EP0823611A1 - Cooling device for electronic modules - Google Patents

Cooling device for electronic modules Download PDF

Info

Publication number
EP0823611A1
EP0823611A1 EP97401861A EP97401861A EP0823611A1 EP 0823611 A1 EP0823611 A1 EP 0823611A1 EP 97401861 A EP97401861 A EP 97401861A EP 97401861 A EP97401861 A EP 97401861A EP 0823611 A1 EP0823611 A1 EP 0823611A1
Authority
EP
European Patent Office
Prior art keywords
module
fluid
modules
chamber
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97401861A
Other languages
German (de)
French (fr)
Inventor
Robert Thomson-CSF S.C.P.I. Grignon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0823611A1 publication Critical patent/EP0823611A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays

Definitions

  • the present invention relates to a cooling device of electronic modules. It applies for example to cooling of electronic modules associated with radiating elements of a active antenna.
  • each module On these antennas, the calorific power dissipated by each module is relatively high, the heat flux being able to reach for example 10 watt / cm 2 .
  • Another constraint which characterizes these antennas resides in the multitude and the distribution of these modules which must operate at substantially the same temperature.
  • a known solution for cooling these modules consists in making circulate a heat transfer fluid in a conduit under these. However, the fluid stores heat along its path and therefore warms up. Not all modules therefore have a cold source at the same temperature, since these dissipate substantially the same power. Their operating temperatures are therefore not same, the temperature gradient between distant modules remaining high. It is then possible to have a temperature sensor on each module, connected to a microprocessor which takes it into account in the control of module parameters Such regulation by microprocessor is however complex to implement in the since, in addition to the microprocessor, it requires a multitude of temperature sensors and additional electrical connections so also more complicated wiring. This also results in an increase implementation costs.
  • the object of the invention is to overcome the aforementioned drawbacks, with particular emphasis on heat transfer by jet impact on the rear side of the module housing combined with the use of a porous structure.
  • the invention relates to a device for cooling of an electronic module as defined by the claim 1 or a device for cooling several modules electronics as defined by claim 2.
  • the main advantages of the invention are that it provides a very good heat extraction, which is simple to implement, that it is economical, that it allows realizations little bulky, that it adapts to all types of module networks electronics, in particular curved wall networks, which it allows achieve uniform cooling on modules associated in series or in parallel in particular, and that it does not require fluids liquid coolants.
  • FIG. 1 illustrates an exemplary embodiment of a cooling according to the prior art. This figure presents by a view in section and perspective view of part of an active antenna.
  • Each module electronics 1 powers a radiating element 3 covered with a radome 7.
  • a multilayer structure 4 comprises for example the connections between the modules 1 and the radiating elements 3, the connections modules 1, as well as microwave links.
  • the module housing bottoms are based for example on cooling circuits 5. These are for example constituted hollow beams in which a heat transfer fluid circulates, the direction of movement is represented by arrows 6. As and when as it passes under the electronic modules, the fluid heats up. Between two successive modules 1, depending on the direction of movement of the fluid, a temperature gradient therefore exists, this gradient increasing between disjoint and distant modules.
  • the modules being designed to dissipate each the same power, this results in a difference between them temperature, increasing with their distance.
  • FIG. 2 illustrates a possible embodiment of a device according to the invention.
  • the impact effect of a jet of fluid on the modules to be cooled is used in particular.
  • the heat exchange is thus improved.
  • the bottom 21 of an electronic module to be cooled can be of any type, for example an electronic module connected or not to a radiating element or to any other sensor.
  • the electronic module dissipates a heat flow ⁇ of the order of a few W / cm 2 .
  • the device according to the invention combines impact cooling means with a porous honeycomb structure 22. This envelope is with open cells of material with high thermal conductivity.
  • This porous cellular envelope can also be made of aluminum, or of a carbon fiber structure.
  • the cooling means project a fluid 23 towards the element to be cooled, for example on the bottom of the housing 21 of an electronic module, the alveolar envelope being in contact with the element and interposed between the latter and the arrival of the fluid.
  • This fluid can advantageously be air.
  • the impact cooling means are for example consist of a distribution chamber 24 receiving air from fan and distributing through a calibrated orifice 25, to the right of each module 21, an amount of air suitable for cooling. Calibration of an orifice makes it possible in particular to control the quantities of air which crosses and therefore the impact of the jet.
  • the control of the jet in particular by the orifice 25 calibration, creates uniform cooling over modules.
  • the room is for example of flat shape, of height internal equal for example to a few millimeters.
  • the fan is by tangential type example. Such a fan has the advantage of being small dimension while being able to provide a large air flow 26.
  • the alveolar wall is for example preformed but retains a certain elasticity which allows it to adapt, under the effect of internal pressure, to the tolerances of the space between the housing bottoms 21 and the chamber 24.
  • the honeycomb wall 22 is for example preformed of so as to cover substantially all of the housing bottoms 21 of the modules by leaving a space between itself and the room. Outside of case backs it is substantially in contact with chamber 24.
  • a cavity 27 is then formed at each module to be cooled, this cavity being closed by the alveolar wall 22 and the distribution chamber 24.
  • the bearing force of the honeycomb wall 22 on the bottom of the housing 21 depends on the pressure difference between the inside and the outside of the cavity 27.
  • the fluid ⁇ ' after having extracted the calories by impact and convection in the alveolar wall, leaks laterally through the separating space the cavities.
  • the device according to the invention thus cleverly combines several modes of heat transfer.
  • a first mode occurs by conduction in the alveolar wall 22
  • a second mode is done by forced convection in the cells of wall 22
  • a third mode occurs produced by convection and by impact in the central part 28 of the bottom of housing 21.
  • the surface of the distribution chamber 24 corresponds for example to that of the antenna.
  • the cross section of the chamber has a height h for example of the order of a few millimeters which then allows an internal flow to low speed, of the order of a few meters per second, therefore a loss reduced load and speed-up conditions, upstream of the orifice, favorable to an equipartition of unit flow rates.
  • the flow of fluid accelerates.
  • Cooling is improved by the combination of transfer impact heat and forced convection heat transfer in the honeycomb structure 22 which conducts heat and is pressed on the element to be cooled 21, the wall 22 being pressed on this element by the jet pressure 23.
  • the introduction of the alveolar wall thus increases the exchange surface, thanks to its numerous cells crossed by the heat transfer fluid, which greatly improves the transfer overall heat.
  • the device according to the invention also allows a transfer of heat at constant flow and temperature. It responds particularly well to constraints of electronic equipment made up of a multitude components juxtaposed and operating in parallel. A temperature substantially uniform can then be obtained between the components, provided in particular that the components dissipate the same power, which is generally the case with active module antennas. It may for example be obtained by controlling the jets sent to the modules, and in particular by calibrating their flow. Uniformity of effects impacts can thus be obtained on several components or modules.
  • Figure 3 shows an example of application of the device according to the invention to an active antenna, having a surface curved by example.
  • a multitude of electronic modules each supply a radiating element 3 via a multilayer structure 4.
  • the device according to the invention comprises a distribution chamber 24 conforming to example the curved shape of the radiating surface 31 of the antenna.
  • a alveolar wall 22 which conducts heat is preformed so as to come into contact with the housing bottoms 21 of the electronic modules 1 and at create at each module a cavity 27 as described in Figure 2.
  • Ports 25 allow the passage of air jets from the chamber 24 towards the alveolar wall 22 so as to press it against modules. The cooling of these by the device according to the invention maintains them all effectively at a given temperature.
  • FIG 4 completes Figure 3 in an exemplary embodiment using a tangential type fan 41.
  • This fan introduces a air flow 42 in the distribution chamber 24.
  • the shape of this fan 41 adapts well to space constraints. His air performance, in particular its high flow, correspond well to cooling needs.
  • Figure 5 shows an embodiment of a device according to the invention where the distribution chamber 24 has branches 51, the air flow 52 flowing in each of these branches.
  • These branches 51 are for example of flat shape like the main body of the distribution chamber 24.
  • Each of the branches 51 may on each side present orifices 25 and be covered with the alveolar wall so as to cool electronic modules on each of its sides.
  • a structure multilayer 4 can be common for feeding two sets of facing modules. The architecture of a device according to the invention thus allows a reduction in size.
  • FIG. 6 shows an exemplary embodiment according to the invention comprising a return circuit.
  • This return circuit can for example be necessary either in the case of a closed circuit requiring the recovery of hot fluid, i.e. in the case of lateral leakage rates 61 too important or prevented.
  • the return circuit is for example consisting of holes 62 passing through the entire chamber, that is to say that the flow of fluid 63 coming laterally from the cavities 27 after having crossed the alveolar wall cannot come into contact with the incoming flow 64 which bypasses these holes.
  • the heat transfer fluid transmits the heat taken from the elements to be cooled, from modules for example, either to an available heat sink and to proximity to the equipment, i.e. to an annex cooling circuit preferably in closed loop and mainly consisting of a condenser, evaporator and activation pump.
  • the embodiments of the invention have been presented for cooling electronic modules, in particular applied to an active antenna.
  • the invention can nevertheless be applied to other types of elements to be cooled. It can for example apply to cooling of low or medium power laser diodes, or still cooling flat screens.

Abstract

The heat sink has a number of holes (25) which are at right angles to each module (21) and are formed as sidewalls to a cavity (27) whose other walls are delineated by a cellular structure (22) and a fluid flow chamber (24). The cellular material may be copper, aluminium or carbon fibre and covers the base of a module. The fluid leaves through a hole in the chamber so the incoming and exiting fluid do not mix. The air is driven through the chamber, which is normally flat, by a tangential rotary fan and there may be branches with holes off the chamber to cool module to each side. When it is used with an active antenna, the chamber follows the radiating surface. The fluid is preferably air.

Description

La présente invention concerne un dispositif de refroidissement de modules électroniques. Elle s'applique par exemple au refroidissement de modules électroniques associés à des éléments rayonnant d'une antenne active.The present invention relates to a cooling device of electronic modules. It applies for example to cooling of electronic modules associated with radiating elements of a active antenna.

La conception d'antennes nouvelles constituées d'éléments rayonnant associés à des modules actifs disposés en réseau, notamment sur une paroi courbe, entraíne de nombreux problèmes thermiques.The design of new antennas made up of elements radiant associated with active modules arranged in a network, in particular on a curved wall, causes many thermal problems.

Sur ces antennes, la puissance calorifique dissipée par chaque module est relativement élevée, le flux thermique pouvant atteindre par exemple 10 watt/cm2. Une autre contrainte qui caractérise ces antennes réside dans la multitude et la répartition de ces modules qui doivent fonctionner sensiblement à la même température.On these antennas, the calorific power dissipated by each module is relatively high, the heat flux being able to reach for example 10 watt / cm 2 . Another constraint which characterizes these antennas resides in the multitude and the distribution of these modules which must operate at substantially the same temperature.

Une solution connue pour refroidir ces modules consiste à faire circuler un fluide caloporteur dans un conduit sous ces derniers. Cependant, le fluide emmagasine de la chaleur tout au long de son trajet et donc se réchauffe. Tous les modules n'ont donc pas une source froide à la même température, puisque ceux-ci dissipent sensiblement la même puissance. Leurs températures de fonctionnement ne sont donc pas les mêmes, le gradient de température entre modules éloignés restant élevé. Il est alors possible de disposer un capteur de température sur chaque module, relié à un microprocesseur qui en tient compte dans la commande des paramètres des modules Une telle régulation par microprocesseur est cependant complexe à mettre en oeuvre dans la mesure où, outre le microprocesseur, elle nécessite une multitude de capteurs de température et de liaisons électriques supplémentaires donc aussi un câblage plus compliqué. Il en résulte en plus une augmentation des coûts de réalisation.A known solution for cooling these modules consists in making circulate a heat transfer fluid in a conduit under these. However, the fluid stores heat along its path and therefore warms up. Not all modules therefore have a cold source at the same temperature, since these dissipate substantially the same power. Their operating temperatures are therefore not same, the temperature gradient between distant modules remaining high. It is then possible to have a temperature sensor on each module, connected to a microprocessor which takes it into account in the control of module parameters Such regulation by microprocessor is however complex to implement in the since, in addition to the microprocessor, it requires a multitude of temperature sensors and additional electrical connections so also more complicated wiring. This also results in an increase implementation costs.

Le recours au microprocesseur pourrait être évité en augmentant le débit du fluide caloporteur utilisé. Cependant, ici encore une telle solution s'avère complexe. De plus, un gradient de température non négligeable subsiste entre modules éloignés.The use of a microprocessor could be avoided by increasing the flow rate of the heat transfer fluid used. However, here again such a solution is complex. In addition, a temperature gradient significant remains between distant modules.

Le but de l'invention est de pallier les inconvénients précités, en privilégiant notamment le transfert de chaleur par impact de jet sur la face arrière du boítier des modules combiné avec l'utilisation d'une structure poreuse.The object of the invention is to overcome the aforementioned drawbacks, with particular emphasis on heat transfer by jet impact on the rear side of the module housing combined with the use of a porous structure.

A cet effet, l'invention a pour objet un dispositif de refroidissement d'un module électronique tel que défini par la revendication 1 ou un dispositif de refroidissement de plusieurs modules électronique tel que défini par la revendication 2.To this end, the invention relates to a device for cooling of an electronic module as defined by the claim 1 or a device for cooling several modules electronics as defined by claim 2.

L'invention a pour principaux avantages qu'elle assure une très bonne extraction de la chaleur, qu'elle est simple à mettre en oeuvre, qu'elle est économique, qu'elle permet des réalisations peu encombrantes, qu'elle s'adapte à tous types de réseaux de modules électroniques, notamment des réseaux à paroi courbe, qu'elle permet d'atteindre un refroidissement uniforme sur des modules associés en série ou en parallèle notamment, et qu'elle ne nécessite pas de fluides caloporteurs à l'état liquide.The main advantages of the invention are that it provides a very good heat extraction, which is simple to implement, that it is economical, that it allows realizations little bulky, that it adapts to all types of module networks electronics, in particular curved wall networks, which it allows achieve uniform cooling on modules associated in series or in parallel in particular, and that it does not require fluids liquid coolants.

D'autres caractéristiques et avantages de l'invention apparaítront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :

  • La figure 1, un exemple de réalisation de refroidissement selon l'art antérieur.
  • La figure 2, un exemple de réalisation possible d'un dispositif selon l'invention.
  • Les figures 3 et 4, un exemple de réalisation d'un dispositif selon l'invention appliqué à une antenne active.
  • La figure 5, un exemple de réalisation d'un dispositif selon l'invention permettant notamment un gain d'encombrement.
  • La figure 6, un exemple de réalisation d'un dispositif selon l'invention muni d'un circuit de retour de fluide caloporteur.
Other characteristics and advantages of the invention will become apparent with the aid of the description which follows given with reference to the appended drawings which represent:
  • Figure 1, an exemplary embodiment of cooling according to the prior art.
  • Figure 2, a possible embodiment of a device according to the invention.
  • Figures 3 and 4, an embodiment of a device according to the invention applied to an active antenna.
  • Figure 5, an embodiment of a device according to the invention allowing in particular a gain in size.
  • Figure 6, an embodiment of a device according to the invention provided with a heat transfer fluid return circuit.

La figure 1 illustre un exemple de réalisation d'un système de refroidissement selon l'art antérieur. Cette figure présente par une vue en coupe et en perspective une partie d'une antenne active. Chaque module électronique 1, alimente un élément rayonnant 3 recouvert d'un radôme 7. Une structure multicouche 4 comporte par exemple les liaisons électriques entre les modules 1, et les éléments 3 rayonnant, les liaisons d'alimentation des modules 1, ainsi que des liaisons hyperfréquences. Figure 1 illustrates an exemplary embodiment of a cooling according to the prior art. This figure presents by a view in section and perspective view of part of an active antenna. Each module electronics 1, powers a radiating element 3 covered with a radome 7. A multilayer structure 4 comprises for example the connections between the modules 1 and the radiating elements 3, the connections modules 1, as well as microwave links.

Les fonds de boítier des modules reposent par exemple sur des circuits de refroidissement 5. Ces derniers sont par exemple constitués de poutres creuses dans lesquelles circule un fluide caloporteur dont le sens de déplacement est représenté par des flèches 6. Au fur et à mesure de son passage sous les modules électroniques, le fluide s'échauffe. Entre deux modules successifs 1, selon le sens de déplacement du fluide, un gradient de température existe donc, ce gradient augmentant entre modules disjoints et éloignés. Les modules étant conçus pour dissiper chacun la même puissance, il en résulte alors entre eux une différence de température, croissant avec leur éloignement.The module housing bottoms are based for example on cooling circuits 5. These are for example constituted hollow beams in which a heat transfer fluid circulates, the direction of movement is represented by arrows 6. As and when as it passes under the electronic modules, the fluid heats up. Between two successive modules 1, depending on the direction of movement of the fluid, a temperature gradient therefore exists, this gradient increasing between disjoint and distant modules. The modules being designed to dissipate each the same power, this results in a difference between them temperature, increasing with their distance.

La figure 2 illustre un mode de réalisation possible d'un dispositif selon l'invention. Selon l'invention, l'effet d'impact d'un jet de fluide sur les modules à refroidir est notamment utilisé. L'échange thermique est ainsi amélioré. Sur la figure 2 est représenté le fond 21 d'un module électronique à refroidir. Cet élément à refroidir peut être de tout type, par exemple un module électronique relié ou non à un élément rayonnant ou à tout autre capteur. Le module électronique dissipe un flux de chaleur ϕ de l'ordre de quelques W / cm2. Le dispositif selon l'invention combine des moyens de refroidissement par impact avec une structure alvéolaire poreuse 22. Cette enveloppe est à cellules ouvertes en matériau à conductivité thermique élevée. C'est par exemple une mousse de cuivre dont l'épaisseur et la porosité sont calculées en fonction de la vitesse d'écoulement et du flux thermique à évacuer. Cette enveloppe alvéolaire poreuse peut également être constituée d'aluminium, ou encore d'une structure en fibres de carbone. Les moyens de refroidissement projettent un fluide 23 vers l'élément à refroidir, par exemple sur le fond de boítier 21 d'un module électronique, l'enveloppe alvéolaire étant au contact de l'élément et intercalée entre ce dernier et l'arrivée du fluide. Ce fluide peut être avantageusement de l'air.FIG. 2 illustrates a possible embodiment of a device according to the invention. According to the invention, the impact effect of a jet of fluid on the modules to be cooled is used in particular. The heat exchange is thus improved. In Figure 2 is shown the bottom 21 of an electronic module to be cooled. This element to be cooled can be of any type, for example an electronic module connected or not to a radiating element or to any other sensor. The electronic module dissipates a heat flow ϕ of the order of a few W / cm 2 . The device according to the invention combines impact cooling means with a porous honeycomb structure 22. This envelope is with open cells of material with high thermal conductivity. It is, for example, a copper foam, the thickness and porosity of which are calculated as a function of the flow speed and the heat flow to be removed. This porous cellular envelope can also be made of aluminum, or of a carbon fiber structure. The cooling means project a fluid 23 towards the element to be cooled, for example on the bottom of the housing 21 of an electronic module, the alveolar envelope being in contact with the element and interposed between the latter and the arrival of the fluid. This fluid can advantageously be air.

Les moyens de refroidissement par impact sont par exemple constitués d'une chambre de distribution 24 recevant de l'air d'un ventilateur et distribuant par un orifice calibré 25, au droit de chaque module 21, une quantité d'air adapté au refroidissement. Le calibrage d'un orifice permet notamment de bien maítriser la quantités d'air qui le traverse et donc l'impact du jet. Dans le cas ou plusieurs dispositifs selon la figure 2 sont mis en parallèle pour refroidir des modules associés, en série ou en parallèle par exemple, la maítrise du jet, notamment par le calibrage des orifice 25, permet de créer un refroidissement uniforme sur les modules. La chambre est par exemple de forme plate, de hauteur interne égale par exemple à quelques millimètres. Le ventilateur est par exemple de type tangentiel. Un tel ventilateur a l'avantage d'être de petite dimension tout en étant capable de fournir un débit d'air important 26.The impact cooling means are for example consist of a distribution chamber 24 receiving air from fan and distributing through a calibrated orifice 25, to the right of each module 21, an amount of air suitable for cooling. Calibration of an orifice makes it possible in particular to control the quantities of air which crosses and therefore the impact of the jet. In the case where several devices according to FIG. 2 are placed in parallel to cool associated modules, in series or in parallel for example, the control of the jet, in particular by the orifice 25 calibration, creates uniform cooling over modules. The room is for example of flat shape, of height internal equal for example to a few millimeters. The fan is by tangential type example. Such a fan has the advantage of being small dimension while being able to provide a large air flow 26.

La paroi alvéolaire est par exemple préformée mais conserve une certaine élasticité qui lui permet de s'adapter, sous l'effet de la pression interne, aux tolérances de l'espace entre les fonds de boítier 21 et la chambre 24. La paroi alvéolaire 22 est par exemple préformée de façon à recouvrir sensiblement tous les fonds de boítiers 21 des modules en ménageant un espace entre elle-même et la chambre. En dehors des fonds de boítiers elle est sensiblement au contact de la chambre 24. Une cavité 27 est alors formée au niveau de chaque module à refroidir, cette cavité étant fermée par la paroi alvéolaire 22 et la chambre de distribution 24.The alveolar wall is for example preformed but retains a certain elasticity which allows it to adapt, under the effect of internal pressure, to the tolerances of the space between the housing bottoms 21 and the chamber 24. The honeycomb wall 22 is for example preformed of so as to cover substantially all of the housing bottoms 21 of the modules by leaving a space between itself and the room. Outside of case backs it is substantially in contact with chamber 24. A cavity 27 is then formed at each module to be cooled, this cavity being closed by the alveolar wall 22 and the distribution chamber 24.

La force d'appui de la paroi alvéolaire 22 sur le fond de boítier 21 dépend de la différence de pression entre l'intérieur et l'extérieur de la cavité 27.The bearing force of the honeycomb wall 22 on the bottom of the housing 21 depends on the pressure difference between the inside and the outside of the cavity 27.

Le fluide ϕ', après avoir extrait les calories par impact et convection dans la paroi alvéolaire, fuit latéralement par l'espace séparant les cavités.The fluid ϕ ', after having extracted the calories by impact and convection in the alveolar wall, leaks laterally through the separating space the cavities.

Le dispositif selon l'invention combine ainsi astucieusement plusieurs modes de transfert de chaleur. Un premier mode se produit par conduction dans la paroi alvéolaire 22, un deuxième mode se fait par convection forcée dans les cellules de la paroi 22 et un troisième mode se produit par convection et par impact dans la partie centrale 28 du fond de boítier 21.The device according to the invention thus cleverly combines several modes of heat transfer. A first mode occurs by conduction in the alveolar wall 22, a second mode is done by forced convection in the cells of wall 22 and a third mode occurs produced by convection and by impact in the central part 28 of the bottom of housing 21.

Dans le cas d'application à une antenne active, la surface de la chambre de distribution 24 correspond par exemple à celle de l'antenne. La section transversale de la chambre a une hauteur h par exemple de l'ordre de quelques millimètres qui permet alors un écoulement interne à faible vitesse, de l'ordre de quelques mètres par seconde, donc une perte de charge réduite et des conditions de mise en vitesse, en amont de l'orifice, favorable à une équipartition des débits unitaires. A la traversée de l'orifice 25, l'écoulement de fluide s'accélère.In the case of application to an active antenna, the surface of the distribution chamber 24 corresponds for example to that of the antenna. The cross section of the chamber has a height h for example of the order of a few millimeters which then allows an internal flow to low speed, of the order of a few meters per second, therefore a loss reduced load and speed-up conditions, upstream of the orifice, favorable to an equipartition of unit flow rates. At the crossing from the orifice 25, the flow of fluid accelerates.

Le refroidissement est amélioré par la combinaison du transfert de chaleur par impact et du transfert de chaleur par convection forcée dans la structure alvéolaire 22 conductrice de la chaleur et pressée sur l'élément à refroidir 21, la paroi 22 étant pressée sur cet élément par la pression du jet 23. L'introduction de la paroi alvéolaire augmente ainsi la surface d'échange, grâce à ses nombreuses alvéoles traversées par le fluide caloporteur, ce qui permet d'améliorer très nettement le transfert global de chaleur.Cooling is improved by the combination of transfer impact heat and forced convection heat transfer in the honeycomb structure 22 which conducts heat and is pressed on the element to be cooled 21, the wall 22 being pressed on this element by the jet pressure 23. The introduction of the alveolar wall thus increases the exchange surface, thanks to its numerous cells crossed by the heat transfer fluid, which greatly improves the transfer overall heat.

Les gains résultant de cette combinaison permettent l'utilisation d'un fluide caloporteur gazeux en circuit ouvert et permettent donc d'éviter l'utilisation d'un fluide liquide, nécessitant un circuit fermé beaucoup plus complexe à mette en oeuvre.The gains from this combination allow the use of a gaseous heat transfer fluid in open circuit and allow therefore avoid the use of a liquid fluid, requiring a closed circuit much more complex to implement.

Le dispositif selon l'invention permet par ailleurs un transfert de chaleur à flux et température constants. Il répond notamment bien aux contraintes des équipements électroniques constituées d'une multitude de composants juxtaposés et fonctionnant en parallèle. Une température sensiblement uniforme peut alors être obtenu entre les composants, à condition notamment que les composants dissipent la même puissance, ce qui est le cas généralement des antennes à modules actifs. Cela peut par exemple être obtenu par la maítrise des jet envoyés vers les modules, et notamment par un calibrage de leur flux. Une uniformité des effets d'impacts peut ainsi être obtenue sur plusieurs composants ou modules.The device according to the invention also allows a transfer of heat at constant flow and temperature. It responds particularly well to constraints of electronic equipment made up of a multitude components juxtaposed and operating in parallel. A temperature substantially uniform can then be obtained between the components, provided in particular that the components dissipate the same power, which is generally the case with active module antennas. It may for example be obtained by controlling the jets sent to the modules, and in particular by calibrating their flow. Uniformity of effects impacts can thus be obtained on several components or modules.

La figure 3 présente un exemple d'application du dispositif selon l'invention à une antenne active, ayant une surface courbe par exemple. Une multitude de modules électroniques alimentent chacun un élément rayonnant 3 via une structure multicouche 4. Le dispositif selon l'invention comporte une chambre de répartition 24 épousant par exemple la forme courbe de la surface rayonnante 31 de l'antenne. Une paroi alvéolaire 22 conductrice de la chaleur est préformée de façon à venir au contact des fonds de boítier 21 des modules électroniques 1 et à créer au niveau de chaque module une cavité 27 comme décrite à la figure 2. Des orifices 25 permettent le passage de jets d'air de la chambre 24 vers la paroi alvéolaire 22 de façon à presser celle-ci contre les modules. Le refroidissement de ces derniers par le dispositif selon l'invention les maintient tous efficacement à une température donnée.Figure 3 shows an example of application of the device according to the invention to an active antenna, having a surface curved by example. A multitude of electronic modules each supply a radiating element 3 via a multilayer structure 4. The device according to the invention comprises a distribution chamber 24 conforming to example the curved shape of the radiating surface 31 of the antenna. A alveolar wall 22 which conducts heat is preformed so as to come into contact with the housing bottoms 21 of the electronic modules 1 and at create at each module a cavity 27 as described in Figure 2. Ports 25 allow the passage of air jets from the chamber 24 towards the alveolar wall 22 so as to press it against modules. The cooling of these by the device according to the invention maintains them all effectively at a given temperature.

La figure 4 complète la figure 3 dans un exemple de réalisation utilisant un ventilateur 41 de type tangentiel. Ce ventilateur introduit un flux d'air 42 dans la chambre de répartition 24. La forme de ce ventilateur 41 s'adapte bien aux contraintes d'encombrement. Ses performances aérauliques, en particulier son fort débit, correspondent bien aux besoins de refroidissement.Figure 4 completes Figure 3 in an exemplary embodiment using a tangential type fan 41. This fan introduces a air flow 42 in the distribution chamber 24. The shape of this fan 41 adapts well to space constraints. His air performance, in particular its high flow, correspond well to cooling needs.

La figure 5 présente un exemple de réalisation d'un dispositif selon l'invention où la chambre de répartition 24 comporte des branches 51, le flux d'air 52 s'écoulant dans chacune de ces branches. Ces branches 51 sont par exemple de forme plate comme le corps principal de la chambre de répartition 24.Figure 5 shows an embodiment of a device according to the invention where the distribution chamber 24 has branches 51, the air flow 52 flowing in each of these branches. These branches 51 are for example of flat shape like the main body of the distribution chamber 24.

Chacune des branches 51 peut de chaque côté présenter des orifices 25 et être recouverte de la paroi alvéolaire pour ainsi refroidir des modules électroniques sur chacun de ses côtés. Une structure multicouche 4 peut être commune pour l'alimentation de deux séries de modules en vis-à-vis. L'architecture d'un dispositif selon l'invention permet ainsi une réduction d'encombrement.Each of the branches 51 may on each side present orifices 25 and be covered with the alveolar wall so as to cool electronic modules on each of its sides. A structure multilayer 4 can be common for feeding two sets of facing modules. The architecture of a device according to the invention thus allows a reduction in size.

La figure 6 présente un exemple de réalisation selon l'invention comportant un circuit de retour. Ce circuit de retour peut par exemple être nécessaire soit dans le cas d'un circuit fermé nécessitant la récupération du fluide chaud, soit dans le cas de débits de fuite latéraux 61 trop importants ou empêchés. Le circuit de retour est par exemple constitué de trous 62 traversant toute la chambre, c'est-à-dire que le flux de fluide 63 venant latéralement des cavités 27 après avoir traversé la paroi alvéolaire ne peut entrer en contact avec le flux entrant 64 qui contourne ces trous.FIG. 6 shows an exemplary embodiment according to the invention comprising a return circuit. This return circuit can for example be necessary either in the case of a closed circuit requiring the recovery of hot fluid, i.e. in the case of lateral leakage rates 61 too important or prevented. The return circuit is for example consisting of holes 62 passing through the entire chamber, that is to say that the flow of fluid 63 coming laterally from the cavities 27 after having crossed the alveolar wall cannot come into contact with the incoming flow 64 which bypasses these holes.

Dans le cas d'un circuit fermé, le fluide caloporteur transmet la chaleur prélevée sur les éléments à refroidir, sur des modules électroniques par exemple, soit à un puits de chaleur disponible et à proximité de l'équipement, soit à un circuit de refroidissement annexe de préférence en boucle fermée et constitué principalement d'un condenseur, d'un évaporateur et d'une pompe d'activation. In the case of a closed circuit, the heat transfer fluid transmits the heat taken from the elements to be cooled, from modules for example, either to an available heat sink and to proximity to the equipment, i.e. to an annex cooling circuit preferably in closed loop and mainly consisting of a condenser, evaporator and activation pump.

Les exemples de réalisation de l'invention ont été présentés pour le refroidissement de modules électronique notamment appliqués à une antenne active. L'invention peut néanmoins s'appliquer à d'autres types d'éléments à refroidir. Elle peut par exemple s'appliquer au refroidissement de diodes laser de faible ou de moyenne puissance, ou encore au refroidissement d'écrans plats.The embodiments of the invention have been presented for cooling electronic modules, in particular applied to an active antenna. The invention can nevertheless be applied to other types of elements to be cooled. It can for example apply to cooling of low or medium power laser diodes, or still cooling flat screens.

Claims (14)

Dispositif de refroidissement d'un module électronique, caractérisé en ce qu'il comporte des moyens (24, 25, 41, 51) de transfert de chaleur par impact associés à une structure alvéolaire (22) poreuse et conductrice de la chaleur et pressée sur le module par le jet de fluide (23) créé par les moyens de transfert de chaleur par impact.Module cooling device electronic, characterized in that it comprises means (24, 25, 41, 51) impact heat transfer associated with a honeycomb structure (22) porous and conductive of heat and pressed on the module by the fluid jet (23) created by the impact heat transfer means. Dispositif de refroidissement de plusieurs modules électroniques, caractérisé en ce qu'il comporte des moyens (24, 25, 41, 51) de transfert de chaleur par impact associés à une structure alvéolaire (22) poreuse et conductrice de la chaleur et pressée sur les modules (1, 21) par les jets de fluide (23) créés par les moyens de transfert de chaleur par impact.Cooling device for several modules electronic, characterized in that it comprises means (24, 25, 41, 51) impact heat transfer associated with a honeycomb structure (22) porous and conductive of heat and pressed on the modules (1, 21) by the fluid jets (23) created by the transfer means impact heat. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de transfert de chaleur par impact comportent une chambre (24) distribuant par un orifice calibré (25), au droit de chaque module (1; 21), une quantité de fluide.Device according to any one of the claims above, characterized in that the heat transfer means by impact include a chamber (24) distributing through a calibrated orifice (25), in line with each module (1; 21), a quantity of fluid. Dispositif selon la revendication 3, caractérisé en ce que, le fluide étant de l'air, la chambre (24) reçoit de l'air au moyen d'un ventilateur tangentiel (41).Device according to claim 3, characterized in that that, the fluid being air, the chamber (24) receives air by means of a tangential fan (41). Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la structure alvéolaire (22) est préformée de façon à être au contact d'un module (1, 21) et au contact de la chambre de distribution (24) de facon à créer une cavité (27) au niveau de chaque module (1, 21), cette cavité étant fermée par la paroi alvéolaire (22) et la chambre (24), un orifice (25) permettant le jet de fluide vers le module (1, 21).Device according to any one of the claims previous, characterized in that the honeycomb structure (22) is preformed so as to be in contact with a module (1, 21) and in contact of the distribution chamber (24) so as to create a cavity (27) at the level of each module (1, 21), this cavity being closed by the wall alveolar (22) and the chamber (24), an orifice (25) allowing the jet of fluid to the module (1, 21). Dispositif selon l'une quelconque des revendications 3 à 5, caractérisé en ce que la chambre de distribution (24) est plate.Device according to any one of claims 3 to 5, characterized in that the distribution chamber (24) is flat. Dispositif selon la revendication 2 et l'une quelconque des revendications 3 à 6, caractérisé en ce que la chambre de distribution (24) comporte des branches (51) qui sur chaque côté, ont des orifices (25) et sont recouvertes d'une paroi alvéolaire (22) pour permettre sur chacun des côtés le refroidissement de modules (1, 21). Device according to claim 2 and any one claims 3 to 6, characterized in that the distribution chamber (24) has branches (51) which have holes on each side (25) and are covered with a cellular wall (22) to allow on each side cooling modules (1, 21). Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la structure alvéolaire poreuse (22) est constituée d'une mousse de cuivre.Device according to any one of the claims previous, characterized in that the porous honeycomb structure (22) is made of copper foam. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la structure alvéolaire poreuse (22) est constituée d'aluminium.Device according to any one of the claims 1 to 7, characterized in that the porous honeycomb structure (22) is made of aluminum. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la structure alvéolaire poreuse (22) est constituée d'une structure en fibre de carbone.Device according to any one of the claims 1 to 7, characterized in that the porous honeycomb structure (22) is consisting of a carbon fiber structure. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la structure alvéolaire (22) recouvre sensiblement le fond de boítier (21) d'un module.Device according to any one of the claims previous, characterized in that the honeycomb structure (22) covers substantially the bottom of the housing (21) of a module. Dispositif selon l'une quelconque des revendications 2 à 11, caractérisé en ce que les modules (1) alimentant les éléments rayonnants (3) d'une antenne active, la surface de la chambre de distribution (24) épouse sensiblement la forme de la surface rayonnante de l'antenne.Device according to any one of claims 2 to 11, characterized in that the modules (1) supplying the elements radiating (3) from an active antenna, the surface of the distribution (24) substantially matches the shape of the radiating surface of the antenna. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est muni d'un circuit de retour du fluide dont le trajet emprunte en sortie latérale de la structure alvéolaire au moins un trou (62) réalisé dans la chambre de distribution (24), le trou traversant entièrement cette dernière de façon à ce que les flux d'entrée (64) et de sortie (61, 63) ne se mélangent pas.Device according to any one of the claims previous, characterized in that it is provided with a return circuit of the fluid whose path borrows from the lateral outlet of the alveolar structure at least one hole (62) made in the distribution chamber (24), the hole crossing the latter entirely so that the input flows (64) and outlet (61, 63) do not mix. Dispositif selon l'une quelconque des revendications 2 à 13, caractérisé en ce que les modules (1, 21) sont juxtaposés.Device according to any one of claims 2 to 13, characterized in that the modules (1, 21) are juxtaposed.
EP97401861A 1996-08-06 1997-08-01 Cooling device for electronic modules Withdrawn EP0823611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9609906 1996-08-06
FR9609906A FR2752289B1 (en) 1996-08-06 1996-08-06 COOLING DEVICE, ESPECIALLY ELECTRONIC MODULES

Publications (1)

Publication Number Publication Date
EP0823611A1 true EP0823611A1 (en) 1998-02-11

Family

ID=9494854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97401861A Withdrawn EP0823611A1 (en) 1996-08-06 1997-08-01 Cooling device for electronic modules

Country Status (2)

Country Link
EP (1) EP0823611A1 (en)
FR (1) FR2752289B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665180B2 (en) 2001-06-22 2003-12-16 International Business Machines Corporation System for cooling a component in a computer system
WO2004108531A1 (en) * 2003-06-05 2004-12-16 The Boeing Company Surface temperature control system
FR2939243A1 (en) * 2008-11-28 2010-06-04 Thales Sa Active antenna element, has ventilator configured and arranged in manner to force circulation of exterior air, where exterior air is inputted through one of faces of element and outputted through other face of element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145497A (en) * 1983-02-08 1984-08-20 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Heat exchanger
FR2588699A1 (en) * 1985-10-10 1987-04-17 Shibuya Kogyo Co Ltd MIRROR COOLING DEVICE, IN PARTICULAR FOR LASER
WO1995022038A1 (en) * 1994-02-15 1995-08-17 Thomson Tubes Electronics Fluid flow heat exchanger, particularly for electron tubes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145497A (en) * 1983-02-08 1984-08-20 Kogata Gas Reibou Gijutsu Kenkyu Kumiai Heat exchanger
FR2588699A1 (en) * 1985-10-10 1987-04-17 Shibuya Kogyo Co Ltd MIRROR COOLING DEVICE, IN PARTICULAR FOR LASER
WO1995022038A1 (en) * 1994-02-15 1995-08-17 Thomson Tubes Electronics Fluid flow heat exchanger, particularly for electron tubes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 276 (M - 346) 18 December 1984 (1984-12-18) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665180B2 (en) 2001-06-22 2003-12-16 International Business Machines Corporation System for cooling a component in a computer system
WO2004108531A1 (en) * 2003-06-05 2004-12-16 The Boeing Company Surface temperature control system
US7055781B2 (en) 2003-06-05 2006-06-06 The Boeing Company Cooled insulation surface temperature control system
US7232093B2 (en) 2003-06-05 2007-06-19 The Boeing Company Cooled insulation surface temperature control system
EP2108587A3 (en) * 2003-06-05 2017-12-13 The Boeing Company Surface temperature control system
FR2939243A1 (en) * 2008-11-28 2010-06-04 Thales Sa Active antenna element, has ventilator configured and arranged in manner to force circulation of exterior air, where exterior air is inputted through one of faces of element and outputted through other face of element

Also Published As

Publication number Publication date
FR2752289A1 (en) 1998-02-13
FR2752289B1 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
EP3732744B1 (en) Temperature control device for a battery or an electronical power device
EP2931093B1 (en) Boiler for a machine for preparing beverages
FR2720860A1 (en) Battery operating at high temperature.
FR2805710A1 (en) ELECTRIC SYSTEM COOLED BY THE REFRIGERANT OF AN AIR CONDITIONING SYSTEM, MOTOR VEHICLE COMPRISING SUCH AN ELECTRICAL SYSTEM, AND USE OF THE REFRIGERANT OF AN AIR CONDITIONING SYSTEM
EP2753481A1 (en) Electrical heating device for a motor vehicle and associated air-conditioning and/or heating unit
FR3099643A1 (en) Battery thermal management device comprising a magnetocaloric device
EP2901088A2 (en) Device for thermally conditioning fluid for a motor vehicle and corresponding heating and/or air conditioning apparatus
EP3931507B1 (en) Temperature control device, in particular cooling device for a motor vehicle
FR2579305A1 (en) APPARATUS FOR COOLING THE ENGINE OF A REFRIGERATOR
FR2715773A1 (en) Liquid cooling device for electronic power component fixed to base in electric vehicles
FR2937795A1 (en) Electronic device for use in phototherapy lamp, has support provided with orifice that is arranged opposite to electronic component e.g. LED, where portion of heat conductor element is inserted in orifice
EP0823611A1 (en) Cooling device for electronic modules
FR2895845A1 (en) DEVICE AND METHOD FOR COOLING POWER ELECTRONICS OF AN ELECTRIC GENERATING / ENGINE COMBINATION.
FR2979691A1 (en) ELECTRICAL HEATING DEVICE FOR A MOTOR VEHICLE, AND HEATING AND / OR AIR CONDITIONING APPARATUS THEREFOR
FR2699651A3 (en) Air conditioning unit for dwellings using an air-water heat pump.
WO2020115428A1 (en) Modular battery comprising a thermal conditioning system
WO2011006860A1 (en) Compact fuel cell
EP3956624A1 (en) Temperature control device, in particular a cooling device for a motor vehicle
FR3073609B1 (en) CHANNEL FOR THERMAL EXCHANGER OF A MOTOR VEHICLE
FR2855600A1 (en) CRYOGENIC / WATER HEAT EXCHANGER AND APPLICATION TO THE SUPPLY OF GAS TO A POWER GROUP ON BOARD IN A VEHICLE
FR2807285A1 (en) Device for thermal control of high-power electronic components by circulation of coolant
EP3080524B1 (en) Fluid distributor, thermal conditioning device for a fluid of an automobile vehicle and heating and/or cooling apparatus thereof
WO2023217555A1 (en) Thermal regulation device for cooling an electrical energy storage member
FR3069618B1 (en) VENTILATION DEVICE FOR MOTOR VEHICLE
FR2813385A1 (en) Heat exchange system for vehicle air conditioning comprises first second and third exchangers feeding heat release elements with progressively cooled product fluid.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980803

AKX Designation fees paid

Free format text: DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20000721

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: DEVICE FOR COOLING AN ELEMENT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021015