JP2002151708A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JP2002151708A
JP2002151708A JP2000340990A JP2000340990A JP2002151708A JP 2002151708 A JP2002151708 A JP 2002151708A JP 2000340990 A JP2000340990 A JP 2000340990A JP 2000340990 A JP2000340990 A JP 2000340990A JP 2002151708 A JP2002151708 A JP 2002151708A
Authority
JP
Japan
Prior art keywords
solar cell
power generation
photovoltaic element
fibrous
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000340990A
Other languages
Japanese (ja)
Inventor
Osamu Odawara
修 小田原
Mamoru Yoshimoto
護 吉本
Masamichi Ishikawa
正道 石川
Katsuya Honda
克也 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2000340990A priority Critical patent/JP2002151708A/en
Publication of JP2002151708A publication Critical patent/JP2002151708A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic element which is easily manufactured and provides a solar cell with improved reliability. SOLUTION: The photovoltaic element is provided which is flexible and in which a power generating layer and an electrode layer are formed on a conductive material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可撓性を有する光
起電力素子およびそれを用いた太陽電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible photovoltaic element and a solar cell using the same.

【0002】[0002]

【従来の技術】太陽電池は、周知のとおり太陽光線の光
エネルギーを電気エネルギーに変換するものであり、環
境にやさしいエネルギー技術という面からも期待されて
いる。この太陽電池においては、たとえば,抵抗負荷を
つないだ半導体pn接合付近にバンドギャップ以上の光
を照射すると、生成された電子正孔対が、n層(電子)
とp層(正孔)に分離され、pn接合に起電力が生じる
ので、抵抗負荷を通して電気エネルギーを取り出すこと
ができる。
2. Description of the Related Art As is well known, a solar cell converts light energy of sunlight into electric energy, and is expected from the viewpoint of environmentally friendly energy technology. In this solar cell, for example, when light near the semiconductor pn junction connected to a resistive load is irradiated with light having a band gap or more, the generated electron-hole pairs become n-layer (electrons).
And a p-layer (hole), and an electromotive force is generated at the pn junction, so that electric energy can be extracted through a resistance load.

【0003】従来、太陽電池として種々の構造が提案さ
れており、シリコン単結晶によるバルク形、アモルファ
スシリコン(a−Si)等による薄膜形、CdS等による
印刷形等がよく知られている。これらのなかでシリコン
単結晶によるものが最も発電効率がよく、薄膜形および
印刷形も製造コストの点から期待されている。また、さ
らに低コストで、かつ高い発電効率を得るために種々の
検討がなされている。たとえば、金属等の芯線にa−S
i皮膜を形成させたものを用いた繊維状太陽電池が知ら
れており(電子技術、26巻2号56頁、昭和59
年)、その後も軽量化、大面積化を目的として種々の繊
維状太陽電池が提案されている(たとえば特開平5−3
6999、6−283742、6−77511号公
報)。そしてこれらの太陽電池は、その目的を所定の範
囲で達成していると考えられる。
Conventionally, various structures have been proposed as solar cells, and a well-known structure such as a bulk type using silicon single crystal, a thin film type using amorphous silicon (a-Si) or the like, a printing type using CdS or the like is well known. Among them, a silicon single crystal has the highest power generation efficiency, and a thin film type and a printed type are also expected from the viewpoint of manufacturing cost. In addition, various studies have been made to obtain even lower cost and higher power generation efficiency. For example, a-S
A fibrous solar cell using an i-film is known (Electronic Technology, Vol. 26, No. 2, page 56, Showa 59).
After that, various fibrous solar cells have been proposed for the purpose of weight reduction and large area (for example, JP-A-5-3).
6999, 6-283742, 6-77511). It is considered that these solar cells have achieved the purpose in a predetermined range.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
繊維状太陽電池等では、電極間の接合技術が複雑で工程
上の困難を伴い、さらに構成上の自由度が少なく、機械
的負荷が局所にかかるため信頼性は必ずしも十分とはい
えなかった。
However, in the above-mentioned fibrous solar cell or the like, the joining technique between the electrodes is complicated and involves difficulties in the process, the degree of freedom in the configuration is small, and the mechanical load is locally limited. Therefore, the reliability was not always sufficient.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の課題を
解決し、製造が容易で信頼性の一層向上した、高効率の
太陽電池を得ることができる光起電力素子を提供するも
のである。すなわち、本発明の要旨は、導電性材料上に
発電層および電極層を形成させてなり、かつ可撓性を有
する光起電力素子、ならびにこれを用いて構成してなる
太陽電池にある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a photovoltaic element capable of obtaining a highly efficient solar cell which is easy to manufacture and further improved in reliability. is there. That is, the gist of the present invention resides in a photovoltaic element having a power generation layer and an electrode layer formed on a conductive material and having flexibility, and a solar cell configured using the photovoltaic element.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の光起電力素子において、導電性材料としては可
撓性および導電性に優れた材料が使用され、好適には可
撓性、比表面積等の点から繊維状のものが選択される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the photovoltaic element of the present invention, a material having excellent flexibility and conductivity is used as the conductive material, and a fibrous material is preferably selected from the viewpoint of flexibility, specific surface area, and the like.

【0007】ここで、可撓性は、使用環境での温度変化
や機械的負荷に対し電池性能を損なわないことが必要で
ある。繊維状導電性材料としては径が1mm以下程度の
ものが好ましく、中空であってもよい。たとえばPAN系
もしくはピッチ系炭素繊維(モノフィラメントであって
も集束したものであってもよい)もしくは気相法による
炭素繊維またはこれらを黒鉛化した黒鉛繊維、ならびに
銅、アルミニウム、鉄、等の金属繊維が挙げられる。
Here, it is necessary that the flexibility does not impair the battery performance against a temperature change and a mechanical load in a use environment. The fibrous conductive material preferably has a diameter of about 1 mm or less, and may be hollow. For example, PAN-based or pitch-based carbon fibers (which may be monofilaments or bundles), carbon fibers produced by a vapor phase method or graphite fibers obtained by graphitizing them, and metal fibers such as copper, aluminum, iron, etc. Is mentioned.

【0008】これらの繊維は、光起電力素子として太陽
電池を構成したときに集光面積を大きくするために織
物、編物もしくは不織布として用いるのが好ましい。た
とえば織物としては、平織り,綾織,および朱子織の3
原組織をはじめとする原組織織物、それらの変化組織織
物である一重織物;緯二重織物、経二重織物、経緯二重
織物および多層組織織物等の重ね組織織物;ならびに別
珍、コール天等の緯パイル織;ビロード、タオル、じゅ
うたん等の経パイル織;結びパイル織;およびカールパ
イル織等のパイル組織織物等が挙げられる。不織布は、
繊維が方向性を有しても、ランダムであってもいずれで
もよい。これらのうち得られる太陽電池の構成を三次元
的にして発電効率を向上させる観点からは、布面に切毛
もしくは輪奈であるパイル構造を片面もしくは両面に有
するものが最も好ましい。このようなパイル構造として
は、好適にはカットパイル、ループパイル、タフテッド
パイル、二重接結編パイル、二重接結織パイル等が挙げ
られる。
These fibers are preferably used as a woven fabric, a knitted fabric, or a nonwoven fabric in order to increase the light-collecting area when a solar cell is formed as a photovoltaic element. For example, three types of fabrics are plain weave, twill weave and satin weave.
Original woven fabrics including original woven fabrics, single woven woven fabrics which are modified woven fabrics; lapping woven fabrics such as weft double woven fabric, warp double woven fabric, weft double woven fabric and multi-layer woven fabric; Weft pile weave; warp pile weave such as velvet, towel, carpet; knit pile weave; and pile fabric weave such as curl pile weave. Non-woven fabric
The fibers may be directional, random or random. From the viewpoint of improving the power generation efficiency by making the configuration of the obtained solar cell three-dimensional, the one having a pile structure on one or both sides of a cut or a ring on a cloth surface is most preferable. Such a pile structure preferably includes a cut pile, a loop pile, a tufted pile, a double-bonded knitting pile, a double-bonded woven pile, and the like.

【0009】本発明の光起電力素子においては,これら
の導電性材料上に発電層および電極層が形成される。発
電層は、好ましくはpn接合もしくはショットキー接合
で構成される光電位誘起層である。光を照射すると電子
および正孔が生成され、ついでこれらは該接合における
半導体バンド構造のポテンシャル勾配に沿って別々の方
向に移動する。たとえばエネルギーレベルの差による電
界傾斜のために、電子はn型へ,正孔はp型に移動す
る。
In the photovoltaic element of the present invention, a power generation layer and an electrode layer are formed on these conductive materials. The power generation layer is preferably a photo-potential inducing layer composed of a pn junction or a Schottky junction. Irradiation with light produces electrons and holes, which then move in different directions along the potential gradient of the semiconductor band structure at the junction. For example, electrons move to n-type and holes move to p-type due to the electric field gradient due to the difference in energy level.

【0010】このような発電層を構成する材料として
は、シリコン、III−V族半導体(GaAs,AlGa
As,InP等)、II−VI族半導体(CdS、CdTe,Cu2S
等)、導電性有機化合物、炭素同素体等が挙げられる
が、コストおよび環境的要請の点からは炭素を含む材料
で構成するのが好適である。たとえば炭素同素体−シリ
コン、炭素同素体−有機化合物、等が挙げられる。そし
て炭素同素体としては、フラーレン(C60,C70等)、カ
ーボンナノチューブ、ダイアモンド様炭素が、そしてシ
リコンとしてはアモルファスシリコン、シリコン微粒子
等が挙げられる。
Materials constituting such a power generation layer include silicon, III-V semiconductors (GaAs, AlGa).
The as, InP, etc.), II-VI group semiconductor (CdS, CdTe, Cu 2 S
Etc.), a conductive organic compound, a carbon allotrope, etc., but from the viewpoint of cost and environmental requirements, it is preferable to use a material containing carbon. For example, carbon allotrope-silicon, carbon allotrope-organic compound and the like can be mentioned. Examples of carbon allotropes include fullerene (C 60 , C 70 and the like), carbon nanotubes, and diamond-like carbon, and examples of silicon include amorphous silicon and silicon fine particles.

【0011】さらに有機化合物としては、たとえば、ポ
リアセチレン類、ポリチオフェン類、ポリピロール類、
ポリ(p−フェニレン類)、ポリ(p−フェニレンビニ
レン類)等の導電性高分子が挙げられるが、ポリフェニ
レンビニレン系高分子であるMEH−PPV/PCBM等が特
に好適である。このような発電層の形成は,常法による
ことができ、たとえばプラズマCVD(化学堆積)、浸漬
コーティング、スパッタリング等が挙げられる。
Further, examples of the organic compound include polyacetylenes, polythiophenes, polypyrroles,
Examples of the conductive polymer include poly (p-phenylenes) and poly (p-phenylenevinylenes), and a polyphenylenevinylene-based polymer such as MEH-PPV / PCBM is particularly preferable. Such a power generation layer can be formed by a conventional method, for example, plasma CVD (chemical deposition), dip coating, sputtering and the like.

【0012】これらの発電層においてpn接合もしくは
ショットキー接合の形成は、常法によることができる。
すなわち、前者においては上記の材料に種々の不純物を
導入(ドーピング)することにより,そして後者におい
ては上記の材料と後述の電極金属との接触により、形成
される。たとえば、pn接合の形成の際の不純物には、
p型としてB、n型としてP、AsもしくはSbが一般的であ
り,熱拡散法もしくはイオン注入法により導入されるの
が通常である。炭素同素体のみを用いる場合には、MIS
型のショトキー接合とするのが一般的である。
The formation of a pn junction or a Schottky junction in these power generation layers can be performed by a conventional method.
That is, the former is formed by introducing (doping) various impurities into the above-mentioned material, and the latter is formed by contact between the above-mentioned material and an electrode metal described later. For example, impurities during the formation of a pn junction include:
B is generally used as the p-type, and P, As or Sb is generally used as the n-type, and is usually introduced by a thermal diffusion method or an ion implantation method. When using only carbon allotropes, MIS
It is common to use a Schottky junction of the molds.

【0013】さらに、電極層としては,通常、金属極薄
膜もしくは透明電極が用いられる。たとえば、光入射側
に用いられるITO、SnO2 等の透明電極はCVD,
スパッタリング、蒸着法等により形成され、アルミニウ
ム、銀等の金属極薄膜は蒸着、印刷法等により形成され
る。上記のように発電層で分離された電子と正孔は、電
極層の端子を通じて接続された外部回路において再結合
される。
Further, as the electrode layer, a metal ultrathin film or a transparent electrode is usually used. For example, transparent electrodes such as ITO and SnO 2 used on the light incident side are formed by CVD,
It is formed by a sputtering method, a vapor deposition method, or the like, and an extremely thin metal film of aluminum, silver, or the like is formed by a vapor deposition method, a printing method, or the like. The electrons and holes separated in the power generation layer as described above are recombined in an external circuit connected through terminals of the electrode layer.

【0014】また,本発明の光起電力素子においては、
好ましくはこれらの発電層および電極層の表面に保護層
を設けることができる。この保護層は、反射防止、耐環
境性の向上等を目的とするものであり、発電性能に著し
い劣化をもたらさない限り特に制限されず、好適にはフ
ッ素系化合物、たとえばフッ素系透明高分子膜が選ばれ
る。これらの保護層の厚みは,通常150μm以下程度
から選択される。
Further, in the photovoltaic device of the present invention,
Preferably, a protective layer can be provided on the surface of the power generation layer and the electrode layer. This protective layer is intended to prevent reflection, improve environmental resistance, and the like, and is not particularly limited as long as the power generation performance is not significantly deteriorated, and is preferably a fluorine-based compound, such as a fluorine-based transparent polymer film. Is selected. The thickness of these protective layers is usually selected from about 150 μm or less.

【0015】この保護層の形成は,常法によることがで
きる。図1aおよび図1bは、本発明の光起電力素子の
好適な一例を模式的に示すものであり(図1aは斜視
図、図1bは断面図)、可撓性で、裏面電極としての機
能を有する繊維状導電材料(1)(〜300μm)上に
プラズマCVD法等により発電層(2)(〜5μm)、そ
して電極として透明電極(3)(〜5μm)およびリボ
ン状集電極(4)(〜100μm)、ついで表面保護層
(5)(〜150μm)を形成させてなる。
The formation of the protective layer can be carried out by a conventional method. 1a and 1b schematically show a preferred example of the photovoltaic device of the present invention (FIG. 1a is a perspective view, and FIG. 1b is a cross-sectional view), which is flexible and functions as a back electrode. A power generation layer (2) (up to 5 μm) on a fibrous conductive material (1) (up to 300 μm) having the following characteristics, and a transparent electrode (3) (up to 5 μm) and a ribbon-shaped collector electrode (4) as electrodes (〜100 μm), and then a surface protective layer (5) (〜150 μm) is formed.

【0016】このようにして得られる光起電力素子は、
特に繊維状の場合には、製造が容易で、表面積が大き
く、自由な形状にできる可撓性の非膜型太陽電池を得る
ことができる。すなわち、本発明においては,このよう
な光起電力素子を用いて、好適には平面構造の1.6倍
以上の集光面積を有する太陽電池を構成することができ
る。たとえば図1に示される繊維状光起電力素子を、図
2および図3にパイル構造に織布化すると、それぞれ平
面構造の約1.6倍および約2.0倍の表面積、すなわち
集光面積を得ることができる。
The photovoltaic device thus obtained is
In particular, in the case of a fibrous form, a flexible non-film type solar cell which can be easily manufactured, has a large surface area, and can be formed into a free shape can be obtained. That is, in the present invention, using such a photovoltaic element, a solar cell having a condensing area preferably 1.6 times or more the planar structure can be formed. For example, when the fibrous photovoltaic element shown in FIG. 1 is woven into a pile structure in FIGS. 2 and 3, the surface area is about 1.6 times and about 2.0 times the plane structure, that is, the light-collecting area, respectively. Can be obtained.

【0017】太陽電池の作製にあたっては、屋外での設
置と発電に対して十分な機械的強度および耐候性を有す
る構造とする必要がある。このためモジュールと呼ばれ
る構造が採用されており、素子を電気的に直列に接続
し、屋外設置のために持ち運びに適した大きさでガラス
板の裏面に並べるのが一般的である。その周辺部分に
は、アルミニウム製等のフレームが設けられ、モジュー
ルの強度を高め、さらには屋外設置の場合の架台への取
り付け場所となる。このようなモジュールの設計にあた
っては,使用機器の環境、使用機器の仕様、二次電池の
要否等を前提として素子の直列数および素子の大きさが
決定される。たとえば、 (1)太陽電池のみを電源とする場合 入射する太陽光の照度変化に対し太陽電池の出力電圧を
安定にするために、電圧制御用ダイオードおよび電圧安
定化回路が用いられる。電力を取り出すために外部の負
荷に接続されるが、太陽電池の動作点は、この負荷の電
圧−電流特性の交点となる。所要の出力電流を得るのに
必要なモジュールの最適動作電流を、出力特性の最適動
作点より求める。通常,動作点は出力が最大になる点に
設定される。ついでこの最適動作電流を得るために必要
な受光面積を求め、これより素子の大きさが決定され
る。 (2)太陽電池に二次電池を付加する場合 二次電池;二次電池から太陽電池に電流が逆流するのを
防止する逆流防止ダイオード;および二次電池への充電
電流を制限電流値まで下げる電流制限抵抗もしくは二次
電池の過充電を防止するため電圧を制御する電圧制御回
路;で回路が構成される。この場合、太陽電池の動作点
は,電圧が二次電池の電圧以上となる点である。所定の
消費電流、充電/放電時間を有する使用機器を所定時間
動作させるために必要な二次電池の充電電流を決定し、
これより同様に素子の大きさが決定される。
In manufacturing a solar cell, it is necessary to have a structure having sufficient mechanical strength and weather resistance for outdoor installation and power generation. For this reason, a structure called a module is adopted. In general, the elements are electrically connected in series and arranged on the back surface of a glass plate in a size suitable for carrying for outdoor installation. A frame made of aluminum or the like is provided in a peripheral portion thereof to increase the strength of the module, and furthermore, becomes a place to be attached to a gantry in the case of outdoor installation. In designing such a module, the number of series elements and the size of the elements are determined on the premise of the environment of the equipment used, the specifications of the equipment used, the necessity of a secondary battery, and the like. For example, (1) In the case where only a solar cell is used as a power supply: A voltage control diode and a voltage stabilizing circuit are used to stabilize the output voltage of the solar cell with respect to a change in illuminance of incident sunlight. Although connected to an external load to extract power, the operating point of the solar cell is the intersection of the voltage-current characteristics of this load. The optimum operating current of the module required to obtain the required output current is determined from the optimum operating point of the output characteristics. Normally, the operating point is set to the point where the output becomes maximum. Next, the light receiving area necessary for obtaining the optimum operating current is obtained, and the size of the element is determined from this. (2) When a secondary battery is added to the solar battery: a secondary battery; a backflow prevention diode for preventing current from flowing backward from the secondary battery to the solar battery; and reducing the charging current to the secondary battery to a limited current value. The voltage control circuit controls the voltage to prevent overcharge of the secondary battery or the current limiting resistor. In this case, the operating point of the solar cell is a point where the voltage is equal to or higher than the voltage of the secondary battery. A predetermined current consumption, determine the charging current of the secondary battery required to operate the used device having a charging / discharging time for a predetermined time,
From this, the size of the element is similarly determined.

【0018】本発明において,たとえば図2および図3
のような構成の太陽電池を形成させる場合、たとえばエ
ポキシ樹脂製基板の裏面に、必要な上記回路等を形成し
うる。
In the present invention, for example, FIGS.
When a solar cell having the above configuration is formed, for example, the necessary circuits and the like can be formed on the back surface of an epoxy resin substrate.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの実施例に限定されない。 実施例1 0.015mm径のPAN系黒鉛繊維を導電性材料とし
て,その上に発電層としてダイアモンド様炭素−シリコ
ンをCVD法により厚み1μm−1μmで堆積させ、つい
で不純物を導入してpn接合を形成させた。電極の形成
は、CVD法およびスパッタリング法により行なった(透
明電極ITO:2μm、集電極はリボン状アルミニウム、
10μm)。得られた繊維状光起電力素子は、図1に示
す構造を有する。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 A PAN-based graphite fiber having a diameter of 0.015 mm was used as a conductive material, and diamond-like carbon-silicon was deposited thereon as a power generation layer to a thickness of 1 μm-1 μm by a CVD method. Formed. The electrodes were formed by a CVD method and a sputtering method (transparent electrode ITO: 2 μm, collector electrode was aluminum ribbon,
10 μm). The obtained fibrous photovoltaic element has the structure shown in FIG.

【0020】これを、図2に示すような形状の単一パイ
ル状に配置し太陽電池を作製した。これに日光を照射し
たところ。0.55Vの起電力(開放電圧)を発生し
た。短絡電流は、700mAであった。 実施例2 0.15mm径の中空銅線を導電性材料として、実施例
1と同様な方法で繊維状光起電力素子を得、さらに太陽
電池を作製した。起電力0.5V、短絡電流800mAで
あった。 実施例3 実施例1においてアモルファス炭素(5μm)のみを用
いて形成した発電層の上にアルミニウム薄膜(10n
m)を蒸着法により電極を形成しMIS型ショトキー接合
とした以外は、同様にして太陽電池を作製した。起電力
0.2V、短絡電流1μAであった。
These were arranged in a single pile shape as shown in FIG. 2 to produce a solar cell. When this was irradiated with sunlight. An electromotive force (open circuit voltage) of 0.55 V was generated. The short circuit current was 700 mA. Example 2 Using a hollow copper wire having a diameter of 0.15 mm as a conductive material, a fibrous photovoltaic element was obtained in the same manner as in Example 1, and a solar cell was further produced. The electromotive force was 0.5 V and the short-circuit current was 800 mA. Example 3 An aluminum thin film (10 n) was formed on a power generation layer formed using only amorphous carbon (5 μm) in Example 1.
A solar cell was produced in the same manner as in m) except that electrodes were formed by vapor deposition to form MIS type Schottky junctions. The electromotive force was 0.2 V and the short-circuit current was 1 μA.

【0021】[0021]

【発明の効果】本発明によれば信頼性の高い可撓性太陽
電池を構成することができ、特に繊維状もしくは球状の
光起電力素子を用いる場合には表面積が大きく、軽量で
構造的負荷を緩和し得、しかも自由な形状に加工しやす
いという利点を有する。したがって太陽光を効率的に吸
収でき、かつ大面積もしくは複雑な形状も容易に構成し
得る。さらに、全体としてマルチ並列回路となり、体積
固有抵抗の大きい発電層であっても大きな電流を取り出
し得、どこか1箇所の電極線が断線しても全電流にほと
んど影響を与えないというフェイルセーフ性も有する。
以上のように本発明の光起電力素子は、日常品的な用途
を含め従来よりもさらに幅広い範囲の用途に適用し得る
ものである。
According to the present invention, a highly reliable flexible solar cell can be constructed. Particularly, when a fibrous or spherical photovoltaic element is used, the surface area is large, the weight is small, and the structural load is small. Has the advantage that it can be easily processed into a free shape. Therefore, sunlight can be efficiently absorbed, and a large area or a complicated shape can be easily formed. Furthermore, a multi-parallel circuit is formed as a whole, and a large current can be taken out even in a power generation layer having a large volume specific resistance, and even if one of the electrode wires is broken, the fail-safe property has almost no effect on the entire current. Also have.
As described above, the photovoltaic device of the present invention can be applied to a wider range of uses than conventional ones, including everyday uses.

【図面の簡単な説明】[Brief description of the drawings]

【図1】aは本発明の光起電力素子の1例を模式的に示
す斜視図である。bは本発明の光起電力素子の1例を模
式的に示す断面図である。
FIG. 1a is a perspective view schematically showing one example of a photovoltaic element of the present invention. b is a cross-sectional view schematically illustrating one example of the photovoltaic element of the present invention.

【図2】本発明の太陽電池の1例を模式的に示す図であ
る。
FIG. 2 is a view schematically showing one example of the solar cell of the present invention.

【図3】本発明の太陽電池の1例を模式的に示す図であ
る。
FIG. 3 is a diagram schematically showing one example of a solar cell of the present invention.

【符号の説明】[Explanation of symbols]

1…繊維状導電性材料 2…発電層 3…透明電極 4…集電極 5…表面保護層 DESCRIPTION OF SYMBOLS 1 ... Fibrous conductive material 2 ... Power generation layer 3 ... Transparent electrode 4 ... Collector electrode 5 ... Surface protective layer

フロントページの続き (72)発明者 石川 正道 東京都千代田区大手町2−3−6 株式会 社三菱総合研究所内 (72)発明者 本多 克也 東京都千代田区大手町2−3−6 株式会 社三菱総合研究所内 Fターム(参考) 5F051 AA01 BA15 DA01 DA20 FA14 GA02 GA05 GA11 Continued on front page (72) Inventor Masamichi Ishikawa 2-3-6 Otemachi, Chiyoda-ku, Tokyo Inside Mitsubishi Research Institute, Inc. (72) Inventor Katsuya Honda 2-3-6, Otemachi, Chiyoda-ku, Tokyo Stock Association F-term in Mitsubishi Research Institute, Inc. (reference) 5F051 AA01 BA15 DA01 DA20 FA14 GA02 GA05 GA11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電性材料上に発電層および電極層を形
成させてなり、かつ可撓性を有する光起電力素子。
1. A flexible photovoltaic element comprising a power generation layer and an electrode layer formed on a conductive material and having flexibility.
【請求項2】 導電性材料が繊維状である請求項1記載
の光起電力素子。
2. The photovoltaic device according to claim 1, wherein the conductive material is fibrous.
【請求項3】 繊維状の導電性材料が黒鉛繊維もしくは
金属繊維である請求項2記載の光起電力素子。
3. The photovoltaic device according to claim 2, wherein the fibrous conductive material is a graphite fiber or a metal fiber.
【請求項4】 発電層が炭素を含む材料で構成される請
求項1記載の光起電力素子。
4. The photovoltaic device according to claim 1, wherein the power generation layer is made of a material containing carbon.
【請求項5】 炭素を含む材料が炭素同素体−シリコン
もしくは炭素同素体−有機化合物である請求項5記載の
光起電力素子。
5. The photovoltaic device according to claim 5, wherein the material containing carbon is carbon allotrope-silicon or carbon allotrope-organic compound.
【請求項6】 発電層および電極層の表面に、表面保護
層をさらに形成させてなる請求項1記載の光起電力素
子。
6. The photovoltaic device according to claim 1, further comprising a surface protective layer formed on the surfaces of the power generation layer and the electrode layer.
【請求項7】 請求項1〜6のいずれかに記載の光起電
力素子を用いてなる太陽電池。
7. A solar cell using the photovoltaic element according to claim 1.
【請求項8】 光起電力素子を用いてなる構造が、平面
構造の1.6倍以上の集光面積を有してなる請求項7記
載の太陽電池。
8. The solar cell according to claim 7, wherein the structure using the photovoltaic element has a light-collecting area 1.6 times or more the planar structure.
JP2000340990A 2000-11-08 2000-11-08 Photovoltaic element Pending JP2002151708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000340990A JP2002151708A (en) 2000-11-08 2000-11-08 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000340990A JP2002151708A (en) 2000-11-08 2000-11-08 Photovoltaic element

Publications (1)

Publication Number Publication Date
JP2002151708A true JP2002151708A (en) 2002-05-24

Family

ID=18815813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000340990A Pending JP2002151708A (en) 2000-11-08 2000-11-08 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP2002151708A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347565A (en) * 2002-05-29 2003-12-05 Toray Ind Inc Photovoltaic element
JP2007507863A (en) * 2003-10-02 2007-03-29 ナショナル リサーチ カウンシル オブ カナダ 2,7-Carbazolenvinylene derivatives as novel materials in the fabrication of organic-based electronic devices
JP2007109976A (en) * 2005-10-14 2007-04-26 Oki Electric Ind Co Ltd Photoelectric conversion element, photoelectric conversion structure, apparatus for manufacturing same, and photoelectric conversion device
WO2008055404A1 (en) * 2006-11-10 2008-05-15 Peking University A dye sensitized solar battery and a working electrode thereof
CN103972321A (en) * 2014-05-21 2014-08-06 云南师范大学 Fibrous silicon-based thin-film solar cell and preparation method thereof
EP1917557A4 (en) * 2005-08-24 2015-07-22 Trustees Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
WO2016126223A1 (en) * 2015-02-04 2016-08-11 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi Photovoltaic yarn and a production method
CN105932101A (en) * 2016-05-20 2016-09-07 广东蒙泰纺织纤维有限公司 Polypropylene fiber solar microcell and manufacturing method thereof
JP2019186258A (en) * 2018-04-02 2019-10-24 住江織物株式会社 Series connection structure of fibrous photovoltaic elements and cloth type solar cell including fibrous photovoltaic elements connected in series connection structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347565A (en) * 2002-05-29 2003-12-05 Toray Ind Inc Photovoltaic element
JP2007507863A (en) * 2003-10-02 2007-03-29 ナショナル リサーチ カウンシル オブ カナダ 2,7-Carbazolenvinylene derivatives as novel materials in the fabrication of organic-based electronic devices
US8134143B2 (en) 2003-10-02 2012-03-13 National Research Council Of Canada 2,7-carbazolenevinylene derivatives as novel materials in producing organic based electronic devices
EP1917557A4 (en) * 2005-08-24 2015-07-22 Trustees Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
JP2007109976A (en) * 2005-10-14 2007-04-26 Oki Electric Ind Co Ltd Photoelectric conversion element, photoelectric conversion structure, apparatus for manufacturing same, and photoelectric conversion device
WO2008055404A1 (en) * 2006-11-10 2008-05-15 Peking University A dye sensitized solar battery and a working electrode thereof
CN103972321A (en) * 2014-05-21 2014-08-06 云南师范大学 Fibrous silicon-based thin-film solar cell and preparation method thereof
WO2016126223A1 (en) * 2015-02-04 2016-08-11 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi Photovoltaic yarn and a production method
US10826006B2 (en) 2015-02-04 2020-11-03 Kordsa Teknik Tekstil Anonim Sirketi Photovoltaic yarn and a production method
CN105932101A (en) * 2016-05-20 2016-09-07 广东蒙泰纺织纤维有限公司 Polypropylene fiber solar microcell and manufacturing method thereof
JP2019186258A (en) * 2018-04-02 2019-10-24 住江織物株式会社 Series connection structure of fibrous photovoltaic elements and cloth type solar cell including fibrous photovoltaic elements connected in series connection structure

Similar Documents

Publication Publication Date Title
US8350146B2 (en) Three dimensional multi-junction photovoltaic device
KR101039156B1 (en) Solar cell including carbon nanotube layer
JPH0794772A (en) Nuclear battery
GB2073949A (en) Photovoltaic cell with textile sheet structure
US9666741B2 (en) Power generating apparatus and power generating system equipped with such power generating apparatus
JPS61104678A (en) Amorphous solar cell
KR101003808B1 (en) Multiple solar cell having p-n juction and schottky juction, and fabricating method thereof
US10256362B2 (en) Flexible silicon infrared emitter
JP2002151708A (en) Photovoltaic element
CN101236794A (en) Non-crystal silicon carbon film nucleus battery
JP2010283406A (en) Solar cell
EP1878054A2 (en) Solar cell array with isotype-heterojunction diode
KR101179365B1 (en) Front and Back contact electric field solar cell and method thereof
KR100953448B1 (en) Photoelectric conversion device using semiconductor nano material and method for manufacturing thereof
WO2012057604A1 (en) Nanostructure-based photovoltaic cell
KR101218576B1 (en) Back contact solar cell and method for manufacturing the same
CN117321776A (en) Multi-junction solar cell
Nushra et al. Efficiency Improvement Analysis for Recent High-Efficient Solar Cells
JPH0677511A (en) Solar battery and its manufacture
CA1121897A (en) Thin film photovoltaic cells
US20160118514A1 (en) Solar cell, solar cell panel, and solar cell film
Xu et al. Hairlike carbon-fiber-based solar cell
JP2014209844A (en) Power generation device, and power generation system with power generation device
KR101172619B1 (en) Solar cell having AlN passivation layer
KR101101621B1 (en) Front and back contact electric field solar cell and method thereof