 : 광결합기 220 : 거울210: optical coupler 220: mirror
220' : 거울 230 : 광확산용 렌즈220 ': Mirror 230: Lens for light diffusion
230' : 광확산용 렌즈 240 : 반사광 수광창230 ': Light diffusion lens 240: Reflected light receiving window
300 : 압전소자 거울 310 : 광확산기300: piezoelectric element mirror 310: light diffuser
320 : 광 검출기 330 : 씨씨디 카메라320: light detector 330: CD camera
400 : 광조사방향 조절나사 410 : 광확산용 오목거울400: light irradiation direction adjustment screw 410: light diffusion concave mirror
420 : 외장결합용 아암420: arm for external bonding
이하 본 발명인 휴대용 비파괴 비접촉 광계측기를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the portable non-destructive non-contact photometer of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명인 휴대용 비파괴 비접촉 광계측기를 나타낸 사시도이고,1 is a perspective view showing a portable non-destructive non-contact photometer of the present invention,
도 2는 본 발명의 주요부인 광확산용 오목거울과 아암의 평면도이다.2 is a plan view of a light diffusion concave mirror and an arm, which is an essential part of the present invention.
도시한 바와 같이 본 발며의 실시예에 따른 휴대용 비파고 비접촉 광계측기는 레이저 광이 유도되는 광유도 케이블(100)과, 광유도 케이블을 외장에 결합하는 광유도 케이블 고정장치(110)와, 유도된 레이저 광을 분배하는 광분배기(200)(200')와, 분배된 광을 반사하는 거울(220)(220')과, 거울에서 반사된 광을 확산시켜주는 광확산용 렌즈(230)(230')와, 확산된 광을 2차확산하는 광확산용 오목거울(410)과, 확산된 관의 조사방향을 조절하는 광조사방향 조절나사(400)와, 오목거울(410)을 본체에 고정하는 아암(420)과, 레이저 광의 위상의 변화를 조절하는 압전소자 거울(300)과, 면외 변위계측시에 본체 내부에서 광을 확산하는 광확산기(310)와, 레이저광량을 검출하는 광검출기(320)와, 반사광 수광창(240)을 통하여 광결합기(210)에서 결합된 광에 대한 이미지를 결상하는 씨씨디 카메라(330)로 구성된 것으로, 상기 광확산용 오목거울(410)에서 광을 조사하여 대상물에 손상을 주지 않고 비파괴 비접촉으로 대상물의 변형의 정보 또는 결함을 정보를 반사광 수광창(240)을 통하여, 씨씨디 카메라(330)에 결상된 이미지를 화상처리를 통하여 실시간으로 얻을 수 있도록 구성되어 있다.As shown, the portable non-wavelength non-contact photometer according to the embodiment of the present invention includes a light guide cable 100 through which laser light is guided, a light guide cable fixing device 110 that couples the light guide cable to the exterior, and guidance. A light splitter (200, 200 ') for distributing the laser light, a mirror (220) (220') for reflecting the distributed light, and a light diffusion lens (230) for diffusing the light reflected from the mirror ( 230 '), a light diffusion concave mirror 410 for second-diffusion of the diffused light, a light irradiation direction adjusting screw 400 for adjusting the irradiation direction of the diffused tube, and a concave mirror 410 to the main body. An arm 420 to be fixed, a piezoelectric element mirror 300 for adjusting a change in the phase of the laser light, a light diffuser 310 for diffusing light inside the body during out-of-plane displacement measurement, and a light detector for detecting the amount of laser light And an image of the light coupled by the optical coupler 210 through the reflected light receiving window 240. It consists of a CD camera 330, the light diffusing concave mirror 410 is irradiated with light to the non-destructive and non-destructive contact information of the object without damaging the object to reflect the light receiving window 240 Through this, the image formed in the CD camera 330 is configured to be obtained in real time through image processing.
상기 광유도 케이블(100)은 광유도 케이블 고정장치(110)에 의하여 본체에 고정되며, 광분배기(200)(200') 및 거울(220)(220'), 광확산용 렌즈(230)(230')는 광유도 케이블(100)의 높이와 중심이 일치하도록 고정되며, 압전소자 거울(300)과 광검출기(320)는 수광부의 중심이 광의 중심과 일치하도록 고정되며, 광확산기(310)는 바늘구멍에 광이 통과하도록 중심에 정확이 일치하도록 구성되며, 본체에 고정되는 아암(420)에 부착되어 있는 광확산용 오목거울(410)은 광조사방향 조절나사(400)로 조절이 가능하도록 되어있으며, 대상물에 광이 반사하여 수광되는 반사광 수광창(240)은 반사광의 광량을 감소시키지 않는 투명한 재료로 되어있으며 먼지와 이물의 침투를 방지하도록 본체에 접착되어 있으며, 수광된 광으로 이미지를 결상하는 씨씨디 카메라(330)은 외부진동에 둔감하도록 구성되어있다.The optical induction cable 100 is fixed to the main body by the optical induction cable fixing device 110, optical distributors 200, 200 'and mirrors 220, 220', light diffusion lens 230 ( 230 ') is fixed to coincide with the height and center of the light induction cable 100, the piezoelectric element mirror 300 and the photodetector 320 is fixed so that the center of the light receiving unit coincides with the center of the light, the light diffuser 310 Is configured to be exactly matched to the center so that light passes through the needle hole, the light diffusion concave mirror 410 attached to the arm 420 is fixed to the main body can be adjusted by the light irradiation direction adjustment screw 400 Reflected light receiving window 240 that is received by reflecting light to the object is made of a transparent material that does not reduce the amount of reflected light and is adhered to the main body to prevent the penetration of dust and foreign objects, the image by the received light CD camera 330 to form an image is placed in the external vibration To consist.
이와 같이 구성된 본 발명이 휴대용 비파고 비접촉 광계측기는 작용은 다음과 같다. 광유도 케이블(100)에서 유도된 광은 광분배기(200)에서 둘로 분배되고, 둘로 분배된 광중에서 직진하는 광은 거울(220')과 광확산용 렌즈(230')를 통하여 1차확산되고 광확산용 오목거울(410)을 통하여 2차확산되며 대상물에 조사된다. 둘로 분배된 광중에서 다른 하나는 거울(220)과 광분배기(200')를 통하여 2차분배되며 압전소자 거울(300)에서 위상변화에 대한 정보를 입출력 케이블 및 단자(120')를 통하여 컴퓨터에 입력되며, 다른 분배광은 면내 변위 측정시 3차 광분배기를 통하여 광검출기(320)에서 광량을 측정하며, 다른 하나는 거울(220')과 광확산용 렌즈(230'), 광확산용 오목거울(410)을 통하여 대상물에 조사된다. 면외 번위를 측정할 때는 3차 광분배기(200')를 통과과 광이 4차 분배기(200')를 통하여 광확산기(310)의 바늘구멍을 통하여 광이 확산되며 거울(220')을 통하여 광결합기(210)로 입력된다. 면내 변위 정보나 면외 변위 정보 모두 광을 결합한 상태에서 씨씨디 카메라(330)에 수광되어 결상되고 결상된 이미지를 컴퓨터에서 저장한다.The portable non-wavelength non-contact photometer of the present invention configured as described above has the following functions. The light guided by the light guide cable 100 is distributed in two in the optical splitter 200, and the light traveling straight through the light split in two is first diffused through the mirror 220 'and the light diffusion lens 230'. Secondary diffusion through the light diffusion concave mirror 410 is irradiated to the object. The other of the light divided into two is secondly distributed through the mirror 220 and the optical splitter 200 'and the information about the phase change in the piezoelectric element mirror 300 to the computer through the input / output cable and the terminal 120'. The other split light measures the amount of light from the photodetector 320 through the tertiary light splitter in the in-plane displacement measurement, and the other is the mirror 220 ', the light diffusing lens 230' and the light diffusing concave. The object is irradiated through the mirror 410. When measuring the out-of-plane displacement, the light passes through the third optical splitter 200 'and the light diffuses through the needle hole of the light diffuser 310 through the fourth splitter 200' and the optical combiner through the mirror 220 '. Inputted at 210. Both in-plane displacement information and out-of-plane displacement information are received by the CD camera 330 in the state in which light is combined, and an image formed by the image is stored in the computer.
[실시예]EXAMPLE
도 5는 본 발명인 휴대용 비파괴 비접촉 광계측기에 의해 도 4와 같은 맞대기 용접부의 기계적 거동 중 용접부의 변형율을 보여주고 있으며 도 5의 줄무늬는 용접에 나타나는 변형율의 분포 및 응력의 분포를 가시적으로 보여준다. 도 7과 도 8은 본 발명에 의해 도 6과 같은 볼트 체결부의 기계적 거동해석의 결과를 정량화된 3차원 변형율그래프로 보여주고 있으며 도 7은 도 6의 정량화된 3차원변형율을 나타내며 도 8은 변형률분포와 변형 전의 실제 사진을 합성하여 보여준다.FIG. 5 shows the strain of the welded part during the mechanical behavior of the butt welded part as shown in FIG. 4 by the portable non-destructive non-contact photometer of the present invention, and the stripes of FIG. 7 and 8 show the results of the mechanical behavior analysis of the bolt fastening as shown in Figure 6 by the present invention in a quantified three-dimensional strain graph, Figure 7 shows the quantified three-dimensional strain of Figure 6 and Figure 8 shows the strain Synthesize and show real photos before distribution.
본 발명의 광자를 직접 이용하므로 간섭성, 직진성, 집속성이 우수하여 초고온, 초저온, 다습, 방사선, 고전압, 고전류 등의 열악한 환경에 있는 대상물에도 적용이 가능하며, 대상물의 형상이 복잡하거나, 접촉을 할 수 없는 연질의 대상물도 측정이 가능하다. 또한 컴퓨터 기술의 발달과 화상처리 기법의 향상으로 측정결과를 현장에서 실시간으로 출력할 수 있다. 또한 검사 또는 계측을 위하여 전처리가 필요하지 않으며, 검사결과의 출력이 이미지로 나타나기 때문에 비전문가도 그 결과를 쉽게 이해할 수 있다. 검사결과의 정밀도는 마이크로 단위의 측정이 가능하며, 대상물을 부분 측정하여 전체영역에 이용하는 방법과는 달리 대상물 전영역을 동시에 검사 계측할 수 있다. 또한 대상물을 비접촉하여 검사 계측을 실시하였으므로 대상물자체에 대한 후처리가 필요하지 않다.By directly using the photon of the present invention, it is excellent in coherence, straightness, and focusing properties, so that it can be applied to an object in a harsh environment such as ultra high temperature, ultra low temperature, high humidity, radiation, high voltage, high current, etc. Soft objects that cannot be measured can also be measured. In addition, with the development of computer technology and the improvement of image processing technique, the measurement results can be output in real time in the field. In addition, no preprocessing is required for inspection or measurement, and the output of the test results is displayed as an image so that non-experts can easily understand the results. The precision of the inspection result can be measured in micro units, and unlike the method of partially measuring the object and using the entire area, the entire object area can be measured and measured simultaneously. In addition, the inspection measurement was performed by contacting the object without the need for post-processing on the object itself.
이러한 휴대용 비접촉 비파괴 광계측기는 계측의 산업 전반에 대한 응용범위가 넓다. 전자제품의 제조라인 상에서 제품의 품질 수준의 향상, 철교 및 철탑과 같은 구조물의 결함 측정 및 수명예측, 공작기계의 변형해석 및 안전진단에 이용 가능하다.These portable non-contact, non-destructive photometers have a wide range of applications throughout the industry of metrology. It can be used to improve the quality of products on the manufacturing line of electronic products, to measure and predict the life of structures such as steel bridges and steel towers, to analyze the deformation of machine tools and to diagnose safety.
또한 제작된 시작품의 형상을 측정하여 원형제품과 비교하고 제품의 생산공정 라인에서 신제품의 품질검사에 이용하므로 제품의 생산에 있어서 시간적 경제적 인적자원의 효율적 이용이 가능, 측정에 대한 선행처리 및 검사후 처리가 간단하여 비전문가도 사용이 가능한 계측시스템의 구축가능, 대형 구조물(교량, 철탑)의 상시 안전 진단 감시 시스템의 운용이 가능하다. 현재 레이저를 이용한 응용 계측 기술은 레이저 가공 기술과 접목되어 레이저를 이용한 생산기술의 효율성을 재래 방법에 비해 접합, 절단의 신뢰성이 크게 향상될 뿐만 아니라 신소재의 성분분석이나 복합재로 구성된 제품의 결함 검출이 용이하게 되는 등 생산분야에서 새로운 기술혁신을 유발한다.In addition, the shape of the manufactured prototype is measured and compared with the prototype product, and used for quality inspection of new products in the production process line of the product, enabling efficient use of time and economic human resources in the production of the product. It is possible to construct a measurement system that can be used by non-experts because of its simple processing, and to operate a constant safety diagnosis monitoring system for large structures (bridges, steel towers). Currently, application measurement technology using laser is combined with laser processing technology, which greatly improves the reliability of joining and cutting compared to conventional methods, and improves component analysis of new materials and defect detection of products composed of composite materials. To facilitate new technological innovations in the field of production.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000016703A KR100344344B1 (en) | 2000-03-30 | 2000-03-30 | Potable Nondestructive and Noncontact Optical Measurement System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020000016703A KR100344344B1 (en) | 2000-03-30 | 2000-03-30 | Potable Nondestructive and Noncontact Optical Measurement System |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000053759A true KR20000053759A (en) | 2000-09-05 |
KR100344344B1 KR100344344B1 (en) | 2002-07-20 |
Family
ID=19660431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000016703A KR100344344B1 (en) | 2000-03-30 | 2000-03-30 | Potable Nondestructive and Noncontact Optical Measurement System |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100344344B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020023861A (en) * | 2001-12-24 | 2002-03-29 | 장호섭 | The Potable Nondestructive and Noncontact Laser Measurement System for Simultaneous Measurement of the Defect and Deformation |
KR100490940B1 (en) * | 2001-12-24 | 2005-05-23 | 학교법인조선대학교 | The Potable Nondestructive and Noncontact Laser Measurement System for Simultaneous Measurement of the Deformation and 3-D Shape |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101281582B1 (en) * | 2010-11-12 | 2013-07-03 | 한국과학기술원 | Noncontact imaging method for nondestructive testing |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0420805A (en) * | 1990-05-16 | 1992-01-24 | Mitsubishi Heavy Ind Ltd | Measuring apparatus for laser speckle displacement |
JP3353365B2 (en) * | 1993-03-18 | 2002-12-03 | 静岡大学長 | Displacement and displacement velocity measuring device |
-
2000
- 2000-03-30 KR KR1020000016703A patent/KR100344344B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020023861A (en) * | 2001-12-24 | 2002-03-29 | 장호섭 | The Potable Nondestructive and Noncontact Laser Measurement System for Simultaneous Measurement of the Defect and Deformation |
KR100490940B1 (en) * | 2001-12-24 | 2005-05-23 | 학교법인조선대학교 | The Potable Nondestructive and Noncontact Laser Measurement System for Simultaneous Measurement of the Deformation and 3-D Shape |
Also Published As
Publication number | Publication date |
---|---|
KR100344344B1 (en) | 2002-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI486550B (en) | An Optical Interferometry Based On-Line Real-Time Thickness Measurement Apparatus and Method Thereof | |
EP2538170A1 (en) | Method and device for measuring multiple parameters of differential confocal interference component | |
RU2670809C2 (en) | Surface roughness measurement device | |
CN109916909A (en) | The detection method and its device of optical element surface pattern and subsurface defect information | |
JPS5965708A (en) | Sonde for automatic surface inspection | |
CN109975820A (en) | Synchronization polarization phase-shifting focus detection system based on Linnik type interference microscope | |
CN203745385U (en) | Laser ultrasonic optical interference detection device | |
CN111288902B (en) | Double-field-of-view optical coherence tomography imaging system and material thickness detection method | |
JPH08304229A (en) | Method and instrument for measuring refractive index distribution of optical element | |
CN103123251B (en) | Differential confocal internal focusing method lens axis and method for measuring thickness | |
US4275966A (en) | Method and apparatus for the measurement of hardness testing indentations | |
US4788866A (en) | Method and apparatus for visualizing ultrasonic waves in liquid-solid systems | |
Zechel et al. | Optical coherence tomography for non-destructive testing | |
KR100344344B1 (en) | Potable Nondestructive and Noncontact Optical Measurement System | |
US4703918A (en) | Apparatus for determination of elastic isodynes and of the general state of birefringence whole field-wise using the device for birefringence measurements in a scanning mode (isodyne polariscope) | |
US6449049B1 (en) | Profiling of aspheric surfaces using liquid crystal compensatory interferometry | |
JP3423486B2 (en) | Method and apparatus for measuring refractive index distribution of optical element | |
Wallhead et al. | Optimisation of the optical method of caustics for the determination of stress intensity factors | |
CN2921828Y (en) | Optical imaging system and optical detecting system with the same optical imaging system | |
CN106403829A (en) | Dual-optical path infrared reflection method-based coating thickness gauge | |
KR200291821Y1 (en) | The potable nondestructive and noncontact laser measurement system for simultaneous measurement of the defect and deformation | |
KR101538908B1 (en) | Safety monitoring system of nuclear equipment with intergrating system of laser ultrasonic and shearography | |
JP3920713B2 (en) | Optical displacement measuring device | |
CN116879232B (en) | Internal defect visual monitoring device and method based on chromatographic strain measurement | |
KR20020023861A (en) | The Potable Nondestructive and Noncontact Laser Measurement System for Simultaneous Measurement of the Defect and Deformation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130103 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |