JPS59147033A - Reinforced heat-conductive resin - Google Patents

Reinforced heat-conductive resin

Info

Publication number
JPS59147033A
JPS59147033A JP2232283A JP2232283A JPS59147033A JP S59147033 A JPS59147033 A JP S59147033A JP 2232283 A JP2232283 A JP 2232283A JP 2232283 A JP2232283 A JP 2232283A JP S59147033 A JPS59147033 A JP S59147033A
Authority
JP
Japan
Prior art keywords
thermally conductive
resin
reinforced resin
conductive reinforced
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232283A
Other languages
Japanese (ja)
Inventor
Akinobu Tamaoki
玉置 明信
Kunihito Sakai
酒井 国人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2232283A priority Critical patent/JPS59147033A/en
Publication of JPS59147033A publication Critical patent/JPS59147033A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled resin having improved heat-conductivity and strength, by mixing a polymer resin with three kinds of heat-conductive reinforcing materials having rod-like, plate-like and graular forms, respectively. CONSTITUTION:100pts.wt. of a polymer resin (preferably epoxy, silicone, urethane or polyester resin) is mixed with three kinds of heat-conductive reinforcing materials such as metals, inorganic materials, etc., i.e. (A) preferably 5- 200pts.wt. of a rod-like material (e.g. glass fiber having a diameter of preferably 5-500mu and a length of 0.1-50mm.), (B) preferably 5-200pts.wt. of a plate-like material (e.g. mica, etc. having a particle diameter of 1,000-10mu) and (C) preferably 50-300pts.wt. of a graular material (e.g. alumina, etc. having a particle diameter of <=1,000mu, especially a 50% average particle diameter of <=50mu and the other 50% average particle diameter of 1,000-100mu).

Description

【発明の詳細な説明】 本発明は、熱伝導の向上された強化樹脂の改良に関する
ものであり、さらに詳しくは、高分子樹脂に、棒状(維
繊状ともいう)と板状(リン片状と吃いう)と粒状(粉
体ともいう)との3態様成分を混合した熱伝導性強化樹
脂である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in reinforced resins with improved thermal conductivity, and more specifically, the present invention relates to improvements in reinforced resins with improved thermal conductivity. This is a thermally conductive reinforced resin that is a mixture of three types of components: ``stutter'' and granular (also referred to as powder) components.

高分子樹脂は、最も汎用されるポリエチレン樹脂から、
エポキシ樹脂、シリコン樹脂と種々開発され、広い用途
を有しているが、近年特に熱伝導及び強度の高い樹脂の
開発が大きな課題になっている。
Polymer resins range from the most commonly used polyethylene resin to
Various resins such as epoxy resins and silicone resins have been developed and have a wide range of uses, but in recent years, the development of resins with particularly high heat conductivity and strength has become a major issue.

従来、上記熱伝導を高くするために樹脂に高熱伝導性の
金属や無機質の粒状物質を充てんしそれらの同上をはか
つていたが特にかかる熱伝導の高い無機材料としては、
ペリリヤ、アルミナなトカある。しかし、これらの充て
ん材はこれ全多量混合することが難しく、該熱伝導性の
大巾な向上には難点があジ、他方光てん材として金属を
用いると相当の改善が得られるが電気絶縁性などの低下
による問題が避けられない。
Conventionally, resins have been filled with highly thermally conductive metals or inorganic granular materials in order to increase the thermal conductivity, but inorganic materials with particularly high thermal conductivity include
There is Periyar, alumina toka. However, it is difficult to mix all of these fillers in large quantities, and there are difficulties in significantly improving thermal conductivity.On the other hand, using metal as an optical filler material can provide a considerable improvement, but it is difficult to improve electrical insulation. Problems due to decline in sexual ability, etc. cannot be avoided.

一般に樹脂の強度を同上させるため該樹脂を、棒状材、
マット状材あるいはクロス状材と組合せる所謂板状成型
品あるいはシート状成形品あるいは更にガラスチョップ
などの充てん成形品等がある。
Generally, in order to increase the strength of the resin, the resin is used as a rod-shaped material,
There are so-called plate-like molded products or sheet-like molded products that are combined with mat-like materials or cross-like materials, and also filled molded products such as glass chops.

そして又、板状物質、具体的にはガラスフレーク、マイ
カ、金属片などの充てん樹脂は耐水性同上やメタリック
塗装電気絶縁性同上を意図するものとして広く用いられ
ている。
Furthermore, plate-like materials, specifically filled resins such as glass flakes, mica, and metal pieces, are widely used for water resistance and metallic coating as well as electrical insulation properties.

ところで熱伝導性及び強度の同上された樹脂を得るため
に、上述した粒状あるいは棒状物質の混合による手段は
、本来意図した程の効果が得られないのが実情°でるる
。その理由は該粒状及び棒状材の熱伝導のだめの相互接
触点(以下接点と略す)数が少ないことによると考えら
れる。そこで発明者等はこの接点数の増大をはかるため
種々検討した結果、該樹脂に、粒状、棒状及び板状の3
態様物質を加えることにより、驚くほどその熱伝導性及
び強度を向上させ得た樹脂が得られることを見出しこの
発明を完成したのである。
However, in order to obtain a resin having the above-mentioned thermal conductivity and strength, the above-mentioned method of mixing granular or rod-shaped materials is not as effective as originally intended. The reason for this is thought to be that the number of mutual contact points (hereinafter abbreviated as contact points) of the heat conduction reservoirs of the granular and rod-shaped materials is small. Therefore, the inventors conducted various studies in order to increase the number of contact points, and found that the resin has three types: granular, rod-shaped, and plate-shaped.
They discovered that by adding modifiers, a resin with surprisingly improved thermal conductivity and strength could be obtained, and this invention was completed.

即ち本発明は、高分子樹脂中に金属、無機質材料等によ
る熱伝導性及び強化性材料を混合した組成物において、
該材料を棒状、板状及び粒状の3態様成分として混合し
たことを特徴とする熱伝導性強化樹脂である。
That is, the present invention provides a composition in which a thermally conductive and reinforcing material such as a metal or an inorganic material is mixed in a polymer resin.
This is a thermally conductive reinforced resin characterized by mixing the material in three forms: rod-like, plate-like, and granular.

本発明で用いられる樹脂としては、ポリエチレン、ナイ
ロン、ポリプロピレン、ポリエステル、ポリカーボネー
ト、ポリフェニルスルホンなどの熱可塑性樹脂、エポキ
シ、シリコン、ポリエステル、ウレタンなどの熱硬化性
樹脂がある。とくに、本発明は、加工性のよい熱硬化性
樹脂に有効に用いられるとともに、軟質の樹脂を用いる
ことにより、弾性率の高い強度の強い熱伝導性軟質樹脂
を得ることができる。次に本発明に用いられる棒状成分
としては、汎用のガラスファイツク−、クリカフアイバ
ー、ケブラーファイl々−、カーピンファイバー、ナイ
ロン繊維、ポリエステル繊維、金属繊維等が用いられ、
その太さは概ね5〜500ミクロン、長さ0.1〜50
mmに切断したものが適当である。
Examples of the resin used in the present invention include thermoplastic resins such as polyethylene, nylon, polypropylene, polyester, polycarbonate, and polyphenylsulfone, and thermosetting resins such as epoxy, silicone, polyester, and urethane. In particular, the present invention can be effectively used for thermosetting resins with good workability, and by using a soft resin, it is possible to obtain a strong, thermally conductive soft resin with a high modulus of elasticity. Next, as the rod-shaped component used in the present invention, general-purpose glass fibers, clycuff fibers, Kevlar fibers, carpin fibers, nylon fibers, polyester fibers, metal fibers, etc. are used.
Its thickness is approximately 5 to 500 microns, and the length is 0.1 to 50 microns.
A piece cut into mm is suitable.

又板状成分としては、マイカ、ガラスフレーク、金属フ
レークなどかあシそれらのサイズは1000ミクロン〜
10ミクロンが有効であジ、ここでそのサイズが100
0ミクロン以上の大粒子は充てん作業性が悪く10ミク
ロン以下の小粒子は熱伝導性と強化性を損い適当でない
In addition, plate-like components include mica, glass flakes, metal flakes, etc., and their sizes are 1000 microns and up.
10 microns is effective, where the size is 100
Large particles of 0 micron or more have poor filling workability, and small particles of 10 micron or less impair thermal conductivity and reinforcing properties, making them unsuitable.

更に粒状成分としては粒径1000ミクロン以下のアル
ミナ、シリカ、ジルコニヤ、ペリリカ、炭酸カルシウム
、金属粒子などが用いられる。
Further, as particulate components, alumina, silica, zirconia, perilica, calcium carbonate, metal particles, etc. with a particle size of 1000 microns or less are used.

以上述べた本発明の棒状、板状及び粒状の各物質として
、金属系のものを用いれば電気及び熱伝導性に優れた強
化樹脂にすることができ、又無機材料を組合せて用いれ
ば低熱膨張性及び電気絶縁性に優れた熱伝導性強化樹脂
を得ることができる。
If metal-based materials are used as the rod-shaped, plate-shaped, and granular materials of the present invention described above, a reinforced resin with excellent electrical and thermal conductivity can be obtained, and if inorganic materials are used in combination, the material has low thermal expansion. A thermally conductive reinforced resin with excellent properties and electrical insulation properties can be obtained.

この発明においては、特に具体的に上述した高分、子樹
脂100重量部に、上記棒状成分5〜200重量部、板
状成分5〜200重量部及び粒状成分50〜300重量
部を夫々の態様として充てんした熱伝導性強化樹脂、更
に具体的に、上記粒状成亦中、50チ平均粒径が50ミ
クロン以下の微粒子及び他の50%平均粒径が1000
ミクロン〜100ミクロンの粗粒子の2種以上の混合品
である場合に上記諸物件がよシ一層同上されたものとな
る。
In this invention, 5 to 200 parts by weight of the rod-like component, 5 to 200 parts by weight of the plate-like component, and 50 to 300 parts by weight of the granular component are added to 100 parts by weight of the above-mentioned polymer and child resin, respectively. More specifically, during the above granular formation, fine particles with an average particle size of 50 microns or less and other particles with an average particle size of 1,000 microns or less are used.
When the product is a mixture of two or more types of coarse particles of micron to 100 micron size, the above properties are even more pronounced.

以下本発明を比較例及び実施例を示してより具体的に説
明する。尚各側に用いた樹脂は、エポキシ樹脂(エピコ
ート828、シェル社)でその100重量部に、HN2
200(日立化成社)80重量部、ペンデルヅメチルア
ミン帆5重量部、沈でん防止剤エロソール+380(日
本エアロヅル社)6重量部を混合した。
The present invention will be explained in more detail below by showing comparative examples and examples. The resin used on each side was epoxy resin (Epikoat 828, Shell Co., Ltd.), and 100 parts by weight of it was added with HN2.
200 (Hitachi Chemical Co., Ltd.), 5 parts by weight of Penderz Methylamine Foil, and 6 parts by weight of the anti-settling agent EROSOLE+380 (Nihon Aerozuru Co., Ltd.) were mixed.

又硬化条件はすべて、80℃2h+150℃4hとした
The curing conditions were all 80°C for 2 hours and 150°C for 4 hours.

比較例1 エポキシ樹脂に、アルミナ粉末NM−1(不
二見研摩材社)を50 vo1%充てんした。
Comparative Example 1 An epoxy resin was filled with 50 vol % of alumina powder NM-1 (Fujimi Abrasives Co., Ltd.).

比較例2 エポキシ樹脂にアルミナ粉末NM−1′ft
30 vo1%とガラスチョップC806MA497(
旭ファイバーガラス社)20 vo1%を充てんした。
Comparative Example 2 Alumina powder NM-1'ft in epoxy resin
30 vo1% and glass chop C806MA497 (
Asahi Fiber Glass Co., Ltd.) 20 vo1% was filled.

比較例3 エポキシ樹脂にアルミナ粉末NM−1を30
 vo1%とマイカ粉末DR−1(間部マイカ社)を2
0 vol %充てんした。
Comparative Example 3 30% of alumina powder NM-1 added to epoxy resin
VO1% and mica powder DR-1 (Mamabe Mica Co., Ltd.) 2
It was filled with 0 vol%.

実施例1 エポキシ樹脂にアルミナ粉末NH−1を30
 vo1%と比較例2のガラスチョップ10 vo1%
と及びマイカ粉末DR−110vo1%充てんした。
Example 1 30% of alumina powder NH-1 was added to epoxy resin.
vo1% and comparative example 2 glass chop 10 vo1%
and mica powder DR-110vo1%.

実施例2 エポキシ樹脂にアルミナ粉末10 volチ
と比較例2のガラスチョップ20 volチ及びマイカ
粉末DR−1’t−10vo1%充てんした。
Example 2 An epoxy resin was filled with 10 vol of alumina powder, 20 vol of the glass chop of Comparative Example 2, and 1% of mica powder DR-1't-10 vol.

実施例3 エポキシ樹脂にアルミナ粉末30 volチ
と比較例2のガラスチョップ5 vol %及びマイカ
粉末DR−1k 15 vol %充てんした。
Example 3 An epoxy resin was filled with 30 vol. of alumina powder, 5 vol.% of the glass chop of Comparative Example 2, and 15 vol.% of mica powder DR-1k.

実施例4 エポキシ樹脂にアルミナ粉末30 vol人
と比較例2のガラスチョップ15 vol係及びマイカ
粉末DR−1を5 vo1%充てんした。
Example 4 An epoxy resin was filled with 30 vol of alumina powder, 15 vol of glass chop from Comparative Example 2, and 5 vol 1% of mica powder DR-1.

得られた樹脂に関しその特性を調べ結果を次表1に示″
j。
The properties of the obtained resin were investigated and the results are shown in Table 1 below.
j.

表  1 上表から明らかなように、実施例即ち本発明は比較例に
比し熱伝導率が向上し強度の大きな樹脂が得られて−る
Table 1 As is clear from the above table, the Examples, ie, the present invention, have improved thermal conductivity and are able to obtain resins with greater strength than the Comparative Examples.

Claims (9)

【特許請求の範囲】[Claims] (1)高分子樹脂中に金属、無機質材料等による熱伝導
性及び強化性材料を混合した組成物において、該材料を
棒状、板状及び粒状の3態様成分として混合したことを
特徴とする熱伝導性強化樹脂。
(1) In a composition in which a thermally conductive and reinforcing material such as a metal or an inorganic material is mixed into a polymer resin, the material is mixed as a component in three forms: rod-shaped, plate-shaped, and granular. Conductive reinforced resin.
(2)高分子樹脂100重量部に、上記棒状成分5〜2
00重量部、板状取分5〜200重量部及び粒状成分5
0〜300重量部を夫々の態様として充てんした特許請
求範囲第1項記載の熱伝導性強化樹脂。
(2) Add 5 to 2 parts of the above rod-shaped component to 100 parts by weight of the polymer resin.
00 parts by weight, plate-shaped fraction 5 to 200 parts by weight, and granular component 5
The thermally conductive reinforced resin according to claim 1, which is filled with 0 to 300 parts by weight in each embodiment.
(3)高分子樹脂が、エポキシ、シリコン、ウレタンあ
るいはポリエステル樹脂のいづれかの熱硬化性樹脂であ
る特許請求範囲第1項記載の熱伝導性強化樹脂。
(3) The thermally conductive reinforced resin according to claim 1, wherein the polymer resin is a thermosetting resin such as epoxy, silicone, urethane, or polyester resin.
(4)上記棒状、板状及び粒状の3態様成分が無機質材
料か金属材料である特許請求範囲第1項記載の熱伝導性
強化樹ニー31
(4) The thermally conductive reinforced tree knee 31 according to claim 1, wherein the three components of the rod-like, plate-like, and granular forms are inorganic materials or metallic materials.
(5)棒状成分が、シリカファイバー、ガラスファイバ
ー、ケプラーファイバー、カーボンファイ/ぐ−のいづ
れか一種又は二種以上であυ、その太さ5〜500ミク
ロン、長さ0.1〜50゛閣である特許請求範囲第4項
の熱伝導性強化樹脂。
(5) The rod-like component is one or more of silica fiber, glass fiber, Kepler fiber, carbon fiber/glue, has a thickness of 5 to 500 microns, and a length of 0.1 to 50 mm. A thermally conductive reinforced resin according to claim 4.
(6)板状成分がマイカ、ガラスフレークのいづれか一
種又は二種で、その粒々o o o ミクロン−10ミ
クロンである特許請求範囲第4項記載の熱伝導性強化樹
脂。
(6) The thermally conductive reinforced resin according to claim 4, wherein the plate-like component is one or both of mica and glass flakes, and the particles thereof have a particle size of 0 to 10 microns.
(7)粒状成分が、アルミナ、シリカ、ジルコニヤ、特
許請求範囲第4項記載の熱伝導性強化樹脂。
(7) The thermally conductive reinforced resin according to claim 4, wherein the particulate component is alumina, silica, or zirconia.
(8)高分子樹脂にガラスファイバー、アルミナ及びマ
イカを混合した特許請求範囲第1項の熱伝導性強化樹脂
(8) The thermally conductive reinforced resin according to claim 1, which is a polymer resin mixed with glass fiber, alumina, and mica.
(9)室温でコ9ム状の軟質樹脂を用いてなる特許請求
範囲第4項の熱伝導性強化樹脂。 σ0上記粒状成分中、50チ平均粒径が50ミクロン以
下の微粒子及び他の50%平均粒径が1000ミクロン
−100ミクロンの粗粒子の2種以上の混合品である特
許請求範囲第8項記載の熱伝導性強化樹脂。
(9) The thermally conductive reinforced resin according to claim 4, which uses a comb-shaped soft resin at room temperature. σ0 Among the above particulate components, the product is a mixture of two or more types of fine particles having a 50% average particle diameter of 50 microns or less and other coarse particles having a 50% average particle diameter of 1000 microns to 100 microns. thermally conductive reinforced resin.
JP2232283A 1983-02-14 1983-02-14 Reinforced heat-conductive resin Pending JPS59147033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232283A JPS59147033A (en) 1983-02-14 1983-02-14 Reinforced heat-conductive resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232283A JPS59147033A (en) 1983-02-14 1983-02-14 Reinforced heat-conductive resin

Publications (1)

Publication Number Publication Date
JPS59147033A true JPS59147033A (en) 1984-08-23

Family

ID=12079477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232283A Pending JPS59147033A (en) 1983-02-14 1983-02-14 Reinforced heat-conductive resin

Country Status (1)

Country Link
JP (1) JPS59147033A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174262A (en) * 1985-01-30 1986-08-05 Toho Rayon Co Ltd Resin composition
JPS61181846A (en) * 1985-02-06 1986-08-14 Dainichi Seika Kogyo Kk Thermally conductive resin composition and thermally conductive molding
JPS61181847A (en) * 1985-02-06 1986-08-14 Dainichi Seika Kogyo Kk Thermally conductive resin composition and thermally conductive molding
US5011870A (en) * 1989-02-08 1991-04-30 Dow Corning Corporation Thermally conductive organosiloxane compositions
JPH03200397A (en) * 1989-12-27 1991-09-02 Tokai Rubber Ind Ltd Heat dissipation sheet
JP2002256147A (en) * 2001-03-05 2002-09-11 Toray Ind Inc Highly heat conductive resin composition
KR100706653B1 (en) * 2006-12-27 2007-04-13 제일모직주식회사 Heat-conductive resin composition and plastic article
JP2009263640A (en) * 2008-04-04 2009-11-12 Sumitomo Chemical Co Ltd Thermally conductive resin composition and use of the same
JP2015036383A (en) * 2013-08-09 2015-02-23 スターライト工業株式会社 Continuously moldable heat-conductive resin composition and continuous molding method of heat-conductive resin molded article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174262A (en) * 1985-01-30 1986-08-05 Toho Rayon Co Ltd Resin composition
JPS61181846A (en) * 1985-02-06 1986-08-14 Dainichi Seika Kogyo Kk Thermally conductive resin composition and thermally conductive molding
JPS61181847A (en) * 1985-02-06 1986-08-14 Dainichi Seika Kogyo Kk Thermally conductive resin composition and thermally conductive molding
US5011870A (en) * 1989-02-08 1991-04-30 Dow Corning Corporation Thermally conductive organosiloxane compositions
JPH03200397A (en) * 1989-12-27 1991-09-02 Tokai Rubber Ind Ltd Heat dissipation sheet
JPH0570317B2 (en) * 1989-12-27 1993-10-04 Tokai Rubber Ind Ltd
JP2002256147A (en) * 2001-03-05 2002-09-11 Toray Ind Inc Highly heat conductive resin composition
KR100706653B1 (en) * 2006-12-27 2007-04-13 제일모직주식회사 Heat-conductive resin composition and plastic article
JP2009263640A (en) * 2008-04-04 2009-11-12 Sumitomo Chemical Co Ltd Thermally conductive resin composition and use of the same
JP2015036383A (en) * 2013-08-09 2015-02-23 スターライト工業株式会社 Continuously moldable heat-conductive resin composition and continuous molding method of heat-conductive resin molded article

Similar Documents

Publication Publication Date Title
JP5296085B2 (en) Thermally conductive polymer composite and molded article using the same
JPS59147033A (en) Reinforced heat-conductive resin
JPH05105781A (en) Production of electrically conductive composite material
CN111205600A (en) Epoxy resin preparation, filler, pipeline repairing material and preparation method
Elnaggar et al. Effect of carbon fiber and gamma irradiation on acrylonitrile butadiene styrene/high density polyethylene composites
JPH05112657A (en) Resin composition reinforced with carbon fiber for thermoplastic resin reinforcement and carbon fiber reinforced thermoplastic resin composite material
JPS624749A (en) Blend type electrically conductive composite material
JPH02263858A (en) Epoxy resin composition
JPS5822056B2 (en) Heat resistant rubber composition
JPS5817161A (en) Resin composition with low expansivity and high heat conductivity
JPH11181181A (en) Resin composition
JPS58225120A (en) Epoxy resin composition for sealing of semiconductor
JPH0264158A (en) Polyarylene sulfide resin composition
JPH029072B2 (en)
JPH03167248A (en) Phenol resin molding material
KR101468451B1 (en) Adhesive Material And Method for Fabricating Thereof
JPS6084361A (en) Resin composition
JP6390842B2 (en) Composite material and manufacturing method thereof
JPS61101523A (en) Sealing resin composition
JPH05345328A (en) Preparation of ferrule for optical fiber connector
JPH05310419A (en) Production of spherical corundum particle and spherical corundum particle-compounded composition
JPS60144364A (en) Thermosetting resin composition
CN110283430A (en) A kind of high-heat-conductive composite material and preparation method thereof
JPH06128457A (en) Resin composition and molding material
JPS60124646A (en) Phenolic resin composition