JPS61174262A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPS61174262A
JPS61174262A JP60014412A JP1441285A JPS61174262A JP S61174262 A JPS61174262 A JP S61174262A JP 60014412 A JP60014412 A JP 60014412A JP 1441285 A JP1441285 A JP 1441285A JP S61174262 A JPS61174262 A JP S61174262A
Authority
JP
Japan
Prior art keywords
resin
mica
ratio
length
number average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60014412A
Other languages
Japanese (ja)
Inventor
Katsumi Nakama
中間 克美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP60014412A priority Critical patent/JPS61174262A/en
Publication of JPS61174262A publication Critical patent/JPS61174262A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a resin compsn. which has excellent moldability, gives moldings which does not cause warpage and is suitable for use as a molding material for the production of high-accuracy precision parts, containing a crystalline thermoplastic resin, a carbon fiber and mica flake. CONSTITUTION:A crystalline thermoplastic resin (A) (e.g. polyamide resin), a pitch or acrylic carbon fiber (B) having a ratio of number-average fiber length to number-average fiber diameter of 7-60 and a mica flak (C) (e.g. high-purity natural mica having a mica content of 80% or above) having a ratio of number- average length of major axis to that of minor axis of 5 or below and a ratio of number-average length of minor axis to number-average diameter of minor axis of 20 or above, are mixed in such a proportion as to satisfy the relationship of formulas I, II (% in weight). The mixture is melt-kneaded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、結晶性熱可塑性樹脂と炭素繊維(CF)とマ
イカフレーク(MF)とを含む樹脂組成物に関するもの
である。このものから作った繊維強化熱可塑性樹脂成形
物には、そりが生じることがないので、本発明の樹脂組
成物は特に精密部品の成形材料として有用である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resin composition containing a crystalline thermoplastic resin, carbon fiber (CF), and mica flakes (MF). Since warpage does not occur in fiber-reinforced thermoplastic resin molded articles made from this composition, the resin composition of the present invention is particularly useful as a molding material for precision parts.

〔従来技術〕[Prior art]

炭素繊維強化熱可塑性樹脂(CFRTP)は、優れた機
械的性質及び電気的性質を持ち、しかも優れ!ご成形加
工性を持っているので、近年工業材料用途への利用は、
めざましいものがある。
Carbon fiber reinforced thermoplastic resin (CFRTP) has excellent mechanical and electrical properties, and is even better! Due to its moldability, its use in industrial materials has been increasing in recent years.
There is something remarkable.

中でもポリアミド樹脂、ポリアセタール樹脂、ポリエチ
レンテレフタレート樹脂、ポリブチレンテレフタレー1
−樹脂、ポリフェニレンサルファイド樹脂、ポリエーテ
ルエーテルケトン樹脂などの結晶性熱可塑性樹脂にCF
を添加すると、使用濃i上限の目途になる熱変形濡洩が
樹脂の融点近くまで上昇する。その結果、従来、樹脂単
独では使用が不可能とされていた温度での使用が可能と
なってきた。一方、結晶性熱可塑性樹脂は、成形収縮率
が大きく、またその異方性も生じ易く、その結果、薄肉
成形物では、そりが生じる。CFを結晶性熱可塑性樹脂
に添加すると、成形収縮率の異方性が樹脂単独の場合よ
りも大きくなり、そりの程度はさらに大きくなる。従っ
て、高精度を要する成形物には、CF強化結晶性熱可塑
性樹脂の使用は困難になっている。精密部品には、ポリ
カーボネイ[・樹脂、ポリサルホン樹脂、変性ポリフェ
ニレンオキサイド樹脂などの成形収縮率が小さく、かつ
イの異方性が小さい非品性熱可塑性樹脂を母材として用
いるが、これらにCFを添加しても、熱変形温度は殆ん
ど上昇せず、その結果、使用上限温度が低く、また溶融
粘度が高いために成形加工性が劣るという欠点を持って
いる。
Among them, polyamide resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate 1
- CF in crystalline thermoplastic resins such as resins, polyphenylene sulfide resins, and polyetheretherketone resins
When added, the thermal deformation leakage, which is the target of the upper limit of concentration used, increases to near the melting point of the resin. As a result, it has become possible to use resins at temperatures that were previously considered impossible to use alone. On the other hand, crystalline thermoplastic resins have a large molding shrinkage rate and are prone to anisotropy, resulting in warpage in thin-walled molded products. When CF is added to a crystalline thermoplastic resin, the anisotropy of the molding shrinkage rate becomes greater than when the resin is used alone, and the degree of warpage becomes even greater. Therefore, it has become difficult to use CF-reinforced crystalline thermoplastic resins for molded products that require high precision. For precision parts, non-grade thermoplastic resins such as polycarbonate resin, polysulfone resin, and modified polyphenylene oxide resin with low mold shrinkage and low anisotropy are used as base materials. Even when added, the heat distortion temperature hardly increases, resulting in a low upper limit temperature for use and a high melt viscosity, which results in poor moldability.

水元“明者は、前述の如くきCF強化結晶性熱可塑性樹
脂のそりの発生という欠点を改良すべく鋭意検討した結
果、本発明(S至った。
Mr. Mizumoto conducted extensive studies to improve the warpage of the CF-reinforced crystalline thermoplastic resin described above, and as a result, he arrived at the present invention (S).

〔発明の構成〕[Structure of the invention]

本発明は、結晶性熱可塑性樹脂(△)と炭素繊維(B)
とマイカフレーク(C)とを含む樹脂組成物である。か
かる構成にてなる樹脂組成物は、そりのない成形物を得
ることができる。
The present invention consists of crystalline thermoplastic resin (△) and carbon fiber (B).
and mica flakes (C). With the resin composition having such a structure, a molded product without warpage can be obtained.

本発明の特に好ましい(A>、(B)、(C)各成分の
比は B+C 15%≦(X  100≦50%(重量%)A −1−
B + C であり、かつ 30%≦(−)x100≦60%(重量%)B+C である。
The particularly preferred ratio of each component (A>, (B), and (C) of the present invention is B+C 15%≦(X 100≦50% (wt%)) A −1−
B + C, and 30%≦(-)x100≦60% (wt%) B+C.

炭素繊維(A)の数平均繊維長(ρ)と数平均繊維長f
M(df)との比R/d、fが7〜60であるのがよい
。マイカフレークは長袖の数平均長さ1Sが5以下で、
かつ短軸の数平均長さ(ds)と厚さの数平均値(1)
の比が20以上であるのが好ましい。本発明の樹脂組成
物を用いると、CF強化結晶性熱可塑性樹脂のすぐれた
特性がそこなわれず、そりの少ない精密部品を成形する
ことができる。
Number average fiber length (ρ) and number average fiber length f of carbon fiber (A)
The ratio R/d, f with M(df) is preferably 7 to 60. Mica flakes have long sleeves with an average length of 1S of 5 or less,
and the number average length of the short axis (ds) and the number average value of the thickness (1)
It is preferable that the ratio is 20 or more. When the resin composition of the present invention is used, the excellent properties of the CF-reinforced crystalline thermoplastic resin are not impaired, and precision parts with less warpage can be molded.

本発明における結晶性熱可塑性樹脂としては、ポリアミ
ド樹脂、ポリアセタール樹脂、ポリブチレンプレフタレ
ート樹脂、ポリブチレンプレフタレート樹脂、ポリフェ
ニレンサルファイド樹脂、ポリエーテルニーデルケトン
樹脂、ポリオレフィン樹脂等をあげることができる。
Examples of the crystalline thermoplastic resin in the present invention include polyamide resin, polyacetal resin, polybutylene prephthalate resin, polybutylene prephthalate resin, polyphenylene sulfide resin, polyether needle ketone resin, polyolefin resin, and the like.

本発明におけるCFは、例えばピッチ系、アクジノ1系
のCFであって、炭素質、黒鉛質いずれでもよい。母材
たる樹脂中でのCFの次元は、数平均繊維長(lと数平
均繊維直径(df)のLtd/dfが7〜60の範囲に
あるのが好ましい。
The CF in the present invention may be, for example, pitch-based or Acuzino 1-based CF, and may be either carbonaceous or graphitic. The dimension of CF in the base resin is preferably such that Ltd/df, which is the number average fiber length (l) and the number average fiber diameter (df), is in the range of 7 to 60.

即ち成形物の機械的強度や弾性牢はCFのQ/dに比例
して大きくなるが、この値が大きくなると成形加工性が
悪くなり、また小さくなるとCFの補強効果が小さくな
る。より好ましいのはR/dfが20〜50の範囲であ
る。CFの数平均繊維長は、母材たる樹脂とCFとをC
Fの次元が変化しないように、例えば化学的に樹脂を分
解して樹脂とCFとを分離後1本1本測長して求めるこ
とができる。
That is, the mechanical strength and elasticity of the molded product increase in proportion to the Q/d of the CF, but as this value increases, the moldability deteriorates, and as this value decreases, the reinforcing effect of the CF decreases. More preferably, R/df is in the range of 20 to 50. The number average fiber length of CF is
In order to prevent the dimension of F from changing, it can be determined by, for example, chemically decomposing the resin, separating the resin and CF, and then measuring the length of each fiber.

、本発明におけるマイカフレークは、へき開性を持った
マイカであれば、天然のもの、人工のものいずれでもよ
い。天然マイカは、けい酸アルミニウム系鉱物で、白雲
母、金雲母、黒雲母、ソーダ雲母、紅雲母、鉄雲母など
を主成分に他に輝石、長石、リン灰石、方解石等を含ん
でおり1.特にマイカ含有率が80以上に精製された高
純度マイカが好ましい。またマイカのOH基をF(弗素
)で置換した人工雲母でもよい。母材たる樹脂中でのマ
イカフレークの次元は長軸の数平均長さくdi)と短軸
の数平均長さ(ds)との比d、Q/dsが5以下であ
ることが好ましい。
The mica flakes used in the present invention may be either natural or artificial as long as they have cleavability. Natural mica is an aluminum silicate mineral, and contains muscovite, phlogopite, biotite, soda mica, rhodotite, iron mica, etc. as its main components, as well as pyroxene, feldspar, apatite, calcite, etc.1 .. High purity mica refined to a mica content of 80 or higher is particularly preferred. Alternatively, artificial mica in which the OH group of mica is substituted with F (fluorine) may be used. Regarding the dimensions of the mica flakes in the base material resin, it is preferable that the ratio d, Q/ds, of the number average length (di) of the major axis to the number average length (ds) of the minor axis is 5 or less.

5を越すとそりに対重る効果が小さくなる。また短軸の
数平均長さ(ds)と厚さの数平均値(1)との比dS
/lが20以上、特に30以上であることが好ましい。
When the value exceeds 5, the effect of weighting against warping becomes smaller. Also, the ratio dS of the number average length of the minor axis (ds) and the number average value of the thickness (1)
/l is preferably 20 or more, particularly 30 or more.

この比ds/、tが20未満であれば、イりに対する効
果が小さくなる。マイカフレークの次元はCFと同じよ
うにしてマイカフレークを樹脂から分離後、1本1本測
長して求めることができる。CFとマイカフレークが混
在しても、形態が異るため両者を容易に区別することが
できる。
If this ratio ds/, t is less than 20, the effect on damage will be small. The dimensions of the mica flakes can be determined by separating the mica flakes from the resin and measuring the length of each mica flake one by one in the same manner as CF. Even if CF and mica flakes coexist, they can be easily distinguished because they have different forms.

また、母材たる結晶性熱可塑性樹脂(A)とCF(B)
とマイカフレーク(C)との比がBトC 15%≦()x100≦50%(重量%)A +、 B
 + C であり、かつ 30%≦ ←−−) X  100≧60%  (重量
%)B+C であることが必要である。(B+C)’/(A+B+C
) x 100が15重量%未満では、成形物に対する
CFとマイカフレークの補強効果が小さく、また50重
呈%を越えると成形加工性が悪くなる。またC/ (B
+’C) X 100が30重量%未満では、そりに対
するマイカフレークの効果が小さく、60重量%を越え
ると、成形物の強度が低下し、CFの補強効果がそこな
われる。
In addition, crystalline thermoplastic resin (A) and CF (B) as base materials
and mica flakes (C): B to C 15%≦()x100≦50% (weight%) A +, B
+ C and 30%≦←−−) X 100≧60% (weight %)B+C. (B+C)'/(A+B+C
) When x100 is less than 15% by weight, the reinforcing effect of CF and mica flakes on the molded product is small, and when it exceeds 50% by weight, moldability deteriorates. Also C/ (B
When +'C)

本発明の樹脂組成物は形態を問わない”が、例えば次の
ようにして得たペレットである。
The resin composition of the present invention may be in any form, including pellets obtained as follows.

長さ 1〜6mmのCFチョツプドファイバーと短軸の
良さが20〜1000μ、厚さが1〜20μのマイカフ
レークと結晶性熱可塑性樹脂ペレットあるいはパウダー
をタンブラ−等で予備混合後押出様で溶融混練し、径2
〜4mmに押出したストランドを2〜6mmの長さにカ
ットしてペレットを得る。
CF chopped fibers with a length of 1 to 6 mm, mica flakes with a short axis of 20 to 1000 μ and a thickness of 1 to 20 μ, and crystalline thermoplastic resin pellets or powder are premixed in a tumbler, etc., and then extruded. Melt and knead, diameter 2
The extruded strands to ~4 mm are cut into lengths of 2 to 6 mm to obtain pellets.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明によれば、結晶性熱可塑性樹脂と
炭素繊維とマイカフレークの特定割合で含有する樹脂組
成物を使用することにより、°   成形物のそり(反
)が著しく減少し、成形加工性が向上するとともに高精
度、精密部品の成形が可能になった。
As described above, according to the present invention, by using a resin composition containing a crystalline thermoplastic resin, carbon fiber, and mica flakes in a specific ratio, the warpage of the molded product is significantly reduced. In addition to improving processability, it has become possible to mold high-precision, precision parts.

(実施例〕 実施例1 粘度平均分子量が2×10″のナイロン66の70重量
%、表1に示すとおり、直径7μ、良さ6mmのアクリ
ル系CF15重量%及び下記組成式に2  (M(1*
、tFe+、zAQo、+)(Sis、gA1!z、s
 )020  (OH)2 F2で示されるやや黒雲母
に近い金雲母((株)クラレ製スゾライト・マイカ)1
5重量%になるように計量した後、タンブラ−で混合し
、表1に示す押出し条件で40mm径のオープンベント
式単軸押出機(スクリコー長さ/スクリュー径−28)
にて溶融混練して、2〜4mmのストランドを押出し、
水槽中で冷却後6mmにカットして樹脂組成物ペレット
を得た! 長さを測定するため、本ペレットを熱濃硫酸と過酸化水
素水で樹脂を分解し、CFとマイカフレークを分離した
。CF、マイカフレークの長さを各500本について1
00倍に拡大して測長゛して、数平均値を求めた。また
マイカフレークの厚さは、1000〜2000倍に拡大
した電子顕微鏡写真から測長して求めた。
(Example) Example 1 70% by weight of nylon 66 with a viscosity average molecular weight of 2 x 10'', 15% by weight of acrylic CF with a diameter of 7μ and a thickness of 6mm as shown in Table 1, and the following composition formula: 2 (M(1 *
,tFe+,zAQo,+)(Sis,gA1!z,s
)020 (OH)2 Phlogopite (suzolite mica manufactured by Kuraray Co., Ltd.) 1, which is somewhat similar to biotite and is indicated by F2.
After weighing to 5% by weight, it was mixed in a tumbler and extruded under the extrusion conditions shown in Table 1 using a 40 mm diameter open vent type single screw extruder (Scricoe length/screw diameter -28).
Melt and knead to extrude strands of 2 to 4 mm,
After cooling in a water tank, it was cut into 6 mm pieces to obtain resin composition pellets! In order to measure the length, the resin of this pellet was decomposed with hot concentrated sulfuric acid and hydrogen peroxide solution, and CF and mica flakes were separated. 1 for each 500 lengths of CF and mica flakes
The length was measured under 00x magnification and the number average value was determined. The thickness of the mica flakes was determined by measuring the length from an electron micrograph magnified 1000 to 2000 times.

得られたペレットを減圧加熱乾燥して吸水率を0.1%
以下にした後、5オンスインラインスクリユ一式射出成
形機でシリンダ一温度300℃、金型11 ioo℃、
射出圧力1200kof /cni’ 、保圧600k
gf/ cm’で試験片を成形した。
The obtained pellets were dried under reduced pressure and heated to a water absorption rate of 0.1%.
After reducing the temperature to below, use a 5 oz in-line screw injection molding machine with a cylinder temperature of 300℃, a mold temperature of 11ioo℃,
Injection pressure 1200kof/cni', holding pressure 600k
The specimens were molded at gf/cm'.

試醗片は、引張り試験用にJISI号ダンベル試験片、
アイゾツト衝撃試験用に12,7X 4.0X63.5
mmの角棒を、そり率の試験用に100x 10100
X2  (i端に 1.5n+m厚のフィルムゲート)
の平板を供した。引張り試験はJIS  K −711
3、アイゾツト衝撃試験はJ Is  K−7110、
そり率はJ IS  K −6911に準じた。試験片
を成形直後に、真空乾燥機で23℃、10mmH(Iの
条件下に48時間放置後、試験を行った。
The test pieces are JISI dumbbell test pieces for tensile tests.
12.7X 4.0X63.5 for Izotsu impact test
mm square bar, 100x 10100 for warpage rate test
X2 (1.5n+m thick film gate at i end)
A flat plate was provided. Tensile test is JIS K-711
3. Izot impact test is J Is K-7110,
The warpage rate was based on JIS K-6911. Immediately after molding, the test piece was left in a vacuum dryer at 23° C. and 10 mmH (I) for 48 hours, and then tested.

結果を表1に示す。The results are shown in Table 1.

比較のため、実施例1に示すナイロン6Gの85重量%
に、表1に示すとおり、CFを15重量%添加し、MF
を添加しない系及びCFもMFも添加しない前記ナイロ
ンの単独系を表1に示す押出し条f1で押出機にて溶融
混練してペレット化して各ペレットを得た。
For comparison, 85% by weight of nylon 6G shown in Example 1
As shown in Table 1, 15% by weight of CF was added to MF.
A system without the addition of CF or MF and a single system of the nylon without the addition of CF or MF were melt-kneaded in an extruder using the extrusion strip f1 shown in Table 1 and pelletized to obtain each pellet.

樹脂組成物特性及び実施例1と同様の条件で試験片を成
形して同様の条件で試験して得た成形物は表1のとおり
であった。
Table 1 shows the properties of the resin composition and the molded products obtained by molding test pieces under the same conditions as in Example 1 and testing under the same conditions.

表1に見られる如く、本発明の樹脂組成物は、そり率が
、CFを添加しMFを添加しない系、ナイロン66単独
系と比べて減少していることがわかる。
As seen in Table 1, it can be seen that the resin composition of the present invention has a reduced warpage rate compared to the system to which CF is added but no MF, and the nylon 66-only system.

表1 実施例2 実施例1で用いたナイロン6GとCF15重量%とII
I平均フレーク怪が280μ、平均厚さが4.0μのマ
イカフレークを表2の割合にして、タンブラ−で予備混
合し、実施例1で用いた押出機で、シリンダ一温度30
0℃、スクリュー回転数900rpm、押出圧力20k
gf /cm’でペレット化して径2〜4mm 、長さ
6mmの樹脂組成物を得た。
Table 1 Example 2 Nylon 6G and CF15% by weight used in Example 1 and II
Mica flakes with an average flake size of 280 μm and an average thickness of 4.0 μm were premixed in a tumbler in the proportions shown in Table 2, and then heated using the extruder used in Example 1 at a cylinder temperature of 30 μm.
0℃, screw rotation speed 900 rpm, extrusion pressure 20k
A resin composition having a diameter of 2 to 4 mm and a length of 6 mm was obtained by pelletizing at gf/cm'.

これらの樹脂組成物の特性を実施例1と同様にして測定
した。結果を表2に示す。
The properties of these resin compositions were measured in the same manner as in Example 1. The results are shown in Table 2.

また実施例1と同様の方法で試験片を成形し、その特性
を測定した。
In addition, a test piece was molded in the same manner as in Example 1, and its properties were measured.

結果を表2に示す。CF15重量%系の結果を表2に併
記する。
The results are shown in Table 2. The results for the 15% by weight CF system are also listed in Table 2.

表2に示す如く、C/ (、B + C) x 100
(7)値が30〜60重最%の重量に、そり牢に対する
マイカフレークの効果と成形物の強さが特に優れている
ことがわかる。
As shown in Table 2, C/ (, B + C) x 100
(7) It can be seen that the effect of mica flakes against warpage and the strength of the molded product are particularly excellent in the weight range of 30 to 60% by weight.

表2Table 2

Claims (4)

【特許請求の範囲】[Claims] (1)結晶性熱可塑性樹脂(A)と炭素繊維(B)とマ
イカフレーク(C)とを含む樹脂組成物。
(1) A resin composition containing a crystalline thermoplastic resin (A), carbon fiber (B), and mica flakes (C).
(2)結晶性熱可塑性樹脂(A)と炭素繊維(B)とマ
イカフレーク(C)との比が 15%≦[(B+C)/(A+B+C)]×100≦5
0%(重量%)であり、かつ 30%≦[C/(B+C)]×100≦60%(重量%
)である特許請求の範囲(1)の樹脂組成物。
(2) The ratio of crystalline thermoplastic resin (A) to carbon fiber (B) to mica flakes (C) is 15%≦[(B+C)/(A+B+C)]×100≦5
0% (weight%), and 30%≦[C/(B+C)]×100≦60% (weight%
) The resin composition according to claim (1).
(3)炭素繊維の数平均繊維長(@l@)と数平均繊維
直径(@d@f)の比@l@/@d@fが7〜60であ
る特許請求の範囲(1)の樹脂組成物。
(3) Claim (1) wherein the ratio of the number average fiber length (@l@) to the number average fiber diameter (@d@f) of the carbon fibers @l@/@d@f is 7 to 60. Resin composition.
(4)マイカフレークの長軸の数平均長さ(@d@l)
と短軸の数平均長さ(@d@s)の比@d@l/@d@
sが5以下で、かつ短軸の数平均長さ(@d@s)と数
平均厚さ(@t@)の比@d@s/@t@が20以上で
ある特許請求の範囲(1)の樹脂組成物。
(4) Number average length of long axis of mica flakes (@d@l)
and the number average length of the minor axis (@d@s) @d@l/@d@
Claims in which s is 5 or less and the ratio of the number average length (@d@s) to the number average thickness (@t@) of the short axis @d@s/@t@ is 20 or more ( 1) Resin composition.
JP60014412A 1985-01-30 1985-01-30 Resin composition Pending JPS61174262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60014412A JPS61174262A (en) 1985-01-30 1985-01-30 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60014412A JPS61174262A (en) 1985-01-30 1985-01-30 Resin composition

Publications (1)

Publication Number Publication Date
JPS61174262A true JPS61174262A (en) 1986-08-05

Family

ID=11860322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60014412A Pending JPS61174262A (en) 1985-01-30 1985-01-30 Resin composition

Country Status (1)

Country Link
JP (1) JPS61174262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564660A4 (en) * 1991-10-25 1994-04-06 Mitsui Toatsu Chemicals, Inc.
EP0739936A1 (en) * 1995-04-28 1996-10-30 Idemitsu Petrochemical Co., Ltd. Polyarylene sulfide resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887180A (en) * 1981-11-18 1983-05-24 Oribesuto Kk Gasket material
JPS59147033A (en) * 1983-02-14 1984-08-23 Mitsubishi Electric Corp Reinforced heat-conductive resin
JPS59189170A (en) * 1983-04-13 1984-10-26 Polyplastics Co Thermoplastic resin molding composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887180A (en) * 1981-11-18 1983-05-24 Oribesuto Kk Gasket material
JPS59147033A (en) * 1983-02-14 1984-08-23 Mitsubishi Electric Corp Reinforced heat-conductive resin
JPS59189170A (en) * 1983-04-13 1984-10-26 Polyplastics Co Thermoplastic resin molding composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0564660A4 (en) * 1991-10-25 1994-04-06 Mitsui Toatsu Chemicals, Inc.
EP0739936A1 (en) * 1995-04-28 1996-10-30 Idemitsu Petrochemical Co., Ltd. Polyarylene sulfide resin composition

Similar Documents

Publication Publication Date Title
KR920010613B1 (en) Reinforced molding resin composition
ES2661741T3 (en) Composition of high-strength polyethylene sulfide / polyethylene terephthalate resin and a production process for it
JPH02173047A (en) Fiber-reinforced thermoplastic resin composition
JPH01225660A (en) Polyarylene sulfide resin composition
CN105504798A (en) Glass fiber reinforced nylon composite material
JPS62129347A (en) Thermoplastic resin composition with improved chemical resistance
Ryu et al. Improvements of the electrical conductivity and EMI shielding efficiency for the polycarbonate/ABS/carbon fiber composites prepared by pultrusion process
CN111073258A (en) Polyphenyl ether composite material and preparation method thereof
CN112266613A (en) Polyphenylene sulfide composite material, preparation method thereof and injection molding part
JPS61174262A (en) Resin composition
CN111073254A (en) Lightweight, low-cost, low-odor and degradable natural fiber reinforced polycarbonate reclaimed material and preparation method thereof
JPH0518352B2 (en)
CN112646331B (en) Polybutylene terephthalate mixture and preparation method thereof
CN111944308A (en) Nylon 6 composite material with low linear expansion coefficient and preparation method thereof
JPH09176443A (en) Automobile-related member made of polyacetal resin
CN114316506B (en) Polyformaldehyde composition containing compound nucleating agent and preparation method thereof
KR930008196B1 (en) Polyphenylene sulfide resin composition
JPH0361693B2 (en)
JPH022990B2 (en)
JPH01282252A (en) Resin composition
JPH0264158A (en) Polyarylene sulfide resin composition
JPS6166755A (en) Electromagnetic wave-shielding resin composition
KR100769859B1 (en) Polyphenylene Sulfide Resin Composition with Improved Melt Strength Suitable for High Temperature Pigment Coating Process
KR20050044093A (en) Polyphenylene sulfide thermoplastic resin composition
KR100727751B1 (en) Poly phenylenesulfide composition with improved melt strength