JPS59143377A - Thread type solar battery - Google Patents

Thread type solar battery

Info

Publication number
JPS59143377A
JPS59143377A JP58017768A JP1776883A JPS59143377A JP S59143377 A JPS59143377 A JP S59143377A JP 58017768 A JP58017768 A JP 58017768A JP 1776883 A JP1776883 A JP 1776883A JP S59143377 A JPS59143377 A JP S59143377A
Authority
JP
Japan
Prior art keywords
type
layer
solar cell
filament
filamentous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58017768A
Other languages
Japanese (ja)
Inventor
Hiroshi Imagawa
今川容
Setsu Akiyama
工藤淳
Atsushi Kudo
秋山節
Masayoshi Koba
木場正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Toyobo Co Ltd
Original Assignee
Sharp Corp
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Toyobo Co Ltd filed Critical Sharp Corp
Priority to JP58017768A priority Critical patent/JPS59143377A/en
Publication of JPS59143377A publication Critical patent/JPS59143377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To enable to obtain a flexible solar battery rich in drape and design properties, etc. by forming an amorphous Si thin film layer on a thread substrate CONSTITUTION:In the case of a Schottky type filament form solar battery, said battery is composed by successively forming an N-type photo-conductive amorphous si (N-Si:H) 2, an I type a-Si:H layer 3, and a Scottky electrode 4 on a filament 1. In the case of a hetero face type one, it is composed by successively forming an N type a Si:H layer 6, an I type a Si:H layer 7, a P type a Si:H layer 8, and a clear electrode 9 on a filament 5. The solar battery having such a thread substrate is remarkably excellent in drape property because of no jamming between the filaments. Besides, an excellent pattern can be designed by mixed weaving with a thread substance.

Description

【発明の詳細な説明】 この発明は、ドレープ性とデザイン性の優れた布帛を与
え得るフレキシブル性に冨む糸状太陽電池に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a filamentous solar cell that is highly flexible and can provide a fabric with excellent drapability and design.

近年、アモルファスシリコンを用いた太陽電池の開発が
盛んになり、一部実用に供されるまでになっている。ア
モルファスシリコン太陽電池は、アモルファスシリコン
の光の吸収性の大きいことに起因して従来の結晶シリコ
ンや硫化カドミウムに比べ電池本体の厚さが薄くて済む
ことや、その製造が蒸着法でできるための大面積の電池
が容易に得られるなどの利点を有する。たとえば、大面
積のフィルム上にアモルファスシリコンを蒸着して製作
した太1111!池は、そのままの大きさで建物の壁面
に貼るという使い方ができるほか、分割して小さなセル
としても使うことができる。この場合、製造コストは従
来法よりも著しく低減される。
In recent years, the development of solar cells using amorphous silicon has become active, and some of them have even been put into practical use. Amorphous silicon solar cells require a thinner cell body than conventional crystalline silicon or cadmium sulfide due to the high light absorption of amorphous silicon, and because they can be manufactured using vapor deposition methods. It has the advantage that large-area batteries can be easily obtained. For example, Tai 1111 is manufactured by vapor depositing amorphous silicon on a large-area film! The pond can be used as it is by attaching it to the wall of a building, or it can be divided and used as small cells. In this case, manufacturing costs are significantly reduced compared to conventional methods.

このような大面積の基板は、有機物のフィルムに限らず
、ステンレス板のような金属性でもよい。
Such a large-area substrate is not limited to an organic film, but may also be made of metal such as a stainless steel plate.

ところで、基板の厚み、材質などはそれから構成される
太陽電池の7レキシビリテイ〈可撓性)に大きく影響す
るため、用途に応じて適切な基板を選定する必要がある
。特に、フレキシブル性の要求される用途を考える場合
、この基板(基材)の選択が重要となる。
Incidentally, the thickness, material, etc. of the substrate greatly affect the flexibility of the solar cell constructed from it, so it is necessary to select an appropriate substrate depending on the application. Particularly when considering applications that require flexibility, the selection of this substrate (base material) is important.

従来、ステンレス板やポリイミドフィルムのような耐熱
性有機フィルムが用いられてきたが、フィルムのフレキ
シビリティは、いわば一方向的であり、二次曲面、たと
えば球面、に拾わせようとすると、固い折れ皺が発生し
て好ましくなかった。
Conventionally, heat-resistant organic films such as stainless steel plates and polyimide films have been used, but the flexibility of the film is unidirectional, so if you try to make it pick up on a quadratic curved surface, such as a spherical surface, it will bend hard. Wrinkles were generated, which was not desirable.

また、フィルム上の電気接続がli線したり、フィルム
を人体に着用するとき違和感が生じたりした。
In addition, the electrical connections on the film caused Li wires, and the film caused an uncomfortable feeling when worn on the human body.

また、ステンレス板のJ:うなものも、到底フレキシブ
ル性の要求される用途には使えなかった。フレキシブル
性の要求される用途としては、たとえば登山、スキー、
釣りなどに着用される衣服を挙げることができるが、そ
の材料そのものを太陽電池にすることができれば、軽量
、大面積がとれるため、種々の用途、たとえば、通信機
の電源、暖房や照明の電源、などへの使用が可能となり
、非常に有用であろう。
Furthermore, the stainless steel plate J: Umono could not be used in applications that required flexibility. Applications that require flexibility include mountain climbing, skiing,
One example is clothing worn for fishing, but if the material itself could be made into solar cells, it would be lightweight and occupy a large area, so it could be used for a variety of purposes, such as power sources for communication equipment, power sources for heating and lighting. , etc., and will be very useful.

また、一方では、上述のような太陽電池衣服を身体にフ
ィン1〜させるには、いわゆる太陽電池そのものにドレ
ープ性(形に沿う性質)が備わっていることが必要であ
るが、前述のように、フィルムを基板とした太陽電池で
はフレキシビリティが不足しているので当然ドレープ性
も欠如する。トレー1性を得るためには、ドレープ性の
ある基材上に太陽電池を構成しなければならない。望ま
しい基材は、織物、編物、不織布のような布帛である。
On the other hand, in order to attach the fins of solar battery clothing to the body as described above, it is necessary for the so-called solar cells themselves to have drapability (property that follows the shape). Since solar cells using film as a substrate lack flexibility, they naturally lack drapability. In order to obtain tray properties, solar cells must be constructed on a drapeable substrate. Desirable substrates are fabrics such as woven, knitted, and nonwoven fabrics.

これらの布帛上に導電膜を蒸着し、さらにアモルファス
シリコンを蒸着して、フレキシブルな太陽電池を得るこ
とができ、期袖したとおり、フィルム上に構成した太陽
電池より著しくフレキシビリディが向上プるが、衣服と
して着用するにはまだドレープ性が不足していた。なぜ
ならば、導電層およびアモルファスシリコン層の蒸着に
より基布が目詰めされ、基布を構成する糸間の動きが抑
制されるために基布自体が有していたフレキシビリティ
(ドレープ性)がかなりの程度減じられるからである。
By depositing a conductive film on these fabrics and then depositing amorphous silicon, flexible solar cells can be obtained, and as expected, the flexibility is significantly improved compared to solar cells constructed on films. However, it still lacked drapability to be worn as clothing. This is because the base fabric is packed by the vapor deposition of the conductive layer and the amorphous silicon layer, and the movement between the threads that make up the base fabric is suppressed, which significantly reduces the flexibility (drapeability) of the base fabric itself. This is because the degree of

この発明は、ドレープ性とデザイン性の優れた布帛を与
え得る、糸状フレキシブル太陽電池に関するもので、前
述の問題点の解決に鋭意努力した結果達成されたもので
ある。
The present invention relates to a thread-like flexible solar cell that can provide a fabric with excellent drapability and design, and was achieved as a result of diligent efforts to solve the above-mentioned problems.

すなわち、この発明は、糸状基体にアモルファスシリコ
ンが蒸着されてなる糸状太陽電池を提供するものであり
、これを布帛に成形加工することにより、ドレープ性、
デザイン性などに冨むフレキシブル太陽電池が得られる
ことを見い出したことに基づくものである。
That is, the present invention provides a filamentous solar cell in which amorphous silicon is deposited on a filamentous substrate, and by molding this into a fabric, drapability, drapability,
This is based on the discovery that a flexible solar cell with a rich design can be obtained.

この発明に用いられる糸状基体とは、有機または無機材
料より製造されるモノフィラメント、マルチフィラメン
ト、紡績糸などを挙げることができ、その太さは、10
μmから311tl、望ましくは100μIから11で
ある。あまりに細いと、太陽電池の電極接合が費1しく
なり、他方あまり太いと、布帛にしたときのドレープ性
が小さくなって望ましくない。糸状基体の断面は通常円
形であるが、楕円、角、その他必要に応じて種々の選択
が可能である。たとえば、フィルムをスリットあるいは
スプリットして製造する扁平な糸状物を用いることがで
きる。このような非円形の糸状体の太さは、長袖の長さ
くa)と短軸の長さくb)より求まる平均値((a +
b )/2)をもって表現で一5= きる。糸状基体は有機物でも、無機物でもよいが、アモ
ルファスシリコンおよび導電層の蒸着工程に耐える耐熱
性が必要である。糸状基体を太陽電池化する工程で採用
するグロー放電、CVDあるいは反応性スパッタリング
法では250℃〜350℃、イオンクラスタビーム法(
ICB)では200℃〜300℃程度、の温度にさらさ
れる。有機物では、ポリイミド、ポリエーテルスルホン
、ポリエーテルイミド、ポリフェニレンサルファイドな
どが使用可能である。
The thread-like substrate used in this invention includes monofilaments, multifilaments, spun yarns, etc. manufactured from organic or inorganic materials, and the thickness thereof is 10
It is from μm to 311 tl, preferably from 100 μI to 11 tl. If it is too thin, it will be difficult to connect the electrodes of the solar cell, and if it is too thick, it will have poor drape properties when made into a fabric, which is not desirable. The cross section of the filamentous substrate is usually circular, but it can be elliptical, angular, or various other shapes as required. For example, a flat filament produced by slitting or splitting a film can be used. The thickness of such a non-circular filament is the average value ((a +
b)/2) can be expressed as 15=. The filamentous substrate may be organic or inorganic, but must have heat resistance to withstand the vapor deposition process of amorphous silicon and conductive layers. The glow discharge, CVD, or reactive sputtering method used in the process of converting a filamentous substrate into a solar cell requires a temperature of 250°C to 350°C and an ion cluster beam method (
ICB) is exposed to temperatures of about 200°C to 300°C. As organic substances, polyimide, polyether sulfone, polyetherimide, polyphenylene sulfide, etc. can be used.

また、糸状基体はS電性であることが望ましい。Further, it is desirable that the filamentous substrate has S-electrification.

太陽電池の一方の電極は、アモルファスシリコン層の下
部に存在しなければならない。たとえば、金属モノフィ
ラメント、カーボンモノフィラメント、導電性有機モノ
フィラメントなど、モノフィラメント自身に導電性があ
れば、基体そのものを電極として用いることができるか
らである。導電性の低いフィラメントを用いる場合は、
アモルファスシリコンの蒸着前に、アルミニウムやタン
グステンのような材料の導電層をつけなければなら6− ない。これは蒸着やめっきなどの方法により達成するこ
とができる。
One electrode of the solar cell must be under the amorphous silicon layer. For example, if the monofilament itself has conductivity, such as a metal monofilament, a carbon monofilament, or a conductive organic monofilament, the substrate itself can be used as an electrode. When using a filament with low conductivity,
A conductive layer of material such as aluminum or tungsten must be applied before the amorphous silicon is deposited. This can be achieved by methods such as vapor deposition and plating.

糸状太陽電池は、このような糸状基体の上に、光導電性
アモルファスシリコン(a−811−1として表わされ
る)層と、上部電極層を形成することにより構成される
。アモルファスシリコン中の水素は、公知のように、ダ
ングリングボンドを補償してシリコン膜を高品質化する
鋤き持つ。第1図はショットキ型のフィラメント状太陽
電池の断面を示し、第1図に示すようなショットキセル
の場合には、フィラメント1上にn型a−31:HH2
、i型a −S I  : tl rfl 3 、jJ
よびシEl y 1−主電極4を順次形成して構成され
る。また、第2図はへテロフェイス型のフィラメント状
太陽電池の断面を示し、第2図に示すようなヘテロフェ
イスセルの場合には、フィラメント5上にn型a −B
1H116,1型a−3i:)1層7、p型a−BIH
HIi8および透明電極9を順次形成して構成される。
A filamentous solar cell is constructed by forming a photoconductive amorphous silicon (denoted as a-811-1) layer and a top electrode layer on such a filamentous substrate. Hydrogen in amorphous silicon is known to compensate for dangling bonds and improve the quality of the silicon film. FIG. 1 shows a cross section of a Schottky type filament solar cell. In the case of the Schottky cell shown in FIG. 1, n-type a-31:HH2
, type i a-SI: tl rfl 3 , jJ
and El y 1 - the main electrode 4 are sequentially formed. In addition, FIG. 2 shows a cross section of a heteroface type filament solar cell. In the case of a heteroface cell as shown in FIG. 2, n-type a-B
1H116, 1 type a-3i:) 1 layer 7, p type a-BIH
It is constructed by sequentially forming HIi 8 and transparent electrode 9.

水素化アモルファスシリコンはグロー放電法、スパッタ
法、イオンブレーティング法(クラスタイオンビーム法
を含む)などの薄膜形成手段で形成される。また、ショ
ットキ電極は、Au、pd。
Hydrogenated amorphous silicon is formed by a thin film forming method such as a glow discharge method, a sputtering method, or an ion blasting method (including a cluster ion beam method). Further, the Schottky electrode is made of Au, PD.

P【などの薄膜が利用でき、スパッタ法、蒸着法、イオ
ンブレーティング法などで形成することができる。透明
電極としてはインジウム・ヂタン・オキサイド(lTO
)、5no2などを用いることができ、これらはスパッ
タ法、電子ビームN着法などで作成することができる。
A thin film such as P can be used and can be formed by sputtering, vapor deposition, ion blating, etc. Indium titanium oxide (lTO) is used as a transparent electrode.
), 5no2, etc. can be used, and these can be created by a sputtering method, an electron beam N deposition method, etc.

糸状太陽電池からの電極の取出しは、基本的には、ヘテ
ロフェイスセルの例について第3図に示したように、一
端において中心部のフィラメント10がシリコン[11
および透明電極12で被覆されずに露出したままで残る
ように工程を進め、このフィラメント・10と透明電極
12を1苅の電極として利用すればよい。
Basically, the electrodes are taken out from the filamentous solar cell as shown in FIG.
Then, the process is continued so that the filament 10 and the transparent electrode 12 remain exposed without being covered with the transparent electrode 12, and the filament 10 and the transparent electrode 12 can be used as one electrode.

糸状太陽電池は、たとえば、通信ケーブルと並行して用
いるなど、そのままワイヤとして使うこともできるが、
布帛状に成形加工して用いる用途が広い。この場合、糸
状太陽電池だ番プで布帛にしでもよいし、適当な糸と混
ぜて織物や編物にしてもよい。
Thread-shaped solar cells can also be used as wires, for example, in parallel with communication cables.
It has a wide range of uses when molded into fabric. In this case, the thread-like solar cell paste may be used to make fabric, or it may be mixed with appropriate threads to make woven or knitted fabrics.

この発明の糸状基体を使った太陽電池は、フィラメント
間の目詰めがないため、ドレープ性が著しく優れている
。また、製繊や製編の種々のテクニック、および他のモ
ノフィラメント、マルチフィラメントあるいは紡績糸な
どの糸条物との混繊により優れたパターンをデザイン化
できるほか、布帛としての力学的特性しかなりの範囲で
設計可能である。
A solar cell using the filamentous substrate of the present invention has extremely excellent drape properties because there is no packing between the filaments. In addition, it is possible to design excellent patterns by using various fiber-making and knitting techniques, and by mixing fibers with other yarns such as monofilaments, multifilaments, or spun yarns. It is possible to design within the range.

このように、この発明の糸状太陽電池は、身体着用に大
きなメリットを発揮する。衣服として着用fる場合は、
比較的日付を小さくして、人体の動きに沿いやすいよう
に設計する。また、リュックサックなど、強靭特性を重
視する用途では、厚地の布帛に加工するのが望ましい。
In this way, the filamentous solar cell of the present invention exhibits great advantages when worn on the body. When worn as clothing,
The date is designed to be relatively small so that it can easily follow the movements of the human body. In addition, for applications such as backpacks where strong characteristics are important, it is desirable to process the material into thick fabric.

以下には、この発明の実施例について詳細に説明する。Examples of the present invention will be described in detail below.

なお、各種の評価、測定は特にことわらない限り以下の
条件によった。
In addition, various evaluations and measurements were performed under the following conditions unless otherwise specified.

(イ) ドレープ性 JIS  11096(69− −19−7)に準じる。(a) Drapability JIS 11096 (69- -19-7).

(ロ) 太陽電池特性 ソーラシミュレータを用いて100mW/cm2(AM
l)の光照射の下で光電変換効率を測定した。
(b) Solar cell characteristics using a solar simulator at 100 mW/cm2 (AM
The photoelectric conversion efficiency was measured under the light irradiation of 1).

実施例1 この発明においては、主にクラスタイオンビーム法(よ
り下部1ti!、a −81: 8層、透明導電層を形
成した。クラスタイオンビーム法は、ノズルを有(る密
閉型るつぼから蒸着物質を噴射【〕て、断熱膨張により
クラスタ(原子集団)を形成し、さらにイのクラスタを
イオン化し加速して基板に射突さぜ膜形成を行なう方法
である。糸状基体に向かうイオンは、方向づ番プられて
いるため、単一のるつぼのみを使用する場合は、フィラ
メント同曲全体にわたって均一に膜形成するには、フィ
ラメントを回転させることが必要であり、またフィラメ
ントを回転させる代わりに適宜なノズル形状を持つ複数
個のるつぼを適正に配置することによりフィラメント全
周に均一な膜形成を行なう10− ことができる。
Example 1 In this invention, a transparent conductive layer was mainly formed using a cluster ion beam method (lower 1ti!, a-81: 8 layers). This is a method in which a material is injected to form clusters (atomic groups) by adiabatic expansion, and the clusters (A) are further ionized and accelerated to form a film by impinging on the substrate.Ions directed toward the filamentous substrate are If only a single crucible is used, it may be necessary to rotate the filament to achieve uniform film formation across the filament, and instead of rotating the filament. By appropriately arranging a plurality of crucibles having appropriate nozzle shapes, it is possible to form a uniform film all around the filament.

第4図は、後者の方法を適用したもので、基体材料13
に関して対称な位置に配置された4つのるつぼ14を有
するクラスタイオンど−ム装置により膜形成を行なった
。まず、120デニールのポリノジックフィラメント3
00本を30CII1幅に一列に並べ、装置内に固定し
た。Illをチ17−ジした4つのるつぼを定位置にセ
ットした後、試料室をI X 10 ’Torrまで真
空排気し、4つのるつぼを1600℃まで加熱して20
0OA厚のへ庭層を形成した。るつぼが冷却した後、3
iをチャージした4つのるつぼに交換し、シリコン層を
形成した。詳しくは、5 X 10−7をTorrに排
気した優、基体温度をランプ加熱により180℃に設定
した。H2ガスと水素で1%に希釈した小スフィンガス
(PH,)を5対1の流量比で試料室内に導入し、室内
をI X 10−1’Torrに維持した。
FIG. 4 shows an example in which the latter method is applied, with the base material 13
Film formation was performed using a cluster ion beam device having four crucibles 14 arranged at symmetrical positions. First, 120 denier polynosic filament 3
00 pieces were lined up in a line with a width of 30 CII and fixed in the device. After setting the four crucibles filled with Ill in their fixed positions, the sample chamber was evacuated to I x 10' Torr, and the four crucibles were heated to 1600°C and heated to 20
A 0OA thick Heniwa layer was formed. After the crucible has cooled, 3
The crucibles were replaced with four charged crucibles, and a silicon layer was formed. Specifically, the temperature of the substrate was set at 180° C. by lamp heating. Small sphine gas (PH,) diluted to 1% with H2 gas and hydrogen was introduced into the sample chamber at a flow rate ratio of 5:1, and the chamber was maintained at I x 10-1' Torr.

るつぼ加熱温度2000〜2200℃、イオン化!’流
200m A (300V)の条件で、n型a−3i:
Hliを30OA厚形成した。次いで、水素ガスのみを
導入して、同様にi型a−3+:H層μYノ を5000A厚形成だ。さらに、水素ガスと水素で1%
に希釈したジボランカス(B2H6)を2対1の流量比
で試料室内に導入し、p型a−8i:Hliを100A
厚形成し、フィラメント其体上にp1n型a−81:t
1層を設けた。るつぼの冷IIを持って、次にSOをチ
ャージしlζ4つのるつぼに交換し、排気後2 X 1
0 =Torrの酸素中で1200℃に加熱し、透明導
電膜を2000A厚形成した。
Crucible heating temperature 2000-2200℃, ionization! 'N type a-3i under the condition of 200mA (300V) flow:
Hli was formed to a thickness of 30 OA. Next, by introducing only hydrogen gas, an i-type a-3+:H layer μY layer was similarly formed to a thickness of 5000A. In addition, 1% hydrogen gas and hydrogen
Diborancas (B2H6) diluted to
Thickly formed, p1n type a-81:t on the filament body
One layer was provided. Take crucible cold II, then charge SO and replace it with 4 crucibles, and after exhausting 2 x 1
It was heated to 1200° C. in oxygen at 0 Torr to form a transparent conductive film with a thickness of 2000 Å.

なお、この実施例においては、蒸着の各段階で、フィラ
メントの一端を適宜カバーし、第3図に示すように、下
部A[10が、シリコン1111を介して透明電極12
から絶縁された形で露出づ゛るようにした。
In this example, one end of the filament is appropriately covered at each stage of vapor deposition, and as shown in FIG.
It was designed to be exposed while being insulated from the outside.

このフィラメント状太陽電池から常法により1インチ開
帳93本、横56本密度で目付900/m2の平織り織
布を得た。
From this filamentary solar cell, a plain weave woven fabric having a density of 93 1-inch sheets and 56 1-inch sheets and a basis weight of 900/m2 was obtained by a conventional method.

電極は、ポリエステル織布にポリイミド系接着剤を介し
て厚み10μのアルミ箔を貼り合わせた電極片15に、
第5図のように、AQiil出部16および透明導電1
11117を、それぞれ別個に銀ペーストで接着して形
成した。得られたヘテロフェイス太陽電池の特性は次の
とおりである。
The electrode is an electrode piece 15 made of a 10 μm thick aluminum foil bonded to a polyester woven fabric via a polyimide adhesive.
As shown in FIG. 5, the AQiil output part 16 and the transparent conductor 1
11117 were formed by adhering them separately with silver paste. The properties of the obtained heteroface solar cell are as follows.

ドレープ性  0.354 効率     3.8% 比較例゛1 実施例1と同じ120デニールのポリノジックフィラメ
ントを用い、同じ平織り織物を得た。これに、ポリイミ
ド系接着剤を介して、厚み10μのアルミ箔を貼り合わ
せて、裏面電極を形成し、これをI X 10−7To
rrの真空下で150℃、2Hrの乾燥を行なった。そ
の後、クラスタイオンビーム装置を用いで、2つのるつ
ぼを用いて、実施例1と同様の方法で、アルミ箔を貼り
会わせた面に太陽電池を形成した。但し、アルミ蒸着の
工程は省略した。この太陽電池の特性は下記のとおりで
あった。
Drapability 0.354 Efficiency 3.8% Comparative Example 1 Using the same 120 denier polynosic filament as in Example 1, the same plain weave fabric was obtained. A 10μ thick aluminum foil was attached to this via a polyimide adhesive to form a back electrode, and this was
Drying was carried out at 150° C. for 2 hours under a vacuum of 150°C. Thereafter, a solar cell was formed on the surface to which the aluminum foil was attached in the same manner as in Example 1 using a cluster ion beam device and two crucibles. However, the step of aluminum vapor deposition was omitted. The characteristics of this solar cell were as follows.

トレー1性  0.628 効率     3.5% 13一 実施例2 市販のポリイミドフィルム(0,111111厚)に実
施例1と同じ条件で導電層、アモルファスシリコン層、
およびSn 02層を形成した。次いで、このフィルム
を、0 、5 its幅にスリットし、常法により目付
100[1,/II’のへツシャンクロスに織り上げた
。電極形成は、実施例1と同様に方法で行なった。得ら
れた布帛状太陽電池の特性は次のとおりであった。
Tray property: 0.628 Efficiency: 3.5% 13-Example 2 A conductive layer, an amorphous silicon layer,
and a Sn02 layer. Next, this film was slit into a width of 0.5 ITS and woven into a Hetsushan cloth with a basis weight of 100[1,/II'] by a conventional method. Electrodes were formed in the same manner as in Example 1. The properties of the obtained fabric solar cell were as follows.

ドレープ性  0.451 効率     3.4% 比較例2 実施例2においてスリットする前の蒸着フィルムの太陽
電池の特性を測定したところ、次のとおりであった。
Drapability: 0.451 Efficiency: 3.4% Comparative Example 2 The characteristics of the solar cell of the deposited film before slitting in Example 2 were measured and were as follows.

ドレープ性  0.796 効率     3.6% 明らかにドレープ性は実施例2に比較して小さい。Drapability 0.796 Efficiency 3.6% The drapability is clearly lower than that of Example 2.

実施例3 14− 実施例1で得たフィラメント状太陽電池をトリコット編
で目付100g/m 2の編物を(qた。この編物に、
電極形成して作成した太陽電池は、1゜8%の先輩変換
効率を示した。
Example 3 14- The filamentary solar cell obtained in Example 1 was knitted into a tricot fabric with a fabric weight of 100 g/m2.
The solar cell prepared by forming the electrodes showed a superior conversion efficiency of 1.8%.

実IM例4 直径0.2ffimのステンレスフィラメントに、実施
例1ど同様な方法で、アモルファスシリコン層と透明電
極を形成し、フィラメント状太陽電池を得た。但し、膜
形成時の基体温度は220℃とした。これを50メツシ
ユの平織りネットに形成して、フレキシブル太陽電池と
したところ、2.5%の変換効率を得た。
Actual IM Example 4 An amorphous silicon layer and a transparent electrode were formed on a stainless steel filament having a diameter of 0.2 ffim in the same manner as in Example 1 to obtain a filament-shaped solar cell. However, the substrate temperature during film formation was 220°C. When this was formed into a 50-mesh plain-woven net to make a flexible solar cell, a conversion efficiency of 2.5% was obtained.

実施例5 実施例4で得たフィラメント状太陽電池をワイヤの形で
そのまま2CIIlの長さに切断し、一端の5noz層
とa−3i:8層を化学研磨により剥離させ、第3図の
ような構造にした上で、両端の電極、すなわちステンレ
スとS n O2をそれぞれ別個の導線(0,2m1l
lφ)に銀ペーストで接着した。
Example 5 The filamentary solar cell obtained in Example 4 was cut into a length of 2CIIl in the form of a wire, and the 5noz layer and the a-3i:8 layer at one end were peeled off by chemical polishing to form a shape as shown in Figure 3. After making the structure, the electrodes at both ends, that is, the stainless steel and S n O2
lφ) with silver paste.

これに100n W/cm’  (AM 1 )の光照
射を行15− なったところ、開放端電圧680m V、短絡電流0.
2011Aを得た。
When this was irradiated with light at 100 nW/cm' (AM 1 ), the open circuit voltage was 680 mV and the short circuit current was 0.
2011A was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれショットキ型およびヘテ
ロフェイス型のフィラメント状太陽電池の構成を示す。 第3図はフィラメント状太陽電池からの電極取出しのた
めの説明図である。第4図は、フィラメンI・状試利ど
クラスタビーム発生用ノズルの配匡了を示づ。第5図(
J、布帛状太陽電池からの電極取出しの説明図である。 図において:1.5.13はフィシメン1−M体;2.
6はn型a−8i:8層:3.7はi型a−81:Ht
l;4はショツ1ヘキt[:84ユp型a−3i:8層
:9.12.17は透明導電膜;10116は下部電極
;11はa−8i  : 1−(1博: 14目るつぼ
;15は電極片である。 特許出願人 東洋紡績株式会社 38
FIGS. 1 and 2 show the configurations of Schottky type and heteroface type filament solar cells, respectively. FIG. 3 is an explanatory diagram for taking out electrodes from a filament solar cell. FIG. 4 shows the installation of a nozzle for generating a cluster beam using a filament I-shaped sample. Figure 5 (
J, is an explanatory diagram of electrode extraction from a fabric-like solar cell. In the figure: 1.5.13 is ficimene 1-M body; 2.
6 is n-type a-8i: 8 layers: 3.7 is i-type a-81:Ht
l; 4 is shot 1 heki t [: 84 Yup type a-3i: 8 layers: 9.12.17 is transparent conductive film; 10116 is lower electrode; 11 is a-8i: 1-(1 h: 14th Crucible; 15 is an electrode piece. Patent applicant: Toyobo Co., Ltd. 38

Claims (5)

【特許請求の範囲】[Claims] (1) 糸状基体の上にアモルファスシリコン薄膜層を
有する糸状太陽電池。
(1) A filamentous solar cell having an amorphous silicon thin film layer on a filamentous substrate.
(2) 前記糸状基体が導電性を有する特許請求の範囲
第1項記載の糸状太陽電池。
(2) The filamentous solar cell according to claim 1, wherein the filamentous substrate has electrical conductivity.
(3) 前記糸状基体が10μmから3111の太さを
有する特許請求の範囲第1項記載の糸状太陽電池。
(3) The filamentous solar cell according to claim 1, wherein the filamentous substrate has a thickness of 10 μm to 3111 μm.
(4) 前記糸状基体がモノフィラメントである特許請
求の範囲第1項記載の糸状太陽電池。
(4) The filamentous solar cell according to claim 1, wherein the filamentous substrate is a monofilament.
(5) 前記糸状基体が扁平糸状物である特許請求の範
囲第1項記載の糸状太陽電池。
(5) The filamentous solar cell according to claim 1, wherein the filamentous substrate is a flat filament.
JP58017768A 1983-02-05 1983-02-05 Thread type solar battery Pending JPS59143377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58017768A JPS59143377A (en) 1983-02-05 1983-02-05 Thread type solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58017768A JPS59143377A (en) 1983-02-05 1983-02-05 Thread type solar battery

Publications (1)

Publication Number Publication Date
JPS59143377A true JPS59143377A (en) 1984-08-16

Family

ID=11952888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58017768A Pending JPS59143377A (en) 1983-02-05 1983-02-05 Thread type solar battery

Country Status (1)

Country Link
JP (1) JPS59143377A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913744A (en) * 1987-01-13 1990-04-03 Helmut Hoegl Solar cell arrangement
DE4328868A1 (en) * 1993-08-27 1995-03-02 Twin Solar Technik Entwicklung Element of a photovoltaic solar cell and method for its production as well as its arrangement in a solar cell
WO2002037577A2 (en) * 2000-10-31 2002-05-10 Universität Stuttgart Fiber, electronic circuit and textile product
US7196262B2 (en) 2005-06-20 2007-03-27 Solyndra, Inc. Bifacial elongated solar cell devices
US7259322B2 (en) 2006-01-09 2007-08-21 Solyndra, Inc. Interconnects for solar cell devices
GB2439412A (en) * 2006-06-23 2007-12-27 Wilkie J & D Ltd Flexible solar panel
US7394016B2 (en) 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
US7535019B1 (en) 2003-02-18 2009-05-19 Nanosolar, Inc. Optoelectronic fiber
US7879685B2 (en) 2006-08-04 2011-02-01 Solyndra, Inc. System and method for creating electric isolation between layers comprising solar cells
US8093493B2 (en) 2007-04-30 2012-01-10 Solyndra Llc Volume compensation within a photovoltaic device
US8106292B2 (en) 2007-04-30 2012-01-31 Solyndra Llc Volume compensation within a photovoltaic device
US8183458B2 (en) 2007-03-13 2012-05-22 Solyndra Llc Photovoltaic apparatus having a filler layer and method for making the same
US8344238B2 (en) 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
US8742252B2 (en) 2006-03-18 2014-06-03 Solyndra, Llc Elongated photovoltaic cells in casings with a filling layer
JP2017084909A (en) * 2015-10-26 2017-05-18 住江織物株式会社 Parallel connection structure of fibrous optical power generation element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279890A (en) * 1975-12-26 1977-07-05 Masahisa Muroki Multiilayer coaxial fibrous solar battery
JPS5726476A (en) * 1980-07-23 1982-02-12 Takenori Soma Linear photoelectromotive force element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279890A (en) * 1975-12-26 1977-07-05 Masahisa Muroki Multiilayer coaxial fibrous solar battery
JPS5726476A (en) * 1980-07-23 1982-02-12 Takenori Soma Linear photoelectromotive force element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913744A (en) * 1987-01-13 1990-04-03 Helmut Hoegl Solar cell arrangement
DE4328868A1 (en) * 1993-08-27 1995-03-02 Twin Solar Technik Entwicklung Element of a photovoltaic solar cell and method for its production as well as its arrangement in a solar cell
WO2002037577A2 (en) * 2000-10-31 2002-05-10 Universität Stuttgart Fiber, electronic circuit and textile product
WO2002037577A3 (en) * 2000-10-31 2002-09-12 Univ Stuttgart Fiber, electronic circuit and textile product
US7535019B1 (en) 2003-02-18 2009-05-19 Nanosolar, Inc. Optoelectronic fiber
US7196262B2 (en) 2005-06-20 2007-03-27 Solyndra, Inc. Bifacial elongated solar cell devices
US8344238B2 (en) 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
US7394016B2 (en) 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
US7259322B2 (en) 2006-01-09 2007-08-21 Solyndra, Inc. Interconnects for solar cell devices
US8067688B2 (en) 2006-01-09 2011-11-29 Solyndra Llc Interconnects for solar cell devices
US8742252B2 (en) 2006-03-18 2014-06-03 Solyndra, Llc Elongated photovoltaic cells in casings with a filling layer
GB2439412B (en) * 2006-06-23 2011-07-27 Wilkie J & D Ltd A solar panel with warp and weft members
GB2439412A (en) * 2006-06-23 2007-12-27 Wilkie J & D Ltd Flexible solar panel
US7879685B2 (en) 2006-08-04 2011-02-01 Solyndra, Inc. System and method for creating electric isolation between layers comprising solar cells
US8183458B2 (en) 2007-03-13 2012-05-22 Solyndra Llc Photovoltaic apparatus having a filler layer and method for making the same
US8674213B2 (en) 2007-03-13 2014-03-18 Solyndra, Llc Photovoltaic apparatus having a filler layer and method for making the same
US8093493B2 (en) 2007-04-30 2012-01-10 Solyndra Llc Volume compensation within a photovoltaic device
US8106292B2 (en) 2007-04-30 2012-01-31 Solyndra Llc Volume compensation within a photovoltaic device
US8710361B2 (en) 2007-04-30 2014-04-29 Solyndra, Llc Volume compensation within a photovoltaic device
JP2017084909A (en) * 2015-10-26 2017-05-18 住江織物株式会社 Parallel connection structure of fibrous optical power generation element

Similar Documents

Publication Publication Date Title
JPS59143377A (en) Thread type solar battery
US4410758A (en) Photovoltaic products and processes
JPS6036315A (en) Carbon fiber structure and secondary battery using it
JPS59119680A (en) Electrode for flow type electrolytic cell
JP2010521800A (en) Method and device for diamond-like carbon multilayer doping growth
Wang et al. Enhancement of Sb2Se3 thin-film solar cell photoelectric properties by addition of interlayer CeO2
CN108862235A (en) A kind of hollow hard carbon material of threadiness and preparation method thereof can be used for sodium-ion battery cathode
CN107578926A (en) The preparation method of carbon fiber transition metal carbon nano tube flexible nanometer combined electrode material
CN108878816A (en) A kind of carbon fibre material and its preparation method and application depositing sulphur simple substance
CN108807840A (en) The method that heat treatment process prepares carbon silicium cathode material
CN108199003A (en) A kind of big/mesoporous antimony cathode of three-dimensional, preparation method and applications
CN112909246A (en) Bismuth telluride/carbon nanowire composite material and preparation method and application thereof
CN101236794A (en) Non-crystal silicon carbon film nucleus battery
JP2000249672A (en) Manufacture of thin-film gas sensor using double ion beam sputtering
JP2018190725A (en) Lithium ion battery negative electrode and lithium ion battery
CN101752434B (en) Solar cell having nanodiamond quantum wells and making method thereof
CN103451599A (en) Cadmium telluride/bismuth telluride integrated nano structure material with photo-thermal synergic electric generation and preparation method thereof
CN113488656A (en) 3D lithium-philic composite porous metal alloy current collector and preparation method and application thereof
CN106953101B (en) Lithium-oxygen secondary battery positive electrode and preparation method thereof, and lithium-oxygen secondary battery
CN112886007B (en) Cobalt ditelluride/carbon nanofiber material and preparation method and application thereof
JP2002151708A (en) Photovoltaic element
CN114725390A (en) Carbon cloth loaded carbon tube material and preparation method and application thereof
JPH0677511A (en) Solar battery and its manufacture
Okuyama et al. Tungsten needles produced by decomposition of hexacarbonyltungsten
CN112310367A (en) Ultrathin porous metal material for lithium battery electrode and preparation method and application thereof