JPS59145497A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59145497A
JPS59145497A JP2044783A JP2044783A JPS59145497A JP S59145497 A JPS59145497 A JP S59145497A JP 2044783 A JP2044783 A JP 2044783A JP 2044783 A JP2044783 A JP 2044783A JP S59145497 A JPS59145497 A JP S59145497A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
porous metal
jets
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2044783A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Nakamoto
中本 充慶
Kenya Okamoto
岡本 「けん」也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGATA GAS REIBOU GIJUTSU KENKYU KUMIAI
Original Assignee
KOGATA GAS REIBOU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGATA GAS REIBOU GIJUTSU KENKYU KUMIAI filed Critical KOGATA GAS REIBOU GIJUTSU KENKYU KUMIAI
Priority to JP2044783A priority Critical patent/JPS59145497A/en
Publication of JPS59145497A publication Critical patent/JPS59145497A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To enable the heat of jets to be utilized effectively without making a heat exchanger large in, size by providing a porous metal between jet ports of a heat transfer medium and a heat transfer wall, securing the porous metal to the heat transfer wall, and allowing the jets to transfer their heat to the heat transfer wall via the porous metal after the jets hit against the heat transfer wall, and the jet stream pass through the porous metal. CONSTITUTION:The jets 16 of a high temperature heat transfer medium are jetted through the jet ports 9 formed regularly in a jet outlet plate 10 into a jet section 11. The jets 16 pass through the porous metal 13 and hit against the heat transfer wall 12. While the jets 16 transfer their heat to the porous metal 13, they strike the heat transfer wall and the heat is transferred. Part of the jets 16 hit against the heat transfer wall flowing along the heat transfer wall, while major parts thereof flow back into the porous metal 13, passing through the porous metal to transfer the remaining heat thereto, and is discharged from the jet port 15. As the heat of the discharged heat transfer medium is exchanged efficiently, the temperature thereof becomes low. As the porous metal is desirable to be of a high porosity so that the resistance to the flow of the heat transfer may be less, and also desirable to have a large heat transfer area so as to be able to transfer heat efficiently. Thus the present heat exchanger having the same volume as that of the prior art can recover a large amount of heat so as to utilize the heat of jets efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高温熱媒体の熱回収を行う熱交換器に関するも
ので、燃焼ガス等の高温ガスと水あるいは空気とを効果
的に熱交換し、低温の水あるいは空気を高温にして給湯
あるいは暖房に利用するも従来、高温の噴流を伝熱壁に
衝突させ熱交換する熱交換器があった。この熱交換器は
噴流の衝突部の熱伝達が高いので、伝熱壁の面積が小さ
くても噴流から伝熱壁に大量の熱を伝える事ができる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger for recovering heat from a high-temperature heat medium, which effectively exchanges heat between high-temperature gas such as combustion gas and water or air, Conventionally, heat exchangers have been used to heat water or air to a high temperature and use it for hot water supply or space heating. Conventionally, heat exchangers exchange heat by colliding high-temperature jets against heat transfer walls. Since this heat exchanger has high heat transfer at the impingement portion of the jet, a large amount of heat can be transferred from the jet to the heat transfer wall even if the area of the heat transfer wall is small.

2・ミ この時、噴流が伝熱壁よりも低温ならば、伝熱壁の熱を
噴流に伝える事ができる。
2. Mi At this time, if the jet is cooler than the heat transfer wall, the heat from the heat transfer wall can be transferred to the jet.

このような熱交換器は次のような欠点を有している。噴
流が伝熱壁に衝突する位置での熱伝達率は大きく、伝熱
量は大きいが、噴流の熱を完全に伝える事はできない。
Such heat exchangers have the following drawbacks. The heat transfer coefficient and amount of heat transfer at the location where the jet collides with the heat transfer wall is high, but the heat of the jet cannot be completely transferred.

従って、噴流の有している熱の多くを利用することがな
く大気に放出しており、熱エネルギの無駄が生じていた
Therefore, much of the heat contained in the jet stream is not utilized and is released into the atmosphere, resulting in wasted thermal energy.

そこで、噴流の衝突後、更に伝熱面を設けて熱交換して
いたが、充分に熱交換するためには伝熱面積を大きくし
なければならず、熱交換器として大きいものになった。
Therefore, after the collision of the jets, an additional heat transfer surface was provided to exchange heat, but in order to exchange heat sufficiently, the heat transfer area had to be increased, resulting in a large heat exchanger.

発明の目的 本発明は以上に述べた様な従来例の欠点に鑑み、熱交換
器を大きくすることなく有効に噴流の熱を利用すること
を目的とする。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to effectively utilize the heat of the jet stream without increasing the size of the heat exchanger.

発明の構成 熱媒体の噴出口と伝熱壁の間に多孔質金属を設け、多孔
質金属は伝熱壁に固定する。噴流が伝熱壁に衝突後、多
孔質金属内を通過し、多孔質金属を介して伝熱壁に熱を
伝える熱交換器である。
Structure of the Invention A porous metal is provided between a heat medium jet port and a heat transfer wall, and the porous metal is fixed to the heat transfer wall. This is a heat exchanger in which a jet stream collides with a heat transfer wall, passes through a porous metal, and transfers heat to the heat transfer wall via the porous metal.

実施例の説明 本発明の実施例を添付図面とともに詳述する。Description of examples Embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は従来例であり、1は噴出口、2は伝熱壁、3は
熱媒体通路、4は噴出部である。第2図は本発明の実施
例の概略の一部を断面図にしたものであり、第3図は同
拡大図、第4図は第3図における噴出口板の上面図、第
5図は他の実施例の拡大図、第6図は第6図における噴
出口板の上面図である。5は加熱媒体入口、6は加熱媒
体出口、7は被加熱媒体入口、8は被加熱媒体出口であ
る。
FIG. 1 shows a conventional example, in which 1 is an ejection port, 2 is a heat transfer wall, 3 is a heat medium passage, and 4 is an ejection part. FIG. 2 is a cross-sectional view of a part of the outline of the embodiment of the present invention, FIG. 3 is an enlarged view of the same, FIG. 4 is a top view of the spout plate in FIG. 3, and FIG. An enlarged view of another embodiment, FIG. 6 is a top view of the spout plate in FIG. 5 is a heating medium inlet, 6 is a heating medium outlet, 7 is a heated medium inlet, and 8 is a heated medium outlet.

9は噴出口、1oは噴出口を有する噴出口板、11は噴
出部、12I′i伝熱壁、13は伝熱壁の表面に設けら
れた多孔質金属、14は噴流出口、15は噴流出口であ
る。
9 is a spout, 1o is a spout plate having a spout, 11 is a spout, 12I'i is a heat transfer wall, 13 is a porous metal provided on the surface of the heat transfer wall, 14 is a spout, and 15 is a jet stream. It is the exit.

第3図に於て噴出口板10に規則的に穿たれた噴出口9
より高温の熱媒体が噴流16となって噴出部11に噴出
される。噴流16は多孔質金属13内を通過し、伝熱壁
12に衝突する。噴流16は多孔質金属13に熱を伝え
ながら伝熱壁に衝突し熱交換する。伝熱壁に衝突した噴
流16の一部は伝熱壁に沿って流れ、大部分は多孔質金
属13内を逆流し、多孔質金属内を通って残りの熱を交
換し、噴流出口15より排出される。排出される熱媒体
の熱は有効に熱交換され低温になっている。
In FIG. 3, jet ports 9 are regularly bored in the jet port plate 10.
The higher temperature heat medium becomes a jet stream 16 and is ejected to the ejection part 11 . The jet 16 passes through the porous metal 13 and impinges on the heat transfer wall 12 . The jet stream 16 collides with the heat transfer wall while transmitting heat to the porous metal 13 to exchange heat. A part of the jet 16 that collides with the heat transfer wall flows along the heat transfer wall, and most of it flows back inside the porous metal 13, exchanges the remaining heat through the porous metal, and then flows out from the jet outlet 15. be discharged. The heat of the discharged heat medium is effectively exchanged and the temperature becomes low.

多孔質金属は熱媒体の流れの抵抗が小さいように空隙率
の大きいものが望ましく、熱を有効に伝えるには伝熱面
積の大きいものがよい。
It is desirable that the porous metal has a large porosity so that the flow resistance of the heat medium is low, and a material that has a large heat transfer area to effectively transfer heat.

従来例に於ては噴流が伝熱壁に衝突した後、流れの抵抗
が少くなる様に噴出部4を設ける必要があったが、本発
明では多孔質金属内では通気性がよいので従来の噴出部
の体積を変えずに、多孔質金属を設けても熱媒体の抵抗
は従来のものとほとんど変らない。
In the conventional example, it was necessary to provide the jet part 4 so that the flow resistance would be reduced after the jet collided with the heat transfer wall, but in the present invention, since the porous metal has good air permeability, it is necessary to provide the jet part 4. Even if a porous metal is provided without changing the volume of the ejection part, the resistance of the heating medium is almost the same as in the conventional case.

第4図の実施例には噴流流路17を設けている。The embodiment shown in FIG. 4 is provided with a jet flow path 17.

第3図の実施例では噴流が多孔質金属に衝突しながら伝
熱壁に到達するので噴流は拡がり、伝熱壁での流速が小
さくなる。そこで第4図の実施例のように噴流流路を設
けて噴流の拡がりを少くして衝突時の流速を増加させる
。その結果、熱交換量6/・ ジ 勿は第3図と第4図とほぼ同じであったが、多孔質金属
の量を少なくする事ができた。次表に実験結果を示す。
In the embodiment shown in FIG. 3, the jet reaches the heat transfer wall while colliding with the porous metal, so the jet spreads and the flow velocity at the heat transfer wall decreases. Therefore, as in the embodiment shown in FIG. 4, a jet flow path is provided to reduce the spread of the jet flow and increase the flow velocity at the time of collision. As a result, the amount of heat exchanged 6/·J was almost the same as in FIGS. 3 and 4, but the amount of porous metal could be reduced. The experimental results are shown in the table below.

この時、噴流には加熱空気460°Cを用い、被加熱媒
体には水(入口80″C)を用いた。この時のガスのI
ンタルピは3o001alVhであった。上表で体積は
噴出口板と伝熱壁の間の空間を示している。
At this time, heated air at 460°C was used as the jet stream, and water (inlet 80''C) was used as the medium to be heated.
ntalpi was 3o001alVh. In the table above, the volume indicates the space between the outlet plate and the heat transfer wall.

第5図に示す実施例においては伝熱面積は第3図の構成
に比べて約3%程小さくでき熱交換量は第3図の実施例
と同じ値を示した。
In the embodiment shown in FIG. 5, the heat transfer area was reduced by about 3% compared to the structure shown in FIG. 3, and the heat exchange amount showed the same value as in the embodiment shown in FIG.

多孔質金属は伝熱壁に固着している事が必要であり、本
実施例では多孔□質金属と伝熱壁とにそれ61、−う ぞれハンダの電気メッキを行い、その後、両者を密着さ
せ、高温炉でハンダを溶融させて、多孔質金属と伝熱壁
とを固着させた。
It is necessary that the porous metal is firmly fixed to the heat transfer wall, and in this example, the porous metal and the heat transfer wall are electroplated with solder 61, and then both are bonded together. The porous metal and the heat transfer wall were adhered to each other by melting the solder in a high-temperature furnace.

発明の効果 本発F3Aは以上説明した様に、伝熱壁の表面に多孔質
金属を設け、噴出口板に設けた噴出口より高温の噴流を
多孔質金属を介して伝熱壁に衝突させ、その後、多孔質
金属内を通過させるものであり、従来例と同体積で多量
の熱を回収する事ができ、噴流の熱を有効に利用する事
ができる。
Effects of the Invention As explained above, the F3A of the present invention provides a porous metal on the surface of the heat transfer wall, and allows a high-temperature jet to collide with the heat transfer wall through the porous metal from the jet nozzle provided on the jet nozzle plate. After that, it passes through a porous metal, and a large amount of heat can be recovered with the same volume as the conventional example, and the heat of the jet can be used effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の熱交換器の説明図、第2図は本発明の
一実施例の熱交換器の概略図、第3図は第2図の要部拡
大図、第4図は第3図の一構成要素の上面図、第5図は
本発明の異なる実施例の概略図、第6図は第5図の一構
成要素の上面図である。 9・・・・・・噴出口、10・・・・・・噴出口板、1
1・・・・・・噴出部、12・・・・・・伝熱壁、13
・・・・・・多孔質金属、15・・・・・・噴流出口。 第1図 第3図   G 第6図
FIG. 1 is an explanatory diagram of a conventional heat exchanger, FIG. 2 is a schematic diagram of a heat exchanger according to an embodiment of the present invention, FIG. 3 is an enlarged view of the main part of FIG. FIG. 3 is a top view of one component of FIG. 3, FIG. 5 is a schematic diagram of a different embodiment of the invention, and FIG. 6 is a top view of one component of FIG. 9... Jet outlet, 10... Jet outlet plate, 1
1... Ejection part, 12... Heat transfer wall, 13
... Porous metal, 15 ... Spout outlet. Figure 1 Figure 3 G Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)多数の噴出孔より噴出する熱媒体を衝突させる伝
熱壁の表面に多孔質金属を設けた熱交換器。
(1) A heat exchanger in which a porous metal is provided on the surface of a heat transfer wall that collides the heat medium ejected from a large number of ejection holes.
(2)噴出口と伝熱壁の間に噴流流路を設けた特許請求
の範囲第1項記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein a jet flow path is provided between the jet port and the heat transfer wall.
JP2044783A 1983-02-08 1983-02-08 Heat exchanger Pending JPS59145497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044783A JPS59145497A (en) 1983-02-08 1983-02-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044783A JPS59145497A (en) 1983-02-08 1983-02-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS59145497A true JPS59145497A (en) 1984-08-20

Family

ID=12027307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044783A Pending JPS59145497A (en) 1983-02-08 1983-02-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59145497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823611A1 (en) * 1996-08-06 1998-02-11 Thomson-Csf Cooling device for electronic modules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823611A1 (en) * 1996-08-06 1998-02-11 Thomson-Csf Cooling device for electronic modules
FR2752289A1 (en) * 1996-08-06 1998-02-13 Thomson Csf COOLING DEVICE, IN PARTICULAR ELECTRONIC MODULES

Similar Documents

Publication Publication Date Title
Chiou Thermal performance deterioration in crossflow heat exchanger due to the flow nonuniformity
JPS5957499A (en) Compact strong cooler
CN108551750B (en) A kind of enhancing jet stream radiator heat-dissipation efficient appliances, radiating subassembly and production method
JPH07502100A (en) Heat exchanger
JPS60160150A (en) Cooling device for integrated circuit
US6220036B1 (en) Cooling structure for combustor tail pipes
JPS59145497A (en) Heat exchanger
JPH05332164A (en) Regeneration type gas turbine
JPH0837260A (en) Semiconductor cooler
JPH11101588A (en) Plate-type heat exchanger
CN207035907U (en) Cooler
JPS5883193A (en) Heat exchanger
CN205939111U (en) Heat accumulating type burning device
SU1090977A1 (en) Jet recuperator
JP3995436B2 (en) Air washer
JPS6143107Y2 (en)
JPH0233022Y2 (en)
JPS5843322A (en) High-loaded combustor
JP2690585B2 (en) Semiconductor element cooling structure
JP2568965B2 (en) Water heater
JPS58136985A (en) Heat exchanger
CN2237050Y (en) Spray cooling wall
JPS5976814A (en) Cooling or heating device
JPH0648871Y2 (en) Cold plate structure
JP2857965B2 (en) Thermal storage burner