JPS59143435A - Data transmission system - Google Patents

Data transmission system

Info

Publication number
JPS59143435A
JPS59143435A JP1767383A JP1767383A JPS59143435A JP S59143435 A JPS59143435 A JP S59143435A JP 1767383 A JP1767383 A JP 1767383A JP 1767383 A JP1767383 A JP 1767383A JP S59143435 A JPS59143435 A JP S59143435A
Authority
JP
Japan
Prior art keywords
signal
data
control device
data transmission
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1767383A
Other languages
Japanese (ja)
Inventor
Toshiaki Nagao
敏明 長尾
Toshio Yomo
四方 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP1767383A priority Critical patent/JPS59143435A/en
Publication of JPS59143435A publication Critical patent/JPS59143435A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/542Methods of transmitting or receiving signals via power distribution lines using zero crossing information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5425Methods of transmitting or receiving signals via power distribution lines improving S/N by matching impedance, noise reduction, gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5458Monitor sensor; Alarm systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To reduce the influence of noise received from a power supply line by detecting a zero crossing point of a power supply AC signal and transmitting data synchronously with the detecting timing during a period sufficiently shorter than the cycle of the AC signal. CONSTITUTION:A zero crossing detecting circuit 7 in a transmission controlling part 5 detects the zero crossing point of a power supply AC signal AC and outputs a trigger signal TR to a CPU9. The CPU9 executes interruption at the rise and fall of the signal TR to form a signal T. Data are transmitted during the time (t) from the rise and fall of the signal T which is sufficiently shorter than the cycle of the signal AC. Consequently, the data are tranmitted always at the small amplitude point of the signal AC, so that the influence of power supply noise can be reduced.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明は、たとえば温度調節装置等のように。[Detailed description of the invention] (b) Field of invention This invention can be applied to, for example, a temperature control device.

制御装置と調節器の2装置間で間欠的にデータを・授受
するだめのデータ伝送方式に関する。
The present invention relates to a data transmission method for intermittently exchanging data between two devices, a control device and a regulator.

(ロ)従来技術とその問題点 従来、たとえば温度調節装置において、制御装置側よシ
の設定データ等を調節器に伝送し、あるいは調節器よシ
の被制御系データを制御装置側に伝送するのに、それぞ
れ制御装置側、調節器側での伝送以外の他の処理タイミ
ングの間に間欠的に行なうようにしている。一方、温度
調節装置の調節器は通常被制御系の設置場所に設けられ
るものであシ、電源信号ラインが他の動力負荷装置と共
通の場合があり、制御装置と調節器を結ぶ伝送ラインが
電源信号ラインの近傍を並走し、電源信号ラインに重畳
するノイズが伝送ラインに混入することがある。まだ、
上記伝送の実行タイミングは。
(B) Conventional technology and its problems Conventionally, for example, in a temperature control device, setting data etc. from the control device side are transmitted to the controller, or controlled system data from the controller is transmitted to the control device side. However, it is performed intermittently during processing timings other than transmission on the control device side and the regulator side, respectively. On the other hand, the controller of a temperature control device is usually installed at the location where the controlled system is installed, and the power signal line may be shared with other power load devices, and the transmission line connecting the control device and the controller is Noise that runs parallel to the power signal line and is superimposed on the power signal line may mix into the transmission line. still,
What is the execution timing of the above transmission?

装置機器内部で作成されるタイミングに依存し。Depends on the timing created inside the device.

電源信号ラインに重畳するノイズとは無関係である。そ
のため1時にはデータ伝送の実行時に電源信号ラインに
重畳されるノイズが伝送ラインに混入し、伝送が乱され
るというおそれがあった。
It has nothing to do with noise superimposed on the power signal line. Therefore, at one time, there was a fear that noise superimposed on the power signal line during data transmission would mix into the transmission line and disrupt the transmission.

(ハ)発明の目的 この発明の目的は、上記従来のデータ伝送方式の欠点を
解消し、電源信号ラインに重畳されるノイズの影響が軽
減されるデータ伝送方式を提供するにある。
(c) Purpose of the Invention It is an object of the present invention to provide a data transmission method that eliminates the drawbacks of the conventional data transmission method described above and reduces the influence of noise superimposed on the power signal line.

に)発明の構成と効果 上記目的を達成するためにこの発明のデータ伝送方式は
、電源交流信号のゼロクロス点を検知するゼロクロス検
知回路を備え、このゼロクロス検知回路ノゼロクロス検
知タイミングに同期し、かつゼロクロス点近傍で、前記
電源交流信号の周期よシも十分に短い期間に、2装置間
のデータ伝送を行うようにしている。
B) Structure and Effect of the Invention In order to achieve the above object, the data transmission method of the present invention includes a zero-cross detection circuit that detects the zero-cross point of a power AC signal, and synchronizes the zero-cross detection circuit with the zero-cross detection timing, and Data transmission between the two devices is performed near the zero-crossing point in a period that is sufficiently short than the period of the power AC signal.

この発明のデータ伝送方式によれば、電源交流信号のゼ
ロクロスに同期しかつそのゼロクロス点近傍で、電源交
流信号の周期より十分に短い期間にデータ伝送をなすも
のであるから、常に電源交流信号の振幅の小さな点での
データ伝送となり。
According to the data transmission method of the present invention, data is transmitted in synchronization with the zero cross of the power AC signal and in the vicinity of the zero cross point in a period sufficiently shorter than the cycle of the power AC signal. Data is transmitted at points with small amplitude.

電源ノイズの影響を軽減することができる。The influence of power supply noise can be reduced.

(ホ)実施例の説明 以下4図面に示す実施例によシ、この発明をさらに詳細
に説明する。
(e) Description of Embodiments The present invention will be explained in more detail with reference to embodiments shown in the following four drawings.

第1図はこの発明が実施される温度調節装置の概略ブロ
ック図である。同図において、1は制御室等に設けられ
る制御装置であり、伝送ライン2を介して調節器6とデ
ータ授受がなされるように構成されている。制御装置1
は、パラメータ等を設定入力する設定部4.調節器6と
のデー、夕伝送の制御を行なう伝送制御部5.設定部4
で設定された値や、調節器ろよシ伝送されて来るデータ
等を表示する表示部6及び電源交流信号のゼロクロス点
を検知するゼロクロス検知回路7で構成されている。
FIG. 1 is a schematic block diagram of a temperature control device in which the present invention is implemented. In the figure, reference numeral 1 denotes a control device installed in a control room or the like, and is configured to exchange data with a controller 6 via a transmission line 2. Control device 1
is a setting section 4 for setting and inputting parameters and the like. A transmission control unit 5 that controls data and evening transmission with the controller 6. Setting section 4
The controller is comprised of a display section 6 that displays values set by the controller, data transmitted from the controller, etc., and a zero-cross detection circuit 7 that detects zero-cross points of the power AC signal.

第2図は、上記第1図の温度調節装置の伝送制御部5の
内部構成をさらに詳しく示したブロック図であり、8は
システムプログラムを記憶するROM、9はROM8に
記憶されるシステムプログラムにしだがい、伝送制御等
を実行するCPU。
FIG. 2 is a block diagram showing in more detail the internal configuration of the transmission control unit 5 of the temperature control device shown in FIG. A CPU that executes transmission control, etc.

10は伝送制御に必要な演算値を記憶するRAM。10 is a RAM that stores calculation values necessary for transmission control.

11は調節器6と伝送0.にの信号R(第6図R参照)
を授受するR信号回路、12は調節器6へのデータ伝送
あるいは調節器6からのデータ伝送受けを規定する信号
T(第6図T参照)を出力するT信号回路である。13
は調節H30制御チャネルを特定する桁タイミング信号
を入出力する桁信号入出力部である。この実施例装置で
は一制御チャネルをCHl、CH2,CH3,、C″H
4の4チャネルとしているので桁信号はCH,CL(第
6図CH,CL参照)の2ビツトで構成されている。
11 is the regulator 6 and the transmission 0. Signal R (see Figure 6 R)
12 is a T signal circuit that outputs a signal T (see T in FIG. 6) that specifies data transmission to the regulator 6 or reception of data transmission from the regulator 6. 13
is a digit signal input/output unit that inputs and outputs a digit timing signal specifying the adjustment H30 control channel. In this embodiment, one control channel is CHl, CH2, CH3, C″H.
Since there are 4 channels, the digit signal consists of 2 bits, CH and CL (see CH and CL in FIG. 6).

14は調節器6と各チャネル毎のデータ信号D(第6図
り参照)を授受するインタフェース回路である。なお調
節器ろ側にも第2図に示したと同構成の伝送制御部が設
けられている。
Reference numeral 14 denotes an interface circuit for transmitting and receiving data signals D (see Fig. 6) for each channel to and from the regulator 6. A transmission control section having the same configuration as that shown in FIG. 2 is also provided on the lower side of the regulator.

次に、上記温度調節装置における制御装置1と調節器6
間のデータ伝送動作について説明する。
Next, the control device 1 and the regulator 6 in the above-mentioned temperature regulating device
The data transmission operation between the two will be explained.

先ず第6図に示す信号波形タイムチャートを参照して全
体動作の概略を説明する。
First, an outline of the overall operation will be explained with reference to the signal waveform time chart shown in FIG.

第6図において、ACは電源交流信号波形であり この
電源交流信号ACのゼロクロス点がゼロクロス検知回路
7で検知され、ゼロクロス検知回路7よりトリガ信号T
RがCPU9に出力される。
In FIG. 6, AC is a power supply AC signal waveform, and the zero cross point of this power supply AC signal AC is detected by the zero cross detection circuit 7, and the trigger signal T is detected by the zero cross detection circuit 7.
R is output to the CPU 9.

CPU9はトリガ信号TRを受けてトリガ信号TRの立
上り、もしくは立下りで割込(1)の処理を行ない、信
号Tを作成する。この信号Tは電源交流信号ACの数十
サイクル毎にHigh(1′1,1 ) l LOW(
” 0 、、 )を繰シ返す信号であυ、この信号Tの
り、Q Wの期間が調節器6から制御装置1へのデータ
伝送に、Higbの期間が制御装置1から制御装置1へ
のデータ伝送に割当られる。もつとも、実際にデータ伝
送が実行されるのは、信号Tの立上り点あるいは立下シ
点よシわずかの時間tの間であシ。
The CPU 9 receives the trigger signal TR, performs interrupt (1) processing at the rising edge or falling edge of the trigger signal TR, and generates a signal T. This signal T goes High(1'1,1) l LOW(
This is a signal that repeats ``0,,,,'' ), and the period of this signal T and QW is used for data transmission from the controller 6 to the control device 1, and the period of Higb is used for data transmission from the control device 1 to the control device 1. However, data transmission is actually carried out during a short period of time t from the rising or falling point of the signal T.

この時間tは電源交流信号ACの周期に比して十分に短
い値である。この時間tの開信号RがHighとなり、
データ伝送がOKとなる。信号RがHighとなると、
1テタイミング信号CH−CLがともにHigl+とな
シ、先ずチャネ/I/CH1が指定され、読込クロック
CPに基づいてチャネ)v CH1のデータ伝送がなさ
れ、続いて仮タイミング信号C’H・CLがHigb・
Lowとなると、チャネ)vcH’lが指定されてその
データ伝送がなされ、さらに続いて桁タイミング信号C
H−CLが+’ LOW −Higb 。
This time t is a sufficiently short value compared to the period of the power supply alternating current signal AC. The open signal R at this time t becomes High,
Data transmission is now OK. When signal R becomes High,
When both timing signals CH-CL are Higl+, channel /I/CH1 is specified first, data transmission of channel (CH1) is performed based on the read clock CP, and then provisional timing signals C'H and CL are specified. is Higb・
When it goes Low, the channel)vcH'l is designated and its data is transmitted, and then the digit timing signal C
H-CL is +' LOW -Higb.

Low−Lowと変化するとそれぞれチャネ)v CH
5+チャネ)v CH4が指定され、それぞれ指定され
るチャネルCH5,CH4のデータが伝送される。デー
夕の伝送方向は上述したように信号Tの立上り後すなわ
ちT信号がHi g I+の時は、調節器6から制御装
置1へ、信号Tの立下り後すなわちT信号がLQWO時
は制御装置1より調節器6へとなる。信号Tの立上り後
、あるいは立下り後にL時間1過すると、データ伝送動
作は終了し、制御装置1及び調節器3はデータ伝送動作
の他の処理を行なうことになる。
When changing from Low to Low, each channel) v CH
5+channel) v CH4 is designated, and the data of the designated channels CH5 and CH4 are transmitted. As mentioned above, the data transmission direction is from the controller 6 to the control device 1 after the rise of the signal T, that is, when the T signal is High I+, and from the controller 6 to the control device 1 after the fall of the signal T, that is, when the T signal is LQWO. 1 to the regulator 6. When L time 1 has elapsed after the rise or fall of the signal T, the data transmission operation ends, and the control device 1 and the controller 3 perform other processing of the data transmission operation.

次に第4図に示すフロー図を参照して制御装置1におけ
る信号Tの作成動作について説明する。
Next, the operation of generating the signal T in the control device 1 will be explained with reference to the flowchart shown in FIG.

ゼロクロス検知回路7がトリガ出力をCPU9に加える
たびに第4図に示す割込(1)がかかり、その度にカウ
ンタTsiよシー1の演算を施す〔ステップST(以下
単にST )1) 。このカウンタTsiはRAM10
内に設けられ、信号TのHigh。
Each time the zero-crossing detection circuit 7 applies a trigger output to the CPU 9, an interrupt (1) shown in FIG. 4 is generated, and each time the counter Tsi is calculated by the counter Tsi1 (step ST (hereinafter referred to simply as ST1)). This counter Tsi is RAM10
The signal T is High.

Lowの繰り返し周期に対応した値が初期セットされて
いる。ST1に続いて次にカウンタTsiの内容が0か
否か判定する(ST2)。0でなければ信号Tを以前の
ままとし変化を与えずリターンする。
A value corresponding to the Low repetition period is initially set. Following ST1, it is then determined whether the contents of the counter Tsi are 0 or not (ST2). If it is not 0, the signal T is left unchanged and returns.

ST2でカウンタTsiの内容が0となると、前回のT
信号の極性反転時から一定時間維持1が経過したことに
なるので、ここでカウンタTSiに初期値TSIをセッ
トしく5T3)、続いてそれまでの信号Tが!I Q 
、、かすなわちLowか否かを判定しく5T4)、”O
nであれば信号TをHigl+に反転して出力しく5T
5)’、逆に“lO2,でなければ信号TをL6wに反
転して出力しく、5T6)、  リターンする。
When the contents of the counter Tsi become 0 in ST2, the previous T
Since the fixed time period 1 has elapsed since the polarity of the signal was reversed, the initial value TSI should be set in the counter TSi (5T3), and then the previous signal T! IQ
, , that is, whether it is Low or not (5T4), "O
If n, the signal T should be inverted to Higl+ and output 5T.
5)', conversely, if it is not "lO2," invert the signal T to L6w and output it, 5T6) and return.

このようにしてゼロクロス検知回路7よシのトリガ信号
TRの立上シ及び立下シ信号で割込(1)を受けその割
込回数、すなわちゼロクロス点のカウント数が所定値に
達するごとに信号Tの逆性を反転して、一定期間毎にH
igb、Lowが繰り返される信号Tが作成される。
In this way, an interrupt (1) is generated by the rising and falling signals of the trigger signal TR from the zero-crossing detection circuit 7, and each time the number of interruptions, that is, the count number of zero-crossing points reaches a predetermined value, Reverse the inversion of T and change H at regular intervals
A signal T is created in which igb and Low are repeated.

次に第5図、第6図に示すフロー図を参照して。Next, please refer to the flowcharts shown in FIGS. 5 and 6.

信号Tの立上シあるいは立下シに続くデータ伝送動作の
詳細について説明する。
The details of the data transmission operation following the rise or fall of the signal T will be explained.

先ず、信号Tの立下シ時、すなわち制御装置1から調節
器6ヘデータを伝送する場合について説明する。制御装
置1のCPU9では、常に信号Tが立上ったかあるいは
信号Tが立下ったかをチェックしておシ(第5図のST
、111 5T12 )、  Lだがって上記想定では
信号Tの立下シであるから。
First, the case when the signal T falls, that is, the case where data is transmitted from the control device 1 to the controller 6 will be explained. The CPU 9 of the control device 1 always checks whether the signal T has risen or fallen (ST in Fig. 5).
, 111 5T12), L. Therefore, in the above assumption, this is the falling edge of the signal T.

5T11の判定No、5T12の判定YESとな少5T
13に移シ桁カウンタDCのカウント内容を出力する。
Judgment No of 5T11, judgment YES of 5T12, small 5T
13, the count contents of the shift digit counter DC are output.

この桁カウンタDCはAテタイミング信号CH,CLを
出力するだめのカウンタでありRAMIQに設けられて
いる。第6図に示すように信号Tの立下り時の当初は信
号CH,CL、!、もHi g bであり、チャネ)v
 CH1を示す信号が出力されラ この粧タイミング信
号によりチャネ/l/CHIのデータDR1が出力され
(sT14.)、 ’A3カウカウンタの内容が−1さ
れる。これによシ醤テヵウンタDCの内容はCHがHi
gb 、 CLがLow(チャネルCH2を示す)とな
る(ST15)。続いて桁カウンタDCの内容が0か否
か(信号CH−CLともLowか否か)判定される(S
T16)。チャネ)vCHlのデータ出力タイミングな
のでこの時点のST16における判定はNoであり、そ
の後toの時間保持を行ない(ST17)、再び5T1
3にもどる。なおSTI 7での時間保持は5.化カウ
ンタDCのチャネ/L/@号を一定時間維持するだめに
なされるものである。
This digit counter DC is a counter for outputting the Ate timing signals CH and CL, and is provided in the RAMIQ. As shown in FIG. 6, at the beginning when the signal T falls, the signals CH, CL, ! , is also High b and channel) v
A signal indicating CH1 is output. This decorative timing signal causes data DR1 of channel /l/CHI to be output (sT14.), and the contents of the 'A3 cow counter are incremented by 1. Accordingly, the contents of the soybean counter DC are high when CH is high.
gb, CL becomes Low (indicating channel CH2) (ST15). Next, it is determined whether the content of the digit counter DC is 0 (whether the signals CH-CL are both Low or not) (S
T16). Channel) Since it is the data output timing of vCHl, the judgment in ST16 at this point is No, and after that, the to time is held (ST17), and the 5T1 is outputted again.
Return to 3. Note that the time retention in STI 7 is 5. This is done in order to maintain the channel /L/@ number of the conversion counter DC for a certain period of time.

上記のようにして信号Tが立下ると、制御装置1からチ
ャネルCH1のデータDR1が出力されるが、−力調節
器5叫でも第6図に示すように信号Tの立トシあるいは
立下シで割込(2)を受け、信号Tが0か否かを判定し
ている(ST31)。それゆえ上記想定のように信号の
立下9時点後では、5T31の信号’r=0かの判定は
YESとなシ、続いて制御装置1の桁信号入出力部1ろ
よりの41タイミング信号CH−CLを受けこの信号を
読込む(ST32)。上述のように制御装置1よシ出力
される桁タイミング信号cH,cLはHigb、 Hi
gbすなわちチャネ)v CH1を指定する信号なので
、この指定により制御装置1のインンフェース14から
のチャネ/L/CH1のデータDR1が読込まれる(S
T33)。これによシチャネルCH1の制御装置1から
調節器5へのデータ伝送が終了する。調節器6ではデー
タDRiの読込み後、5T34の桁タイミング−0か?
の判定Noを経て、ST32にもどる。
When the signal T falls as described above, the data DR1 of the channel CH1 is output from the control device 1, but even when the force regulator 5 outputs the signal T, the rise or fall of the signal T occurs as shown in FIG. Upon receiving an interrupt (2), it is determined whether the signal T is 0 or not (ST31). Therefore, as assumed above, after 9 points of falling of the signal, the determination of whether the signal 'r=0 of 5T31 is YES, and then the 41 timing signal from the digit signal input/output section 1 of the control device 1 Receive CH-CL and read this signal (ST32). As mentioned above, the digit timing signals cH and cL output from the control device 1 are Higb and Hi.
gb (that is, channel) v Since this is a signal specifying CH1, data DR1 of channel/L/CH1 from the interface 14 of the control device 1 is read (S
T33). This completes the data transmission from the control device 1 to the regulator 5 of the channel CH1. In the controller 6, after reading the data DRi, is the digit timing of 5T34 -0?
After the determination No, the process returns to ST32.

チャネ/I/CH1のデータ伝送が終了すると、制御装
@1側では、5T15で桁カウンタDCの内容すなわち
チャネ)vCH2を示す桁タイミング信号(CM:Hi
gh、CL:Low)を出力し、さらにfヤ*)v C
H2(7)データDR2も出力すル(ST14)。そし
て鵞カウンタDCの内容が−1され、その内容はチャネ
/l/CHろを示す信号(CH:Low、 CL:Hi
gb)となる(ST15)。次に、  5T16 、 
5T17を経てまたSTI 3にもどる。これに対し調
節器6では。
When the data transmission of channel/I/CH1 is completed, the control device @1 side outputs the digit timing signal (CM: Hi
Outputs gh, CL: Low), and further outputs fya*)v C
H2 (7) Data DR2 is also output (ST14). Then, the content of the goose counter DC is incremented by 1, and the content is changed to a signal indicating channel/l/CH low (CH: Low, CL: Hi).
gb) (ST15). Next, 5T16,
After 5T17, I returned to STI 3. On the other hand, in regulator 6.

制御装置1よりの桁タイミング信号CH,CLを読込み
(ST、2)、チャネルCH2のデータ信号DR2を読
込む(ST33)。
The digit timing signals CH and CL from the control device 1 are read (ST, 2), and the data signal DR2 of the channel CH2 is read (ST33).

上記と同様にして、チャネ)vCH3,CH4の桁タイ
ミング信号及びデータDRI、DR4が制御装置1より
出力され、調節器6に読込まれる。
Similarly to the above, the digit timing signals and data DRI and DR4 of channels vCH3 and CH4 are outputted from the control device 1 and read into the regulator 6.

チャネルCH4についての桁タイミング信号、及びデー
タDR4の出力が終了すると5桁カウンタDCの内容は
Oとなるのでデータ伝送の処理動作は終了する。そして
その後は次の信号Tの立上り点まで、他の処理を行なう
ことになる(ST21)。
When the output of the digit timing signal and data DR4 for channel CH4 is completed, the contents of the 5-digit counter DC become O, and the data transmission processing operation ends. After that, other processing is performed until the next rising point of signal T (ST21).

同様に調節器6でもチャネ)v CH4の桁タイミング
信号及びデータD、R4の読込みを終了するとs’3.
4での旨タイミング=39の判定がYESとなるので9
割込(2)処理よりリターンし、以後は他の処理を行な
うことになる。
Similarly, in the controller 6, when reading of the digit timing signal and data D and R4 of channel) v CH4 is completed, s'3.
Since the judgment of 4 = 39 is YES, 9
The process returns from the interrupt (2) process, and other processes will be performed thereafter.

信号Tの立上9時、すなわち調節器6から制御装置1ヘ
データを伝送する場合には、先ず調節器ろで信号Tの立
上りによる割込(2)を受け、 5T31で信号TがO
か否か判定される。この場合は信号TがOか否か判定さ
れる。この場合は信号TがHighに変化しているので
9判定はNoとなシ、5T35に移り調節器ろ自体に保
有される桁カウンタDCの内容(チャネルCH1を示す
桁タイミング信号)を出力するとともに、チャネ)L/
、CH1のデータDSiを出力する(ST36 )。
At 9 o'clock when the signal T rises, that is, when data is to be transmitted from the controller 6 to the control device 1, the controller first receives an interrupt (2) due to the rise of the signal T, and at 5T31, the signal T becomes O.
It is determined whether or not. In this case, it is determined whether the signal T is O or not. In this case, since the signal T has changed to High, the 9 judgment is No, and the process moves to 5T35, where it outputs the contents of the digit counter DC (digit timing signal indicating channel CH1) held in the controller itself. , channel) L/
, outputs data DSi of CH1 (ST36).

一方、制御装置1では信号Tの立上りを検出するので5
T11のT立上シ検出か?の判定はYESとなシ、続い
て、調節器5より桁信号入出力部゛13を経て伝送され
て来るチャネ)v’CH1を示す桁タイミング信号を読
込む(ST18)とともに、同じく調節器ろよりインタ
フェース14を経て伝送されて来るチャネルCH1のデ
ータDS1を読込む(S T19)。これで調節器6よ
り制御装置1へのチャネ7vCH1のデータDS1の伝
送が終了することになる。後は、調節器5で:1テカウ
ンタDCの内容がOとなるまで1桁カウンタDCの内容
の順次出力(ST35)、各チャネルCH2,CH3,
CH4のデータDS2 、 DS3. DS4の順次出
力(ST36)9桁カウンタDCの一1演算(ST37
)及びto時間出力保持が繰シ返されるとともに、制御
装@1では調節器6よシ伝送されて来る桁カウンタDC
の内容の順次読込み(ST18)、各チャネルCH2,
cHb。
On the other hand, since the control device 1 detects the rising edge of the signal T,
Is T11 T rising detection detected? The judgment is YES, and then the digit timing signal indicating the channel (v'CH1) transmitted from the controller 5 via the digit signal input/output unit 13 is read (ST18), and the controller The data DS1 of the channel CH1 transmitted via the interface 14 is read (ST19). This completes the transmission of data DS1 on channel 7vCH1 from controller 6 to control device 1. After that, the controller 5 sequentially outputs the contents of the 1-digit counter DC until the contents of the 1-digit counter DC reach O (ST35), and each channel CH2, CH3,
CH4 data DS2, DS3. Sequential output of DS4 (ST36) 11 calculations of 9-digit counter DC (ST37
) and to time output holding are repeated, and in the control device @1, the digit counter DC transmitted from the controller 6
Sequentially read the contents of (ST18), each channel CH2,
cHb.

CI(4のデータDS2.DS3.DS4の順次読込み
(S T19 )が繰シ返される。そして各チャネルC
H1゜CH2,CH3,CH4のデータ伝送が終了する
と調節器乙の5T38のDC=Qか9.制御装置1の5
T20の桁タイミング0か?の判定はいずれもYESと
なるので、調節器6及び制御装@1はデータ伝送以外の
他の処理動作に移ることになる。
The sequential reading (S T19 ) of data DS2, DS3, and DS4 of CI (4) is repeated. Then, each channel C
H1゜When the data transmission of CH2, CH3, and CH4 is completed, the DC of 5T38 of controller O is Q or 9. Control device 1-5
Is T20 digit timing 0? Since both of the determinations are YES, the controller 6 and the control device @1 proceed to other processing operations than data transmission.

以上のように上記実施例で、データ伝送が行なわれるの
は、制御装置から調節器へあるいは逆に調節器から制御
装置へ伝送する場合のいずれの場合でも、ゼロクロス検
知後の電源交流信号の周期に比して十分に短い期間であ
り、電源交流信号の振幅須の小さい期間の伝送であり、
電源ラインよシのノイズの影響を軽減できる。
As described above, in the above embodiment, data is transmitted at the cycle of the power supply AC signal after zero-cross detection, regardless of whether the data is transmitted from the control device to the controller or vice versa. It is a sufficiently short period compared to , and the amplitude of the power supply AC signal is small.
It can reduce the influence of noise from the power line.

なお、上記実施例は温度調節装置にこの発明が実施され
る場合について説明したが5、これに限ることなくこd
廃明は2装置間のデータ伝送に適用できるものであるこ
というまでもない。
Although the above embodiment describes the case where the present invention is implemented in a temperature control device5, the present invention is not limited to this.
It goes without saying that the method can be applied to data transmission between two devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明が実施される温度調節装置の概略グロ
ック図、第2図は同温度調節装置の制御装置の伝送制御
部をさらに詳しく示したブロック図、第6図は第1図、
第2図に示す温度調節装置のデータ伝送動作を説明する
だめの各部信号波形タイムチャート、第4図は第2図に
示す伝送制御部でのT信号作成フローを示す図、第5図
は同伝送制御部のデータ伝送処理フローを示す図、第6
図は第1図に示す温度調節装置の調節器側のデータ伝送
処理フローを示す図である。 1:制御装置、  2:伝送ライン。 3:調節器、  5:伝送制御部、  7:ゼロクロス
検知回路、・ 8:ROM、   9:CPU。 10:RAM、  1ろ:桁信号入出力部。 14:インタフェース。 特許出願人     立石電機株式会社代理人  弁理
士  中1村 茂 信 第1図 第2図 第6図
FIG. 1 is a schematic block diagram of a temperature control device in which the present invention is implemented, FIG. 2 is a block diagram showing in more detail the transmission control section of the control device of the temperature control device, and FIG. 6 is the same as that shown in FIG.
Fig. 2 is a time chart of signal waveforms of each part to explain the data transmission operation of the temperature control device, Fig. 4 is a diagram showing the T signal creation flow in the transmission control section shown in Fig. 2, and Fig. 5 is the same. Diagram 6 showing the data transmission processing flow of the transmission control unit
This figure is a diagram showing a data transmission processing flow on the controller side of the temperature control device shown in FIG. 1. 1: Control device, 2: Transmission line. 3: Controller, 5: Transmission control unit, 7: Zero cross detection circuit, 8: ROM, 9: CPU. 10: RAM, 1ro: Digit signal input/output section. 14: Interface. Patent Applicant Tateishi Electric Co., Ltd. Agent Patent Attorney Shigeru Nakaichimura Figure 1 Figure 2 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)2装置間で間欠的にデータを授受するだめのデー
タ伝送方式であって。 前記装置に電源交流信号のゼロクロス点を検知スるゼロ
クロス検知回路を備え、このゼロクロス検知回路のゼロ
クロス検知タイミングに同期し、かつゼロクロス点近傍
で前記電源交流信号の周期よりも十分に短い期間に前記
2装置間のデータ伝送を行なうことを特徴とするデータ
伝送方式。
(1) This is a data transmission method that allows data to be sent and received intermittently between two devices. The device includes a zero-crossing detection circuit that detects the zero-crossing point of the power supply AC signal, and is synchronized with the zero-crossing detection timing of the zero-crossing detection circuit and detects the zero-crossing point in the vicinity of the zero-crossing point for a period sufficiently shorter than the period of the power supply AC signal. A data transmission method characterized by transmitting data between two devices.
JP1767383A 1983-02-05 1983-02-05 Data transmission system Pending JPS59143435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1767383A JPS59143435A (en) 1983-02-05 1983-02-05 Data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1767383A JPS59143435A (en) 1983-02-05 1983-02-05 Data transmission system

Publications (1)

Publication Number Publication Date
JPS59143435A true JPS59143435A (en) 1984-08-17

Family

ID=11950371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1767383A Pending JPS59143435A (en) 1983-02-05 1983-02-05 Data transmission system

Country Status (1)

Country Link
JP (1) JPS59143435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295221A (en) * 1988-09-30 1990-04-06 Shimadzu Corp Spectrophotometer
US8369359B2 (en) 2009-01-16 2013-02-05 Panasonic Corporation Communication device, communication method, and integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745741A (en) * 1980-08-30 1982-03-15 Toshiba Electric Equip Corp Signal transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745741A (en) * 1980-08-30 1982-03-15 Toshiba Electric Equip Corp Signal transmitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295221A (en) * 1988-09-30 1990-04-06 Shimadzu Corp Spectrophotometer
US8369359B2 (en) 2009-01-16 2013-02-05 Panasonic Corporation Communication device, communication method, and integrated circuit

Similar Documents

Publication Publication Date Title
EP0133359A3 (en) Chipset synchronization arrangement
JP2009509226A (en) Bus circuit
JPS6447229A (en) Method and circuit for synchronizing electric sources of parallel ac electric systems
GB2332965A (en) Multiple data rate synchronous DRAM for enhancing data transfer speed
JPS59143435A (en) Data transmission system
JP2000353027A (en) Clock control method and electronic circuit device using the method
KR0169370B1 (en) Signal process circuit of liquid crystal system for data enable signal priority process
JPS62160564A (en) Pipeline control system
KR950014999B1 (en) Method for eliminating micom interrupt signal noise
JPH09114540A (en) Clock generating device
JPS59139468A (en) Master/slave switching device in dual type arithmetic processing device
JPH0387790A (en) Synchronous switching circuit
EP0142981B1 (en) Electronic communication clocking
KR19980014009A (en) Self reset circuit
JPS60198668A (en) Processor input and output system
JPH0793240A (en) Information processor and input/output processor used for the same
JPS6477067A (en) Power unit
JP2002245021A (en) Synchronizing method in giving command by communication.
JPS57137945A (en) Advance control system of general purpose register
JPH0228833A (en) Method and device for controlling effective speed of cpu
JPS6320517A (en) System clock stretch circuit
JPS62131756A (en) Triac controller
JPS63238732A (en) Synchronizing signal transmission system
JPS6225311A (en) Automatic adjustment system for timing
JPH10126397A (en) Phase-matching device